diff options
author | haddoucher <reda.haddouche@ost.ch> | 2022-08-16 13:14:16 +0200 |
---|---|---|
committer | haddoucher <reda.haddouche@ost.ch> | 2022-08-16 13:14:16 +0200 |
commit | 84e6c11fada0cb616111c3001acbe1abc585b213 (patch) | |
tree | 07b1755428280cbbb5ee2108d1fd4666f0b6e8dc /buch | |
parent | Beispiel & einleitung (diff) | |
download | SeminarSpezielleFunktionen-84e6c11fada0cb616111c3001acbe1abc585b213.tar.gz SeminarSpezielleFunktionen-84e6c11fada0cb616111c3001acbe1abc585b213.zip |
tscheby kapitel
Randbedingungen
Diffstat (limited to '')
-rw-r--r-- | buch/chapters/010-potenzen/tschebyscheff.tex | 3 | ||||
-rw-r--r-- | buch/papers/sturmliouville/tschebyscheff_beispiel.tex | 23 |
2 files changed, 21 insertions, 5 deletions
diff --git a/buch/chapters/010-potenzen/tschebyscheff.tex b/buch/chapters/010-potenzen/tschebyscheff.tex index ccc2e97..6d21a68 100644 --- a/buch/chapters/010-potenzen/tschebyscheff.tex +++ b/buch/chapters/010-potenzen/tschebyscheff.tex @@ -102,7 +102,7 @@ die Sütztstellen so zu wählen, dass $l(x)$ kleine Funktionswerte hat. Stützstellen in gleichen Abständen erweisen sich dafür als ungeeignet, da $l(x)$ nahe $x_0$ und $x_n$ sehr stark oszilliert. -\subsection{Definition der Tschebyscheff-Polynome} +\subsection{Definition der Tschebyscheff-Polynome \label{sub:definiton_der_tschebyscheff-Polynome}} \begin{figure} \centering \includegraphics[width=\textwidth]{chapters/010-potenzen/images/lissajous.pdf} @@ -199,6 +199,7 @@ T_0(x)=1. \end{equation} Damit können die Tschebyscheff-Polynome sehr effizient berechnet werden: \begin{equation} +\label{eq:tschebyscheff-polynome} \begin{aligned} T_0(x) &=1 diff --git a/buch/papers/sturmliouville/tschebyscheff_beispiel.tex b/buch/papers/sturmliouville/tschebyscheff_beispiel.tex index 391841a..d441795 100644 --- a/buch/papers/sturmliouville/tschebyscheff_beispiel.tex +++ b/buch/papers/sturmliouville/tschebyscheff_beispiel.tex @@ -27,7 +27,7 @@ Für $x>1$ und $x<-1$ sehen die Polynome wie folgt aus: T_n(x) = \left\{\begin{array}{ll} \cosh (n \arccos x), & x > 1\\ (-1)^n \cosh (n \arccos (-x)), & x<-1 \end{array}\right. \end{equation}, -jedoch ist die Orthogonalität nur auf dem Intervall $\[ -1, 1\]$ sichergestellt. +jedoch ist die Orthogonalität nur auf dem Intervall $[\-1, 1 ]\ $ sichergestellt. Die nächste Bedingung beinhaltet, dass die Funktion $p(x)^-1$ und $w(x)>0$ sein müssen. Die Funktion \begin{equation*} @@ -36,14 +36,29 @@ Die Funktion ist die gleiche wie $w(x)$. Für die Verifizierung der Randbedingungen benötigt man erneut $p(x)$. -Da sich die Polynome nur auf dem Intervall $\[ -1,1 \]$ orthogonal verhalten, sind $a = -1$ und $b = 1$ gesetzt. +Da sich die Polynome nur auf dem Intervall $[\-1, 1 ]\ $ orthogonal verhalten, sind $a = -1$ und $b = 1$ gesetzt. Beim einsetzen in die Randbedingung \ref{eq:randbedingungen}, erhält man \begin{equation} \begin{aligned} - k_a y(-1) + h_a y'(-1) &= h_a + k_a y(-1) + h_a y'(-1) &= 0 + k_b y(-1) + h_b y'(-1) &= 0 \end{aligned} -\end{equation} +\end{equation}. +Die Funktion $y(x)$ und $y'(x)$ sind in diesem Fall die Tschebyscheff Polynome (siehe \label{sub:definiton_der_tschebyscheff-Polynome}). +Es gibt zwei Arten von Tschebyscheff Polynome: die erste Art $T_n(x)$ und die zweite Art $U_n(x)$. +Jedoch beachtet man in diesem Kapitel nur die Tschebyscheff Polynome erster Art (\ref{eq:tschebyscheff-polynome}). +Die Funktion $y(x)$ wird nun mit der Funktion $T_n(x)$ ersetzt und für die Verifizierung der Randbedingung wählt man $n=2$. +Somit erhält man +\begin{equation} + \begin{aligned} + k_a T_2(-1) + h_a T_{2}'(-1) &= k_a = 0\\ + k_b T_2(1) + h_b T_{2}'(1) &= k_b = 0 +\end{aligned} +\end{equation}. +Ähnlich wie beim Beispiel der Wärmeleitung in einem homogenen Stab kann man, damit die Bedingung $|k_i|^2 + |h_i|^2\ne 0$ erfüllt ist, können beliebige $h_a \ne 0$ und $h_b \ne 0$ gewählt werden. +Somit ist erneut gezeigt, dass die Randbedingungen der Tschebyscheff-Polynome auf die Sturm-Liouville-Randbedingungen erfüllt und alle daraus resultierenden Lösungen orthogonal sind. + |