diff options
author | LordMcFungus <mceagle117@gmail.com> | 2022-07-22 21:28:45 +0200 |
---|---|---|
committer | GitHub <noreply@github.com> | 2022-07-22 21:28:45 +0200 |
commit | 23f17598c1742c70f442b94044a20aa821022c5a (patch) | |
tree | a945540ee6a4e86b37df2f01e3a91584b4797c4f /vorlesungen/slides/fresnel/numerik.tex | |
parent | Merge pull request #2 from AndreasFMueller/master (diff) | |
parent | Merge pull request #25 from JODBaer/master (diff) | |
download | SeminarSpezielleFunktionen-23f17598c1742c70f442b94044a20aa821022c5a.tar.gz SeminarSpezielleFunktionen-23f17598c1742c70f442b94044a20aa821022c5a.zip |
Merge pull request #3 from AndreasFMueller/master
update
Diffstat (limited to '')
-rw-r--r-- | vorlesungen/slides/fresnel/numerik.tex | 124 |
1 files changed, 124 insertions, 0 deletions
diff --git a/vorlesungen/slides/fresnel/numerik.tex b/vorlesungen/slides/fresnel/numerik.tex new file mode 100644 index 0000000..0bd4d5a --- /dev/null +++ b/vorlesungen/slides/fresnel/numerik.tex @@ -0,0 +1,124 @@ +% +% numerik.tex -- numerische Berechnung der Fresnel Integrale +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\bgroup +\begin{frame}[t] +\setlength{\abovedisplayskip}{5pt} +\setlength{\belowdisplayskip}{5pt} +\frametitle{Numerik} +\vspace{-20pt} +\begin{columns}[t,onlytextwidth] +\begin{column}{0.48\textwidth} +\begin{block}{Taylor-Reihe} +\begin{align*} +\sin t^{\uncover<2->{\color<2>{red}2}} +&= +\sum_{k=0}^\infty +(-1)^k \frac{t^{ +\ifthenelse{\boolean{presentation}}{\only<1>{2k+1}}{} +\only<2->{\color<2>{red}4k+2} +} +}{ +(2k+1)! +} +\\ +%\int \sin t^2\,dt +\uncover<4->{ +S_1(t) +&= +\sum_{k=0}^\infty +(-1)^k \frac{t^{4k+3}}{(2k+1)!(4n+3)} +} +\\ +\cos t^{\uncover<3->{\color<3>{red}2}} +&= +\sum_{k=0}^\infty +(-1)^k \frac{t^{ +\ifthenelse{\boolean{presentation}}{\only<-2>{2k}}{} +\only<3->{\color<3>{red}4k}} +}{ +(2k)! +} +\\ +%\int \sin t^2\,dt +\uncover<5->{ +C_1(t) +&= +\sum_{k=0}^\infty +(-1)^k \frac{t^{4k+1}}{(2k)!(4k+1)} +} +\end{align*} +\end{block} +\end{column} +\begin{column}{0.48\textwidth} +\uncover<6->{ +\begin{block}{Differentialgleichung} +\[ +\dot{\gamma}_1(t) += +\begin{pmatrix} +\cos t^2\\ \sin t^2 +\end{pmatrix} +\uncover<7->{ +\; +\to +\; +\gamma_1(t) += +\begin{pmatrix} +C_1(t)\\S_1(t) +\end{pmatrix} +} +\] +\end{block}} +\uncover<8->{% +\begin{block}{Hypergeometrische Reihen} +\begin{align*} +\uncover<9->{% +S(t) +&= +\frac{\pi z^3}{6} +\cdot +\mathstrut_1F_2\biggl( +\begin{matrix}\frac34\\\frac32,\frac74\end{matrix} +; +-\frac{\pi^2z^4}{16} +\biggr) +} +\\ +\uncover<10->{ +C(t) +&= +z +\cdot +\mathstrut_1F_2\biggl( +\begin{matrix}\frac14\\\frac12,\frac54\end{matrix} +; +-\frac{\pi^2z^4}{16} +\biggr)} +\end{align*} +\end{block}} +\end{column} +\end{columns} +\uncover<11->{% +\begin{block}{Komplexe Fehlerfunktion} +\[ +\left. +\begin{matrix} +S(z)\\ +C(z) +\end{matrix} +\right\} += +\frac{1\pm i}{4} +\left( +\operatorname{erf}\biggl({\frac{1+i}2}\sqrt{\pi}z\biggr) +\mp i +\operatorname{erf}\biggl({\frac{1-i}2}\sqrt{\pi}z\biggr) +\right) +\] +\end{block}} +\end{frame} +\egroup |