diff options
-rw-r--r-- | buch/papers/sturmliouville/waermeleitung_beispiel.tex | 75 |
1 files changed, 71 insertions, 4 deletions
diff --git a/buch/papers/sturmliouville/waermeleitung_beispiel.tex b/buch/papers/sturmliouville/waermeleitung_beispiel.tex index 14fca40..58569e9 100644 --- a/buch/papers/sturmliouville/waermeleitung_beispiel.tex +++ b/buch/papers/sturmliouville/waermeleitung_beispiel.tex @@ -346,12 +346,79 @@ Schreiben wir also die Lösung $X(x)$ um zu \[ X(x) = - a_n\sin\left(\frac{n\pi}{l}x\right) + a_0 + - b_n\cos\left(\frac{n\pi}{l}x\right) + \sum_{n = 1}^{\infty} a_n\sin\left(\frac{n\pi}{l}x\right) + + + \sum_{n = 1}^{\infty} b_n\cos\left(\frac{n\pi}{l}x\right). +\] + +Um eine eindeutige Lösung für $ X(x) $ zu erhalten werden noch weitere +Bedingungen benötigt. +Diese sind die Startbedingungen oder $u(0, x) = X(x)$ für $t = 0$. +Es gilt also nun die Gleichung +\begin{equation} + \label{eq:slp-example-fourier-initial-conditions} + u(0, x) + = + a_0 + + + \sum_{n = 1}^{\infty} a_n\sin\left(\frac{n\pi}{l}x\right) + + + \sum_{n = 1}^{\infty} b_n\cos\left(\frac{n\pi}{l}x\right) +\end{equation} +nach allen $a_n$ und $b_n$ aufzulösen. +Da aber $a_n$ und $b_n$ jeweils als Faktor zu einer trigonometrischen Funktion +gehört, von der wir wissen, dass sie orthogonal zu allen anderen +trigonometrischen Funktionen der Lösung ist, kann direkt das Skalarprodukt +verwendet werden um die Koeffizienten $a_n$ und $b_n$ zu bestimmen. +Es wird also die Tatsache ausgenutzt, dass die Gleichheit in +\eqref{eq:slp-example-fourier-initial-conditions} nach Anwendung des +Skalarproduktes immernoch gelten muss und dass das Skalaprodukt mit einer +Basisfunktion sämtliche Summanden auf der rechten Seite auslöscht. + +Zur Berechnung von $a_m$ mit $ m \in \mathbb{N} $ wird beidseitig das +Skalarprodukt mit der Basisfunktion $ sin\left(\frac{m \pi}{l}x\right)$ +gebildet: +\[ + \langle u(0, x), sin\left(\frac{m \pi}{l}x\right) \rangle + = + \langle a_0 + + + \sum_{n = 1}^{\infty} a_n\sin\left(\frac{n\pi}{l}x\right) + + + \sum_{n = 1}^{\infty} b_n\cos\left(\frac{n\pi}{l}x\right), + sin\left(\frac{m \pi}{l}x\right)\rangle +\] + +Bevor diese Form in die Integralform umgeschrieben werden kann, muss überlegt +sein, welche Integralgrenzen zu verwenden sind. +In diesem Fall haben die $ \sin $ und $ \cos $ Terme beispielsweise keine ganze +Periode im Intervall $ x \in [0, l] $ für ungerade $ n $ und $ m $. +Um die + +\[ +\begin{aligned} + \int_{-l}^{l}\hat{u}(0, x)sin\left(\frac{m \pi}{l}x\right)dx + =& + \int_{-l}^{l} \left[a_0 + + + \sum_{n = 1}^{\infty} a_n\sin\left(\frac{n\pi}{l}x\right) + + + \sum_{n = 1}^{\infty} b_n\cos\left(\frac{n\pi}{l}x\right)\right] + sin\left(\frac{m \pi}{l}x\right) dx + \\ + =& + a_0 \int_{-l}^{l}sin\left(\frac{m \pi}{l}x\right) dx + + + \sum_{n = 1}^{\infty}\left[a_n\int_{-l}^{l}\sin\left(\frac{n\pi}{l}x\right) + sin\left(\frac{m \pi}{l}x\right)dx\right] + \\ + &+ + \sum_{n = 1}^{\infty}\left[b_n\int_{-l}^{l} \cos\left(\frac{n\pi}{l}x\right) + sin\left(\frac{m \pi}{l}x\right)dx\right] +\end{aligned} \] -was für jedes $n$ wiederum eine Linearkombination aus orthogonalen Funktionen -ist. Betrachten wir zuletzt die zweite Gleichung der Separation \eqref{eq:slp-example-fourier-separated-t}. |