diff options
Diffstat (limited to '')
-rw-r--r-- | buch/chapters/010-potenzen/Makefile.inc | 3 | ||||
-rw-r--r-- | buch/chapters/010-potenzen/chapter.tex | 5 | ||||
-rw-r--r-- | buch/chapters/010-potenzen/loesbarkeit.tex | 70 | ||||
-rw-r--r-- | buch/chapters/010-potenzen/polynome.tex | 404 | ||||
-rw-r--r-- | buch/chapters/010-potenzen/potenzreihen.tex | 14 | ||||
-rw-r--r-- | buch/chapters/010-potenzen/rational.tex | 61 | ||||
-rw-r--r-- | buch/chapters/010-potenzen/tschebyscheff.tex | 85 |
7 files changed, 622 insertions, 20 deletions
diff --git a/buch/chapters/010-potenzen/Makefile.inc b/buch/chapters/010-potenzen/Makefile.inc index a4505cb..87afe38 100644 --- a/buch/chapters/010-potenzen/Makefile.inc +++ b/buch/chapters/010-potenzen/Makefile.inc @@ -4,10 +4,11 @@ # (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule # -CHAPTERFILES = $(CHAPTERFILES) \ +CHAPTERFILES += \ chapters/010-potenzen/loesbarkeit.tex \ chapters/010-potenzen/polynome.tex \ chapters/010-potenzen/tschebyscheff.tex \ + chapters/010-potenzen/rational.tex \ chapters/010-potenzen/potenzreihen.tex \ chapters/010-potenzen/uebungsaufgaben/101.tex \ chapters/010-potenzen/uebungsaufgaben/102.tex \ diff --git a/buch/chapters/010-potenzen/chapter.tex b/buch/chapters/010-potenzen/chapter.tex index 7dc30d4..a1cce60 100644 --- a/buch/chapters/010-potenzen/chapter.tex +++ b/buch/chapters/010-potenzen/chapter.tex @@ -18,10 +18,13 @@ Diskussion rechtfertigen. \begin{enumerate} \item Die Umkehrfunktion der Potenzfunktion sind viel schwieriger zu +\index{Potenzfunktion}% berechnen und können als eine besonders einfache Art von speziellen Funktionen betrachtet werden. Die in Abschnitt~\ref{buch:potenzen:section:loesungen} definierten Wurzelfunktionen sind der erste Schritt zur Lösung von Polynomgleichungen. +\index{Wurzelfunktion}% +\index{Polynomgleichung}% \item Es lassen sich interessante Familien von Funktionen definieren, die zum Teil aus Polynomen bestehen. @@ -32,6 +35,7 @@ Abschnitt~\ref{buch:polynome:section:tschebyscheff} vorgestellt. \item Alles speziellen Funktionen sind analytisch, sie haben eine konvergente Potenzreihenentwicklung. +\index{Potenzreihe}% Die Partialsummen einer Potenzreihenentwicklung sind Approximationen An die wichtigsten Eigenschaften von Potenzreihen wird in Abschnitt~\ref{buch:potenzen:section:potenzreihen} erinnert. @@ -40,6 +44,7 @@ Abschnitt~\ref{buch:potenzen:section:potenzreihen} erinnert. \input{chapters/010-potenzen/polynome.tex} \input{chapters/010-potenzen/loesbarkeit.tex} \input{chapters/010-potenzen/tschebyscheff.tex} +\input{chapters/010-potenzen/rational.tex} \input{chapters/010-potenzen/potenzreihen.tex} \section*{Übungsaufgaben} diff --git a/buch/chapters/010-potenzen/loesbarkeit.tex b/buch/chapters/010-potenzen/loesbarkeit.tex index 692192d..a9f273a 100644 --- a/buch/chapters/010-potenzen/loesbarkeit.tex +++ b/buch/chapters/010-potenzen/loesbarkeit.tex @@ -20,8 +20,22 @@ für ein Polynome $p(x)$ und eine Konstante $c\in\mathbb{C}$. % Fundamentalsatz der Algebra % \subsection{Fundamentalsatz der Algebra} +In Abschnitt~\ref{buch:polynome:subsection:faktorisierung-und-nullstellen} +wurde gezeigt, dass sich jede Nullstellen $\alpha$ eines Polynoms als +Faktor $x-\alpha$ abspalten lässt. +Jedes Polynom liess sich in ein Produkt von Linearfaktoren und +einen Faktor zerlegen, der keine Nullstellen hat. +Zum Beispiel hat das Polynom $x^2+1\in\mathbb{R}[x]$ keine +Nullstellen in $\mathbb{R}$. +Eine solche Nullstelle müsste eine Quadratwurzel von $-1$ sein. +Die komplexen Zahlen $\mathbb{C}$ wurden genau mit dem Ziel konstruiert, +dass $i=\sqrt{-1}$ sinnvoll wird. +Der Fundamentalsatz der Algebra zeigt, dass $\mathbb{C}$ alle +Nullstellen von Polynomen enthält. \begin{satz}[Gauss] +\index{Satz!Fundamentalsatz der Algebra}% +\index{Fundamentalsatz der Algebra}% \label{buch:potenzen:satz:fundamentalsatz} Jedes Polynom $p(x)=a_nx^n+\dots + a_2x^2 + a_1x + a_0\in\mathbb{C}[x]$ zerfällt in ein Produkt @@ -34,6 +48,7 @@ a_n für Nullstellen $\alpha_k\in\mathbb{C}$. \end{satz} + % % Lösbarkeit durch Wurzelausdrücke % @@ -143,8 +158,63 @@ höheren Grades nicht mit einer Lösung durch Wurzelausdrücke rechnen kann. \begin{satz}[Abel] +\index{Satz!von Abel} \label{buch:potenzen:satz:abel} Für Polynomegleichungen vom Grad $n\ge 5$ gibt es keine allgemeine Lösung durch Wurzelausdrücke. \end{satz} + + +% +% Algebraische Zahlen +% +\subsection{Algebraische Zahlen} +Die Verwendung der komplexen Zahlen ist für numerische Rechnungen +zweckmässig. +In den Anwendungen der Computer-Algebra hingegen erwartet man zum +Beispiel exakte Formeln für eine Stammfunktion. +Nicht rationale Zahlen können nur exakt verarbeitet werden, wenn +Sie sich algebraisch in endlich vielen Schritten charakterisieren +lassen. +Dies ist zum Beispiel für rationale Zahlen $\mathbb{Q}$ möglich. +Gewisse irrationale Zahlen kann man charakterisieren durch +die Eigenschaft, Nullstelle eines Polynoms $p(x)\in\mathbb{Q}[x]$ +mit rationalen Koeffizienten zu sein. + +\begin{definition} +Eine Zahl $\alpha$ heisst {\em algebraisch} über $\mathbb{Q}$, +wenn es ein Polynom +\index{algebraische Zahl}% +$p(x)\in \mathbb{Q}[x]$ gibt, welches $\alpha$ als Nullstelle hat. +Eine Zahl heisst transzendent über $\mathbb{Q}$, wenn sie nicht algebraisch ist +über $\mathbb{Q}$. +\end{definition} + +Die Zahlen $i=\sqrt{-1}$ und $\sqrt{n\mathstrut}$ für $n\in\mathbb{N}$ +sind also algebraisch über $\mathbb{Z}$. +Es ist gezeigt worden, dass $\pi$ und $e$ nicht nur irrational +sind, sondern sogar transzendent. + +Eine Polynomgleichung $p(\alpha)=0$ mit $p(x)\in\mathbb{Q}[x]$ +hat eine Rechenregel für $\alpha$ zur Folge. +Dazu schreibt man +\[ +p_n\alpha^n + p_{n-1}\alpha^{n-1} + \dots + a_1\alpha + a_0 =0 +\qquad\Rightarrow\qquad +\alpha^n = -\frac{1}{p_n}\bigl( +p_{n-1}\alpha^{n-1}+\dots+a_1\alpha+a_0 +\bigr). +\] +Diese Regel erlaubt, jede Potenz $\alpha^k$ mit $k\ge n$ durch +Potenzen von $\alpha^l$ mit $l<n$ auszudrücken. +Die Zahlen, die sich durch arithmetische Operationen aus +$\alpha$ bilden lassen, lassen sich also sogar durch lineare +Operationen aus $1,\alpha,\alpha^2,\dots,\alpha^{n-1}$ +bilden. +Sie bilden einen endlichdimensionalen Vektorraum über $\mathbb{Q}$. +Rechnen mit algebraischen Zahlen ist also in einem CAS exakt möglich, +wie das in Abschnitt~\ref{buch:integrale:section:dkoerper} +für die Berechnung von Stammfunktionen illustriert wird. + + diff --git a/buch/chapters/010-potenzen/polynome.tex b/buch/chapters/010-potenzen/polynome.tex index 5f119e5..ce5e521 100644 --- a/buch/chapters/010-potenzen/polynome.tex +++ b/buch/chapters/010-potenzen/polynome.tex @@ -13,20 +13,32 @@ Operationen konstruieren lassen, sind die Polynome. \index{Polynom}% Ein {\em Polynome} vom Grad $n$ ist die Funktion \[ -p(x) = a_nx^2n + a_{n-1}x^{n-1} + \dots + a_2x^2 + a_1x + a_0, +p(x) = a_nx^n + a_{n-1}x^{n-1} + \dots + a_2x^2 + a_1x + a_0, \] wobei $a_n\ne 0$ sein muss. Das Polynom heisst {\em normiert}, wenn $a_n=1$ ist. \index{normiert}% +\index{Grad eines Polynoms}% +\index{Polynom!Grad}% Die Menge aller Polynome mit Koeffizienten in der Menge $K$ wird mit $K[x]$ bezeichnet. \end{definition} Die Menge $K[x]$ ist heisst auch der {\em Polynomring}, weil $K[x]$ -mit der Addition, Subtraktion und Multiplikation von Polynomen ein -Ring mit $1$ ist. -Im Folgenden werden wir uns auf die Fälle $K=\mathbb{R}$ und $K=\mathbb{C}$ -beschränken. +\index{Polynomring}% +mit der Addition, Subtraktion und Multiplikation von Polynomen eine +algebraische Struktur bildet, die man einen Ring mit $1$ nennt. +\index{Ring}% +Im Folgenden werden wir uns auf die Fälle $K=\mathbb{Q}$, $K=\mathbb{R}$ +und $K=\mathbb{C}$ beschränken. + +Für den Grad eines Polynoms gelten die bekannten Rechenregeln +\begin{align*} +\deg (a(x) + b(x)) &\le \operatorname{max}(\deg a(x), \deg b(x)) +\\ +\deg (a(x)\cdot b(x)) &=\deg a(x) + \deg b(x) +\end{align*} +für beliebige Polynome $a(x),b(x)\in K[x]$. In Abschnitt~\ref{buch:orthogonalitaet:section:orthogonale-funktionen} werden Familien von Polynomen konstruiert werden, die sich durch eine @@ -35,12 +47,14 @@ Diese Polynome lassen sich typischerweise auch als Lösungen von Differentialgleichungen finden. Ausserdem werden hypergeometrische Funktionen \[ -\mathstrut_pF_q\biggl(\begin{matrix}a_1,\dots,a_p\\b_1,\dots,b_q\end{matrix};z\biggr), +\mathstrut_pF_q\biggl( +\begin{matrix}a_1,\dots,a_p\\b_1,\dots,b_q\end{matrix};z +\biggr), \] die in Abschnitt~\ref{buch:rekursion:section:hypergeometrische-funktion} definiert werden, zu Polynomen, wenn mindestens einer der Parameter $a_k$ negativ ganzzahlig ist. -Polynome sind also bereits eine Vielfältige Quelle von speziellen +Polynome sind also bereits eine vielfältige Quelle von speziellen Funktionen. Viele spezielle Funktionen werden aber komplizierter sein und @@ -52,7 +66,10 @@ Berechnungsverfahren für die speziellen Funktionen zu konstruieren. Dank des folgenden Satzes kann dies immer mit Polynomen geschehen. \begin{satz}[Weierstrass] +\index{Satz!Weierstrass}% +\index{Weierstrasse, Karl}% \label{buch:potenzen:satz:weierstrass} +\index{Weierstrass, Satz von}% Eine auf einem kompakten Intervall $[a,b]$ stetige Funktion $f(x)$ lässt sich durch eine Folge $p_n(x)$ von Polynomen gleichmässig approximieren. @@ -60,7 +77,9 @@ approximieren. Der Satz sagt in dieser Form nichts darüber aus, wie die Approximationspolynome konstruiert werden sollen. +\index{Approximationspolynom}% Von Bernstein gibt es konstruktive Beweise dieses Satzes, +\index{Bernstein-Polynom}% welche auch explizit eine Folge von Approximationspolynomen konstruieren. In der späteren Entwicklung werden wir für die meisten @@ -69,19 +88,372 @@ ebenfalls als Approximationen dienen können. Weitere Möglichkeiten liefern Interpolationsmethoden der numerischen Mathematik. -\subsection{Faktorisierung und Nullstellen} +Diese Betrachtungsweise von Polynomen als Funktionen trägt +aber den zusätzlichen algebraischen Eigenschaften des Polynomringes +nicht ausreichend Rechnung. +Zum Beispiel bedeutet Gleichheit von zwei reellen Funktion $f(x)$ und +$g(x)$, dass man $f(x)=g(x)$ für alle $x\in\mathbb{R}$ nachprüfen +muss. +Für Polynome reicht es jedoch, die Funktionswerte in nur wenigen +Punkten zu vergleichen. +Dies äussert sich zum Beispiel auch im Prinzip des +Koeffizientenvergleichs von +Satz~\ref{buch:polynome:satz:koeffizientenvergleich}. +Im Gegensatz zu beliebigen Funktionen kann man daher Aussagen +über Polynomen immer mit endlich Algorithmen entscheiden. +Die nächsten Abschnitte sollen diese algebraischen Eigenschaften +zusammenfassen. + +% +% Polynomdivision, Teilbarkeit und ggT +% +\subsection{Polynomdivision, Teilbarkeit und grösster gemeinsamer Teiler} +Der schriftliche Divisionsalgorithmus für Zahlen funktioniert +auch für die Division von Polynomen. +\index{Polynome!Divisionsalgorithmus}% +Zu zwei beliebigen Polynomen $p(x)$ und $q(x)$ lassen sich also +immer zwei Polynome $a(x)$ und $r(x)$ finden derart, dass +$p(x) = a(x) q(x) + r(x)$. +Das Polynom $a(x)$ heisst der {\em Quotient}, $r(x)$ der {\em Rest} +der Division. +Das Polynom $p(x)$ heisst {\em teilbar} durch $q(x)$, geschrieben +\index{teilbar}% +\index{Polynome!teilbar}% +$q(x)\mid p(x)$, wenn $r(x)=0$ ist. + +% +% Grösster gemeinsamer Teiler +% +\subsubsection{Grösster gemeinsamer Teiler} +Mit dem Begriff der Teilbarkeit geht auch die Idee des grössten +gemeinsamen Teilers einher. +Ein gemeinsamer Teiler zweier Polynome $a(x)$ und $b(x)$ +\index{gemeinsamer Teiler}% +ist ein Polynom $g(x)$, welches beide Polynome teilt, also +$g(x)\mid a(x)$ und $g(x)\mid b(x)$. +\index{grösster gemeinsamer Teiler}% +\index{Polynome!grösster gemeinsamer Teiler}% +Ein Polynom $g(x)$ heisst {\em grösster gemeinsamer Teiler} von $a(x)$ +und $b(x)$, wenn jeder andere gemeinsame Teiler $f(x)$ von $a(x)$ +und $b(x)$ auch ein Teiler von $g(x)$ ist. +Man beachte, dass die skalaren Vielfachen eines grössten gemeinsamen +Teilers ebenfalls grösste gemeinsame Teiler sind, der grösste gemeinsame +Teiler ist also nicht eindeutig bestimmt. + +% +% Der euklidische Algorithmus +% +\subsubsection{Der euklidische Algorithmus} +\index{Algorithmus!euklidisch}% +\index{euklidischer Algorithmus}% +Zur Berechnung eines grössten gemeinsamen Teilers steht wie bei den +ganzen Zahlen der euklidische Algorithmus zur Verfügung. +Dazu bildet man die Folgen von Polynomen +\[ +\begin{aligned} +a_0(x)&=a(x) & b_0(x) &= b(x) +& +&\Rightarrow& +a_0(x)&=b_0(x) q_0(x) + r_0(x) && +\\ +a_1(x)&=b_0(x) & b_1(x) &= r_0(x) +& +&\Rightarrow& +a_1(x)&=b_1(x) q_1(x) + r_1(x) && +\\ +a_2(x)&=b_1(x) & b_2(x) &= r_1(x) +& +&\Rightarrow& +a_2(x)&=b_2(x) q_2(x) + r_2(x) && +\\ +&&&&&\hspace*{2mm}\vdots&& +\\ +a_{m-1}(x)&=b_{m-2}(x) & b_{m-1}(x) &= r_{m-2}(x) +& +&\Rightarrow& +a_{m-1}(x)&=b_{m-1}(x)q_{m-1}(x) + r_{m-1}(x) &\text{mit }r_{m-1}(x)&\ne 0 +\\ +a_m(x)&=b_{m-1}(x) & b_m(x)&=r_{m-1}(x) +& +&\Rightarrow& +a_m(x)&=b_m(x)q_m(x).&& +\end{aligned} +\] +Der Index $m$ ist der Index, bei dem zum ersten Mal $r_m(x)=0$ ist. +Dann ist $g(x)=r_{m-1}(x)$ ein grösster gemeinsamer Teiler. + +% +% Der erweiterte euklidische Algorithmus +% +\subsubsection{Der erweiterte euklidische Algorithmus} +\index{Polynome!erweiterter euklidischer Algorithmus}% +\index{erweiterter euklidischer Algorithmus}% +\index{euklidischer Algorithmus!erweitert}% +Die Konstruktion der Folgen $a_n(x)$ und $b_n(x)$ kann in Matrixform +kompakter geschrieben werden als +\[ +\begin{pmatrix} +a_k(x)\\ +b_k(x) +\end{pmatrix} += +\begin{pmatrix} +b_{k-1}(x)\\ +r_{k-1}(x) +\end{pmatrix} += +\begin{pmatrix} +0 & 1\\ +1 & -q_{k-1}(x) +\end{pmatrix} +\begin{pmatrix} +a_{k-1}(x)\\ +b_{k-1}(x) +\end{pmatrix}. +\] +Kürzen wir die $2\times 2$-Matrix als +\[ +Q_k(x) = \begin{pmatrix} 0&1\\1&-q_k(x)\end{pmatrix} +\] +ab, dann ergibt das Produkt der Matrizen $Q_0(x)$ bis $Q_{m}(x)$ +\[ +\begin{pmatrix} +g(x)\\ +0 +\end{pmatrix} += +\begin{pmatrix} +r_{m-1}(x)\\ +r_{m}(x) +\end{pmatrix} += +Q_{m}(x) +Q_{m-1}(x) +\cdots +Q_1(x) +Q_0(x) +\begin{pmatrix} +a(x)\\ +b(x) +\end{pmatrix}. +\] +Zur Berechnung des Produktes der Matrizen $Q_k(x)$ kann man rekursiv +vorgehen mit der Rekursionsformel +\[ +S_{k}(x) = Q_{k}(x) S_{k-1}(x) +\qquad\text{mit}\qquad +S_{-1}(x) += +\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}. +\] +Ausgeschrieben bedeutet dies Matrixrekursionsformel +\[ +S_{k-1}(x) += +\begin{pmatrix} +c_{k-1} & d_{k-1} \\ +c_k & d_k +\end{pmatrix} +\qquad\Rightarrow\qquad +Q_{k}(x) S_{k-1}(x) += +\begin{pmatrix} +0&1\\1&-q_k(x) +\end{pmatrix} +\begin{pmatrix} +c_{k-1} & d_{k-1} \\ +c_k & d_k +\end{pmatrix} += +\begin{pmatrix} +c_k&d_k\\ +c_{k+1}&d_{k+1} +\end{pmatrix}. +\] +Daraus lässt sich für die Matrixelemente die Rekursionsformel +\[ +\begin{aligned} +c_{k+1} &= c_{k-1} - q_k(x) c_k(x) \\ +d_{k+1} &= d_{k-1} - q_k(x) d_k(x) +\end{aligned} +\quad +\bigg\} +\qquad +\text{mit Startwerten} +\qquad +\bigg\{ +\begin{aligned} +\quad +c_{-1} &= 1, & c_0 &= 0 \\ +d_{-1} &= 0, & d_0 &= 1. +\end{aligned} +\] +Wendet man die Matrix $S_m(x)$ auf den Vektor mit den Komponenten +$a(x)$ und $b(x)$, erhält man die Beziehungen +\[ +g(x) = c_{k-1}(x) a(x) + d_{k-1}(x) b(x) +\qquad\text{und}\qquad +0 = c_k(x) a(x) + d_k(x) b(x). +\] +Dieser Algorithmus heisst der erweiterte euklidische Algorithmus. +Wir fassen die Resultate zusammen im folgenden Satz. + +\begin{satz} +Zu zwei Polynomen $a(x),b(x) \in K[x]$ gibt es Polynome +$g(x),c(x),d(x)\in K[x]$ +derart, dass $g(x)$ ein grösster gemeinsamer Teiler von $a(x)$ und $b(x)$ +ist, und ausserdem +\[ +g(x) = c(x)a(x)+d(x)b(x) +\] +gilt. +\end{satz} + +% +% Faktorisierung und Nullstellen +% +\subsection{Faktorisierung und Nullstellen +\label{buch:polynome:subsection:faktorisierung-und-nullstellen}} % wird später gebraucht um bei der Definition der hypergeometrischen Reihe % die Zaehler- und Nenner-Polynome als Pochhammer-Symbole zu entwickeln +Ist $\alpha$ eine Nullstelle des Polynoms $a(x)$, also $a(\alpha)=0$. +Der Divisionsalgorithmus mit für die Polynome $a(x)$ und $b(x)=x-\alpha$ +liefert zwei Polynome $q(x)$ für den Quotienten und $r(x)$ für den Rest +mit den Eigenschaften +\[ +a(x) += +q(x) b(x) ++r(x) += +q(x)(x-\alpha)+r(x) +\qquad\text{mit}\qquad +\deg r < \deg b(x)=1. +\] +Der Rest $r(x)$ ist somit eine Konstante. +Setzt man $x=\alpha$ ein, folgt +\[ +0 += +a(\alpha) += +q(\alpha)(\alpha-\alpha)+r(\alpha) += +r(\alpha), +\] +der Rest $r(x)$ muss also verschwinden. +Für eine Nullstelle $\alpha$ von $a(x)$ ist $a(x)$ durch $(x-\alpha)$ +teilbar. +Daraus folgt auch, dass ein Polynom $a(x)$ vom Grad $n=\deg a(x)$ höchstens +$n$ verschiedene Nullstellen haben kann. + +Sind $\alpha_1,\dots,\alpha_k$ alle Nullstellen von $a(x)$, dann lässt +sich $a(x)$ zerlegen in Faktoren +\[ +a(x) += +(x-\alpha_1)^{m_1} +(x-\alpha_2)^{m_2} +\cdots +(x-\alpha_k)^{m_k} +b(x). +\] +Das Polynom $b(x)\in K[x]$ hat keine Nullstellen in $K$. +Wenn zwei Polynome $a(x)$ und $b(x)$ eine gemeinsame Nullstelle $\alpha$ +haben, dann ist $(x-\alpha)$ ein Teiler beider Polynome und somit auch +ein Teiler eines grössten gemeinsamer Teiler. +Insbesondere sind die Nullstellen des grössten gemeinsamen Teilers +gemeinsame Nullstellen von $a(x)$ und $b(x)$. + +% +% Koeffizienten-Vergleich +% \subsection{Koeffizienten-Vergleich} % Wird gebraucht für die Potenzreihen-Methode % Muss später ausgedehnt werden auf Potenzreihen +Wenn zwei Polynome $a(x)$ und $b(x)$ vom Grad $\le n$ die gleichen +Koeffizienten haben, dann sind sie selbstverständlich gleich. +Weniger klar ist, ob zwei Polynome, die die gleichen Werte für beliebige +$x$ haben, auch die gleichen Koeffizienten haben. +Wir nehmen also an, dass $a(x)=b(x)$ gilt für jedes $x\in K$ und +wollen daraus ableiten, dass die Koeffizienten übereinstimmen müssen. +Seien $x_1,\dots,x_n$ verschiedene Elemente in $K$, dann +hat das Polynom $p(x)=a(x)-b(x)$, welches Grad $\le n$ hat, +die $n$ Nullstellen $x_k$ für $k=1,\dots,n$. +$p(x)$ ist also durch alle Polynome $x-x_k$ teilbar. +Weil $\deg p\le n$ ist, muss +\[ +0 += +a(x)-b(x) += +p(x) += +p_n +(x-x_1)(x-x_2)\cdots (x-x_n) +\] +sein. +Ist $y\in K$ verschieden von den Nullstellen $x_i$, dann ist +in $y-x_i\ne 0$ für alle $i$. +Für das Produkt gilt dann +\[ +0 += +p(y) += +p_n +(\underbrace{x-x_1}_{\displaystyle \ne 0}) +\cdots +(\underbrace{x-x_n}_{\displaystyle \ne 0}), +\] +so dass $p_n=0$ sein muss, was schliesslich dazu führt, dass alle +Koeffizienten von $a(x)-b(x)$ verschwinden. +Daraus folgt das Prinzip des Koeffizientenvergleichs: +\index{Koeffizientenvergleich}% +\index{Polynome!Koeffizientenvergleich}% + +\begin{satz}[Koeffizientenvergleich] +\index{Satz!Koeffizientenvergleich}% +\label{buch:polynome:satz:koeffizientenvergleich} +Zwei Polynome $a(x)$ und $b(x)$ stimmen genau dann überein, wenn +sie die gleichen Koeffizienten haben. +\end{satz} + +Man beachte, dass dieses Prinzip nur funktioniert, wenn es genügend +viele verschiedene Elemente in $K$ gibt. +Für die endlichen Körper $\mathbb{F}_p$ gilt dies nicht, denn es gilt +\[ +a(x) += +x^p-x\equiv 0\mod p +\] +für jede Zahl $x\in\mathbb{F}_p$, das Polynom $a(x)$ mit Grad $p$ +hat also genau $p$ Nullstellen, es gibt aber keine weitere Nullstelle, +mit der man wie oben schliessen könnte, dass $a(x)$ das Nullpolynom ist. + +% +% Berechnung von Polynom-Werten +% +\subsection{Berechnung von Polynom-Werten} +Die naive Berechnung der Werte eines Polynoms $p(x)$ vom Grad $n$ +beginnt mit der Berechnung der Potenzen von $x$. +Da alle Potenzen benötigt werden, wird man dazu $n-1$ Multiplikationen +benötigen. +Die Potenzen müssen anschliessend mit den Koeffizienten multipliziert +werden, dazu sind weitere $n$ Multiplikationen nötig. +Der Wert des Polynoms kann also erhalten werden mit $2n-1$ Multiplikationen +und $n$ Additionen. -\subsection{Polynom-Berechnung} -Die naive Berechnung der Werte eines Polynoms beginnt mit der Berechnung -der Potenzen. -Die Anzahl nötiger Multiplikationen kann minimiert werden, indem man -das Polynom als +Die Anzahl nötiger Multiplikationen kann mit dem folgenden Vorgehen +reduziert werden, welches auch als das {\em Horner-Schema} bekannt ist. +\index{Horner-Schema}% +\index{Polynome!Horner-Schema}% +Statt erst am Schluss alle Terme zu addieren, addiert man so früh +wie möglich. +Zum Beispiel multipliziert man $(a_nx+a_{n-1})$ mit $x$, was auf +die Multiplikationen beider Terme mit $x$ hinausläuft. +Mit dieser Idee kann man das Polynom als \[ a_nx^n + @@ -95,10 +467,10 @@ a_0 = ((\dots((a_nx+a_{n-1})x+a_{n-2})x+\dots )x+a_1)x+a_0 \] -schreibt. +schreiben. Beginnend bei der innersten Klammer sind genau $n$ Multiplikationen -und $n+1$ Additionen nötig, im Gegensatz zu $2n$ Multiplikationen -und $n$ Additionen bei der naiven Vorgehensweise. +und $n$ Additionen nötig, man spart mit diesem Vorgehen also +$n-1$ Multiplikationen. diff --git a/buch/chapters/010-potenzen/potenzreihen.tex b/buch/chapters/010-potenzen/potenzreihen.tex index a003fcb..994f99f 100644 --- a/buch/chapters/010-potenzen/potenzreihen.tex +++ b/buch/chapters/010-potenzen/potenzreihen.tex @@ -105,6 +105,7 @@ Für $|z|<1$ geht $z^n\to 0$ für $n\to\infty$, die Partialsummen konvergieren und wir erhalten das Resultat des folgenden Satzes. \begin{satz} +\index{Satz!geometrische Reihe}% \label{buch:polynome:satz:geometrischereihe} Die geometrische Reihe $a+az+az^2+\dots$ konvergiert für $|z|<1$ und hat die Summe @@ -124,6 +125,7 @@ als konvergent erkannten Reihen nachweisbar. Dies ist der Inhalt des folgenden, wohlbekannten Majorantenkriteriums. \begin{satz}[Majorantenkriterium] +\index{Satz!Majorantenkriterium}% \label{buch:polynome:satz:majorantenkriterium} \index{Majorantenkriterium} Seien $a_k$ und $b_k$ die Glieder zweier unendlicher Reihen. @@ -142,6 +144,7 @@ Potenzreihen mit der geometrischen Reihe zu vergleichen und liefert damit einfach anzuwende Kriterien für die Konvergenz. \begin{satz}[Quotientenkriterium] +\index{Satz!Quotientenkriterium}% \label{buch:polynome:satz:quotientenkriterium} \index{Quotientenkriterium}% Eine Reihe @@ -175,6 +178,7 @@ die unter der gegebenen Voraussetzung konvergiert. \end{proof} \begin{satz}[Wurzelkriterium] +\index{Satz!Wurzelkriterium}% \label{buch:polynome:satz:wurzelkriterium} \index{Wurzelkriterium} Falls @@ -203,6 +207,9 @@ das Reststück der Reihe ab Index $N$ ist daher wieder majorisiert durch eine konvergente geometrische Reihe. \end{proof} +% +% Konvergenzradius +% \subsubsection{Konvergenzradius} Das Quotienten- und das Wurzel-Kriterium ist auf beliebige Reihen anwendbar, es berücksichtigt nicht, dass in einer Potenzreihe @@ -224,6 +231,7 @@ um den Punkt $z_0$ ist \end{definition} \begin{satz} +\index{Satz!Konvergenzradius}% \label{buch:polynome:satz:konvergenzradius} Der Konvergenzradius $\varrho$ einer Potenzreihe $\sum_{k=0}^\infty a_k(z-z_0)^k$ ist @@ -420,7 +428,7 @@ $z_0$ ist die Summe \frac{f^{(k)}(z_0)}{k!} (z-z_0)^k \label{buch:polynome:eqn:taylor-polynom} \end{equation} -\index{Taylor-Reihe} +\index{Taylor-Reihe}% Die {\em Taylor-Reihe} der Funktion $f(z)$ ist die Reihe \begin{equation} \mathscr{T}_{z_0}f (z) @@ -431,7 +439,9 @@ Die {\em Taylor-Reihe} der Funktion $f(z)$ ist die Reihe \end{equation} \end{definition} - +% +% Analytische Funktionen +% \subsubsection{Analytische Funktionen} Das Taylor-Polynom $\mathscr{T}_{z_0}^nf(z)$ hat an der Stelle $z_0$ die gleichen Funktionswerte und Ableitungen wie die Funktion $f(z)$, diff --git a/buch/chapters/010-potenzen/rational.tex b/buch/chapters/010-potenzen/rational.tex new file mode 100644 index 0000000..f1957ac --- /dev/null +++ b/buch/chapters/010-potenzen/rational.tex @@ -0,0 +1,61 @@ +% +% rational.tex +% +% (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\section{Rationale Funktionen +\label{buch:polynome:section:rationale-funktionen}} +\rhead{Rationale Funktionen} +Polynome sind sehr einfach auszuwerten und können auf einem +Interval jede stetige Funktion beliebig gut approximieren. +Auf einem unbeschränkten Definitionsbereich wachsen Polynome aber +immer unbeschränkt an. +Der führende Term $a_nx^n$ dominiert das Verhalten eines Polynoms +für $x\to\infty$ wegen +\[ +\lim_{x\to\infty} a_nx^n += +\operatorname{sgn} a_n \cdot\infty +\qquad\text{und}\qquad +\lim_{x\to-\infty} a_nx^n += +(-1)^n \operatorname{sgn} a_n\cdot \infty. +\] +Insbesondere kann man nicht erwarten, dass sich eine beschränkte +Funktion wie $\sin x$ durch Polynome auf dem ganzen Definitionsbereich +gut approximieren lässt. +Der Unterschied $p(x)-\sin x$ wird für jedes beliebige Polynome $p(x)$ +für $x\to\pm\infty$ unbeschränkt anwachsen. + +Eine weitere Einschränkung ist, dass die Menge der Polynome bezüglich +der arithmetischen Operationen nicht abgeschlossen ist. +Man kann zwar Polynome addieren und multiplizieren, aber der Quotient +ist nicht notwendigerweise ein Polynom. +Abhilfe schafft nur, wenn man Quotienten von Polynomen zulässt. + +\begin{definition} +Eine Funktion $f(x)$ heisst {\em rationale Funktion}, wenn sie Quotient +\index{rationale Funktion}% +zweier Polynome ist, wenn es also Polynome $p(x), q(x)\in K[x]$ gibt mit +\[ +f(x) = \frac{p(x)}{q(x)}. +\] +Die Menge der rationalen Funktione mit Koeffizienten in $K$ wird mit +$K(x)$ bezeichnet. +\end{definition} + +Polynome sind rationale Funktionen, deren Nennergrad $1$ ist. +Rationale Funktionen können ebenfalls zur Approximation von Funktionen +verwendet werden. +Da sie beschränkt sein können, haben sie das Potential, +beschränkte Funktionen besser zu approximieren, als dies mit +Polynomen allein möglich wäre. +Die Theorie der Padé-Approximation, wie sie zum Beispiel im Buch +\index{Pade-Approximation@Padé-Approximation}% +\cite{buch:pade} dargestellt ist, ist zum Beispiel auch in der +Regelungstechnik von Interesse, da sich rationale Funktionen mit +linearen Komponenten schaltungstechnisch realisieren lassen. +Weitere Anwendungen werden in Kapitel~\ref{chapter:transfer} +gezeigt. + + diff --git a/buch/chapters/010-potenzen/tschebyscheff.tex b/buch/chapters/010-potenzen/tschebyscheff.tex index 29d1d4b..6d21a68 100644 --- a/buch/chapters/010-potenzen/tschebyscheff.tex +++ b/buch/chapters/010-potenzen/tschebyscheff.tex @@ -102,7 +102,7 @@ die Sütztstellen so zu wählen, dass $l(x)$ kleine Funktionswerte hat. Stützstellen in gleichen Abständen erweisen sich dafür als ungeeignet, da $l(x)$ nahe $x_0$ und $x_n$ sehr stark oszilliert. -\subsection{Definition der Tschebyscheff-Polynome} +\subsection{Definition der Tschebyscheff-Polynome \label{sub:definiton_der_tschebyscheff-Polynome}} \begin{figure} \centering \includegraphics[width=\textwidth]{chapters/010-potenzen/images/lissajous.pdf} @@ -199,6 +199,7 @@ T_0(x)=1. \end{equation} Damit können die Tschebyscheff-Polynome sehr effizient berechnet werden: \begin{equation} +\label{eq:tschebyscheff-polynome} \begin{aligned} T_0(x) &=1 @@ -241,12 +242,16 @@ Die Rekursionsformel kann auch dazu verwendet werden, Werte der Tschebyscheff-Polynome sehr effizient zu berechnen. +% +% Multiplikationsformel +% \subsubsection{Multiplikationsformel} Aus der Definition mit Hilfe trigonometrischer Funktionen lässt sich auch eine Multiplikationsformel ableiten. \index{Multiplikationsformel}% \begin{satz} +\index{Satz!Multiplikationsformel für Tschebyscheff-Polynome}% Es gilt \begin{align} T_m(x)T_n(x)&=\frac12\bigl(T_{m+n}(x) + T_{m-n}(x)\bigr) @@ -300,4 +305,82 @@ T_{mn}(x). Damit ist auch \eqref{buch:potenzen:tschebyscheff:mult2} bewiesen. \end{proof} +% +% Differentialgleichung +% +\subsubsection{Tschebyscheff-Differentialgleichung} +Die Ableitungen der Tschebyscheff-Polynome sind +\begin{align*} +T_n(x) +&= +\cos (ny(x)) +&& +&& +\\ +\frac{d}{dx} T_n(x) +&= +\frac{d}{dx} \cos(ny(x)) += +n\sin(ny(x)) \cdot \frac{dy}{dx} +& +&\text{mit}& +\frac{dy}{dx} +&= +-\frac{1}{\sqrt{1-x^2}} +\\ +\frac{d^2}{dx^2} T_n(x) +&= +-n^2\cos(ny(x)) \biggl(\frac{dy}{dx}\biggr)^2 + n\sin(ny(x)) \frac{d^2y}{dx^2} +& +&\text{mit}& +\frac{d^2y}{dx^2} +&= +-\frac{x}{(1-x^2)^{\frac32}}. +\end{align*} +Wir suchen eine verschwindende Linearkombination dieser drei Terme +mit Funktionen von $x$ als Koeffizienten. +Wir setzen daher an +\begin{align*} +0 +&= +\alpha(x) T_n''(x) ++ +\beta(x) T_n'(x) ++ +\gamma(x) T_n(x) +\\ +&= +\biggl( +-\frac{n^2\alpha(x)}{1-x^2} ++ +\gamma(x) +\biggr) +\cos(ny(x)) ++ +\biggl( +-\frac{nx\alpha(x)}{(1-x^2)^{\frac32}} +-\frac{n\beta(x)}{\sqrt{1-x^2}} +\biggr) +\sin(ny(x)) +\end{align*} +Die grossen Klammern müssen verschwinden, was nur möglich ist, wenn zu +gegebenem $\alpha(x)$ die anderen beiden Koeffizienten +\begin{align*} +\beta(x) &= -\frac{x\alpha(x)}{1-x^2} \\ +\gamma(x) &= n^2 \frac{\alpha(x)}{1-x^2} +\end{align*} +sind. +Die Koeffizienten werden besonders einfach, wenn man $\alpha(x)=1-x^2$ wählt. +Die Tschebyscheff-Polynome sind Lösungen der Differentialgleichung +\begin{equation} +(1-x^2) T_n''(x) -x T_n'(x) +n^2 T_n(x) = 0. +\label{buch:potenzen:tschebyscheff:dgl} +\end{equation} +Die Differentialgleichung~\eqref{buch:potenzen:tschebyscheff:dgl} +heisst {\em Tschebyscheff-Differentialgleichung}. +\index{Tschebyscheff-Differentialgleichung}% +\index{Differentialgleichung!Tschebyscheff-}% + + + |