aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--buch/chapters/050-differential/bessel.tex11
-rw-r--r--buch/chapters/050-differential/potenzreihenmethode.tex61
2 files changed, 49 insertions, 23 deletions
diff --git a/buch/chapters/050-differential/bessel.tex b/buch/chapters/050-differential/bessel.tex
index a3237fe..cf271e3 100644
--- a/buch/chapters/050-differential/bessel.tex
+++ b/buch/chapters/050-differential/bessel.tex
@@ -316,10 +316,14 @@ J_{-\alpha}(x)
y_2(x).
\end{align*}
+%
+% Ganzzahlige Ordnung
+%
+\subsubsection{Besselfunktionen ganzzahliger Ordnung}
Man beachte, dass diese Definition für beliebige ganzzahlige
$\alpha$ funktioniert.
Ist $\alpha=-n<0$, $n\in\mathbb{N}$, dann hat der Nenner Pole
-an den Stellen $k=0,1,\dots,n-$.
+an den Stellen $k=0,1,\dots,n-1$.
Die Summe beginnt also erst bei $k=n$ oder
\begin{align*}
J_{-n}(x)
@@ -340,6 +344,9 @@ J_{n}(x).
Insbesondere unterscheiden sich $J_n(x)$ und $J_{-n}(x)$ nur durch
ein Vorzeichen.
+%
+% Erzeugende Funktione
+%
\subsubsection{Erzeugende Funktion}
\begin{figure}
\centering
@@ -754,6 +761,6 @@ BJ_{\frac12}(x)
\biggl(\frac12\biggr)^2 J_{\frac12}(x).
\end{align*}
Dies zeigt, dass $J_{\frac12}(x)$ tatsächlich eine Eigenfunktion
-des Bessel-Operators zum Eigenwert $\alpha^2 = \frac14$.
+des Bessel-Operators zum Eigenwert $\alpha^2 = \frac14$ ist.
Analog kann man die Lösung $y_2(x)$ für $-\frac12$ verifizieren.
diff --git a/buch/chapters/050-differential/potenzreihenmethode.tex b/buch/chapters/050-differential/potenzreihenmethode.tex
index 84c52c2..d046f06 100644
--- a/buch/chapters/050-differential/potenzreihenmethode.tex
+++ b/buch/chapters/050-differential/potenzreihenmethode.tex
@@ -290,7 +290,7 @@ Für ganzzahliges $\alpha$ wird daraus die binomische Formel
\]
%
-% Lösung als hypergeometrische Riehe
+% Lösung als hypergeometrische Reihe
%
\subsubsection{Lösung als hypergeometrische Funktion}
Die Newtonreihe verwendet ein absteigendes Produkt im Zähler.
@@ -420,25 +420,43 @@ $a_k=0$ sein, die einzige Potenzreihe ist die triviale Funktion $y(x)=0$.
Für Differentialgleichungen der Art
\eqref{buch:differentialgleichungen:eqn:dglverallg}
ist also ein anderer Ansatz nötig.
-Die Schwierigkeit bestand darin, dass die Gleichungen für die einzelnen
-Koeffizienten $a_k$ voneinander unabhängig waren.
-Mit einem zusätzlichen Potenzfaktor $x^\varrho$ mit nicht
-notwendigerweise ganzzahligen Wert kann die nötige Flexibilität
-erreicht werden.
-Wir verwenden daher den Ansatz
-\[
+Ursache für das Versagen des Potenzreihenansatzes ist, dass die
+Koeffizienten der Differentialgleichung bei $x=0$ eine
+Singularität haben.
+Ist ist daher damit zu rechnen, dass auch die Lösung $y(x)$ an dieser
+Stelle singuläres Verhalten zeigen wird.
+Die Terme einer Potenzreihe um den Punkt $x=0$ sind nicht singulär,
+können eine solche Singularität also nicht wiedergeben.
+Der neue Ansatz sollte ähnlich einfach sein, aber auch gewisse ``einfache''
+Singularitäten darstellen können.
+Die Potenzfunktionen $x^\varrho$ mit $\varrho<1$ erfüllen beide
+Anforderungen.
+
+\begin{definition}
+\label{buch:differentialgleichungen:def:verallpotenzreihe}
+Eine {\em verallgemeinerte Potenzreihe} ist eine Funktion der Form
+\begin{equation}
y(x)
=
x^\varrho \sum_{k=0}^\infty a_kx^k
=
\sum_{k=0}^\infty a_k x^{\varrho+k}
-\]
-und versuchen nicht nur die Koeffizienten $a_k$ sondern auch den
-Exponenten $\varrho$ zu bestimmen.
-Durch Modifikation von $\varrho$ können wir immer erreichen, dass
-$a_0\ne 0$ ist.
-
-Die Ableitungen von $y(x)$ mit der zugehörigen Potenz von x sind
+\label{buch:differentialgleichungen:eqn:verallpotenzreihe}
+\end{equation}
+mit $a_0\ne 0$.
+\end{definition}
+
+Die Forderung $a_0\ne 0$ kann nötigenfalls durch Modifikation des
+Exponenten $\varrho$ immer erreicht werden.
+
+Wir verwenden also eine verallgemeinerte Potenzreihe der Form
+\eqref{buch:differentialgleichungen:eqn:verallpotenzreihe}
+als Lösungsansatz für die
+Differentialgleichung~\eqref{buch:differentialgleichungen:eqn:dglverallg}.
+Wir berechnen die Ableitungen von $y(x)$ und um sie in der
+Differentialgleichung einzusetzen, versehen wir sie auch gleich mit den
+benötigten Potenzen von $x$.
+So erhalten wir
\begin{align*}
xy'(x)
&=
@@ -453,8 +471,9 @@ x^2y''(x)
\sum_{k=0}^\infty
(\varrho+k)(\varrho+k-1)a_kx^{\varrho+k}.
\end{align*}
-Diese Ableitungen setzen wir jetzt in die Differentialgleichung ein,
-die dadurch zu
+Diese Ausdrücke setzen wir jetzt in die
+Differentialgleichung~\eqref{buch:differentialgleichungen:eqn:dglverallg}
+ein, die dadurch zu
\begin{equation}
\sum_{k=0}^\infty (\varrho+k)(\varrho+k-1) a_k x^{\varrho+k}
+
@@ -489,6 +508,7 @@ Ausgeschrieben geben die einzelnen Terme
\bigl((\varrho +2)a_2p_0 + (\varrho+1)a_1p_1 + \varrho a_0 p_2\bigr) x^{\varrho+2}
+
\dots
+\label{buch:differentialgleichungen:eqn:dglverallg}
\\
&+
q_0a_0x^{\varrho}
@@ -685,18 +705,17 @@ Kapitel~\ref{buch:chapter:funktionentheorie}
dargestellt werden.
\item
-Fall 3: $\varrho_1-\varrho-2$ ist eine positive ganze Zahl.
+Fall 3: $\varrho_1-\varrho_2$ ist eine positive ganze Zahl.
In diesem Fall ist im Allgemeinen nur eine Lösung in Form einer
verallgemeinerten Potenzreihe möglich.
Auch hier müssen Techniken der Funktionentheorie aus
Kapitel~\ref{buch:chapter:funktionentheorie}
verwendet werden, um eine zweite Lösung zu finden.
-\end{itemize}
-
Wenn $\varrho_1-\varrho_2$ eine negative ganze Zahl ist, kann man die
beiden Nullstellen vertauschen.
-Es folgt dann, dass es eine
+\end{itemize}
+