diff options
Diffstat (limited to 'buch/chapters/010-potenzen')
-rw-r--r-- | buch/chapters/010-potenzen/tschebyscheff.tex | 78 |
1 files changed, 78 insertions, 0 deletions
diff --git a/buch/chapters/010-potenzen/tschebyscheff.tex b/buch/chapters/010-potenzen/tschebyscheff.tex index 29d1d4b..780be1b 100644 --- a/buch/chapters/010-potenzen/tschebyscheff.tex +++ b/buch/chapters/010-potenzen/tschebyscheff.tex @@ -241,6 +241,9 @@ Die Rekursionsformel kann auch dazu verwendet werden, Werte der Tschebyscheff-Polynome sehr effizient zu berechnen. +% +% Multiplikationsformel +% \subsubsection{Multiplikationsformel} Aus der Definition mit Hilfe trigonometrischer Funktionen lässt sich auch eine Multiplikationsformel ableiten. @@ -300,4 +303,79 @@ T_{mn}(x). Damit ist auch \eqref{buch:potenzen:tschebyscheff:mult2} bewiesen. \end{proof} +% +% Differentialgleichung +% +\subsubsection{Differentialgleichung} +Die Ableitungen der Tschebyscheff-Polynome sind +\begin{align*} +T_n(x) +&= +\cos (ny(x)) +&& +&& +\\ +\frac{d}{dx} T_n(x) +&= +\frac{d}{dx} \cos(ny(x)) += +n\sin(ny(x)) \cdot \frac{dy}{dx} +& +&\text{mit}& +\frac{dy}{dx} +&= +-\frac{1}{\sqrt{1-x^2}} +\\ +\frac{d^2}{dx^2} T_n(x) +&= +-n^2\cos(ny(x)) \biggl(\frac{dy}{dx}\biggr)^2 + n\sin(ny(x)) \frac{d^2y}{dx^2} +& +&\text{mit}& +\frac{d^2y}{dx^2} +&= +-\frac{x}{(1-x^2)^{\frac32}}. +\end{align*} +Wir suchen eine verschwindende Linearkombination dieser drei Terme +mit Funktionen von $x$ als Koeffizienten. +Wir setzen daher an +\begin{align*} +0 +&= +\alpha(x) T_n''(x) ++ +\beta(x) T_n'(x) ++ +\gamma(x) T_n(x) +\\ +&= +\biggl( +-\frac{n^2\alpha(x)}{1-x^2} ++ +\gamma(x) +\biggr) +\cos(ny(x)) ++ +\biggl( +-\frac{nx\alpha(x)}{(1-x^2)^{\frac32}} +-\frac{n\beta(x)}{\sqrt{1-x^2}} +\biggr) +\sin(ny(x)) +\end{align*} +Die grossen Klammern müssen verschwinden, was nur möglich ist, wenn zu +gegebenem $\alpha(x)$ die anderen beiden Koeffizienten +\begin{align*} +\beta(x) &= -\frac{x\alpha(x)}{1-x^2} \\ +\gamma(x) &= n^2 \frac{\alpha(x)}{1-x^2} +\end{align*} +sind. +Die Koeffizienten werden besonders einfach, wenn man $\alpha(x)=1-x^2$ wählt. +Die Tschebyscheff-Polynome sind Lösungen der Differentialgleichung +\begin{equation} +(1-x^2) T_n''(x) -x T_n'(x) +n^2 T_n(x) = 0. +\label{buch:potenzen:tschebyscheff:dgl} +\end{equation} + + + + |