diff options
author | Andreas Müller <andreas.mueller@ost.ch> | 2022-06-21 08:34:19 +0200 |
---|---|---|
committer | Andreas Müller <andreas.mueller@ost.ch> | 2022-06-21 08:34:19 +0200 |
commit | c982d50db43bc3254f3b158e17c679d5ef3253e2 (patch) | |
tree | b574a64bbc9e9563f04c58b758aa14a5c591360f /buch | |
parent | typo (diff) | |
download | SeminarSpezielleFunktionen-c982d50db43bc3254f3b158e17c679d5ef3253e2.tar.gz SeminarSpezielleFunktionen-c982d50db43bc3254f3b158e17c679d5ef3253e2.zip |
typos
Diffstat (limited to '')
-rw-r--r-- | buch/chapters/050-differential/bessel.tex | 11 | ||||
-rw-r--r-- | buch/chapters/050-differential/potenzreihenmethode.tex | 61 |
2 files changed, 49 insertions, 23 deletions
diff --git a/buch/chapters/050-differential/bessel.tex b/buch/chapters/050-differential/bessel.tex index a3237fe..cf271e3 100644 --- a/buch/chapters/050-differential/bessel.tex +++ b/buch/chapters/050-differential/bessel.tex @@ -316,10 +316,14 @@ J_{-\alpha}(x) y_2(x). \end{align*} +% +% Ganzzahlige Ordnung +% +\subsubsection{Besselfunktionen ganzzahliger Ordnung} Man beachte, dass diese Definition für beliebige ganzzahlige $\alpha$ funktioniert. Ist $\alpha=-n<0$, $n\in\mathbb{N}$, dann hat der Nenner Pole -an den Stellen $k=0,1,\dots,n-$. +an den Stellen $k=0,1,\dots,n-1$. Die Summe beginnt also erst bei $k=n$ oder \begin{align*} J_{-n}(x) @@ -340,6 +344,9 @@ J_{n}(x). Insbesondere unterscheiden sich $J_n(x)$ und $J_{-n}(x)$ nur durch ein Vorzeichen. +% +% Erzeugende Funktione +% \subsubsection{Erzeugende Funktion} \begin{figure} \centering @@ -754,6 +761,6 @@ BJ_{\frac12}(x) \biggl(\frac12\biggr)^2 J_{\frac12}(x). \end{align*} Dies zeigt, dass $J_{\frac12}(x)$ tatsächlich eine Eigenfunktion -des Bessel-Operators zum Eigenwert $\alpha^2 = \frac14$. +des Bessel-Operators zum Eigenwert $\alpha^2 = \frac14$ ist. Analog kann man die Lösung $y_2(x)$ für $-\frac12$ verifizieren. diff --git a/buch/chapters/050-differential/potenzreihenmethode.tex b/buch/chapters/050-differential/potenzreihenmethode.tex index 84c52c2..d046f06 100644 --- a/buch/chapters/050-differential/potenzreihenmethode.tex +++ b/buch/chapters/050-differential/potenzreihenmethode.tex @@ -290,7 +290,7 @@ Für ganzzahliges $\alpha$ wird daraus die binomische Formel \] % -% Lösung als hypergeometrische Riehe +% Lösung als hypergeometrische Reihe % \subsubsection{Lösung als hypergeometrische Funktion} Die Newtonreihe verwendet ein absteigendes Produkt im Zähler. @@ -420,25 +420,43 @@ $a_k=0$ sein, die einzige Potenzreihe ist die triviale Funktion $y(x)=0$. Für Differentialgleichungen der Art \eqref{buch:differentialgleichungen:eqn:dglverallg} ist also ein anderer Ansatz nötig. -Die Schwierigkeit bestand darin, dass die Gleichungen für die einzelnen -Koeffizienten $a_k$ voneinander unabhängig waren. -Mit einem zusätzlichen Potenzfaktor $x^\varrho$ mit nicht -notwendigerweise ganzzahligen Wert kann die nötige Flexibilität -erreicht werden. -Wir verwenden daher den Ansatz -\[ +Ursache für das Versagen des Potenzreihenansatzes ist, dass die +Koeffizienten der Differentialgleichung bei $x=0$ eine +Singularität haben. +Ist ist daher damit zu rechnen, dass auch die Lösung $y(x)$ an dieser +Stelle singuläres Verhalten zeigen wird. +Die Terme einer Potenzreihe um den Punkt $x=0$ sind nicht singulär, +können eine solche Singularität also nicht wiedergeben. +Der neue Ansatz sollte ähnlich einfach sein, aber auch gewisse ``einfache'' +Singularitäten darstellen können. +Die Potenzfunktionen $x^\varrho$ mit $\varrho<1$ erfüllen beide +Anforderungen. + +\begin{definition} +\label{buch:differentialgleichungen:def:verallpotenzreihe} +Eine {\em verallgemeinerte Potenzreihe} ist eine Funktion der Form +\begin{equation} y(x) = x^\varrho \sum_{k=0}^\infty a_kx^k = \sum_{k=0}^\infty a_k x^{\varrho+k} -\] -und versuchen nicht nur die Koeffizienten $a_k$ sondern auch den -Exponenten $\varrho$ zu bestimmen. -Durch Modifikation von $\varrho$ können wir immer erreichen, dass -$a_0\ne 0$ ist. - -Die Ableitungen von $y(x)$ mit der zugehörigen Potenz von x sind +\label{buch:differentialgleichungen:eqn:verallpotenzreihe} +\end{equation} +mit $a_0\ne 0$. +\end{definition} + +Die Forderung $a_0\ne 0$ kann nötigenfalls durch Modifikation des +Exponenten $\varrho$ immer erreicht werden. + +Wir verwenden also eine verallgemeinerte Potenzreihe der Form +\eqref{buch:differentialgleichungen:eqn:verallpotenzreihe} +als Lösungsansatz für die +Differentialgleichung~\eqref{buch:differentialgleichungen:eqn:dglverallg}. +Wir berechnen die Ableitungen von $y(x)$ und um sie in der +Differentialgleichung einzusetzen, versehen wir sie auch gleich mit den +benötigten Potenzen von $x$. +So erhalten wir \begin{align*} xy'(x) &= @@ -453,8 +471,9 @@ x^2y''(x) \sum_{k=0}^\infty (\varrho+k)(\varrho+k-1)a_kx^{\varrho+k}. \end{align*} -Diese Ableitungen setzen wir jetzt in die Differentialgleichung ein, -die dadurch zu +Diese Ausdrücke setzen wir jetzt in die +Differentialgleichung~\eqref{buch:differentialgleichungen:eqn:dglverallg} +ein, die dadurch zu \begin{equation} \sum_{k=0}^\infty (\varrho+k)(\varrho+k-1) a_k x^{\varrho+k} + @@ -489,6 +508,7 @@ Ausgeschrieben geben die einzelnen Terme \bigl((\varrho +2)a_2p_0 + (\varrho+1)a_1p_1 + \varrho a_0 p_2\bigr) x^{\varrho+2} + \dots +\label{buch:differentialgleichungen:eqn:dglverallg} \\ &+ q_0a_0x^{\varrho} @@ -685,18 +705,17 @@ Kapitel~\ref{buch:chapter:funktionentheorie} dargestellt werden. \item -Fall 3: $\varrho_1-\varrho-2$ ist eine positive ganze Zahl. +Fall 3: $\varrho_1-\varrho_2$ ist eine positive ganze Zahl. In diesem Fall ist im Allgemeinen nur eine Lösung in Form einer verallgemeinerten Potenzreihe möglich. Auch hier müssen Techniken der Funktionentheorie aus Kapitel~\ref{buch:chapter:funktionentheorie} verwendet werden, um eine zweite Lösung zu finden. -\end{itemize} - Wenn $\varrho_1-\varrho_2$ eine negative ganze Zahl ist, kann man die beiden Nullstellen vertauschen. -Es folgt dann, dass es eine +\end{itemize} + |