aboutsummaryrefslogtreecommitdiffstats
path: root/buch/chapters/040-rekursion
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--buch/chapters/040-rekursion/Makefile.inc3
-rw-r--r--buch/chapters/040-rekursion/beta.tex104
-rw-r--r--buch/chapters/040-rekursion/bohrmollerup.tex196
-rw-r--r--buch/chapters/040-rekursion/gamma.tex27
-rw-r--r--buch/chapters/040-rekursion/images/Makefile16
-rw-r--r--buch/chapters/040-rekursion/images/beta.pdfbin0 -> 109772 bytes
-rw-r--r--buch/chapters/040-rekursion/images/beta.tex236
-rw-r--r--buch/chapters/040-rekursion/images/betadist.m58
-rw-r--r--buch/chapters/040-rekursion/images/order.m119
-rw-r--r--buch/chapters/040-rekursion/images/order.pdfbin0 -> 32692 bytes
-rw-r--r--buch/chapters/040-rekursion/images/order.tex125
-rw-r--r--buch/chapters/040-rekursion/integral.tex103
12 files changed, 895 insertions, 92 deletions
diff --git a/buch/chapters/040-rekursion/Makefile.inc b/buch/chapters/040-rekursion/Makefile.inc
index c5887f7..a222b1c 100644
--- a/buch/chapters/040-rekursion/Makefile.inc
+++ b/buch/chapters/040-rekursion/Makefile.inc
@@ -6,7 +6,10 @@
CHAPTERFILES = $(CHAPTERFILES) \
chapters/040-rekursion/gamma.tex \
+ chapters/040-rekursion/bohrmollerup.tex \
+ chapters/040-rekursion/integral.tex \
chapters/040-rekursion/beta.tex \
+ chapters/040-rekursion/betaverteilung.tex \
chapters/040-rekursion/linear.tex \
chapters/040-rekursion/hypergeometrisch.tex \
chapters/040-rekursion/uebungsaufgaben/401.tex \
diff --git a/buch/chapters/040-rekursion/beta.tex b/buch/chapters/040-rekursion/beta.tex
index ea847bc..ff59bad 100644
--- a/buch/chapters/040-rekursion/beta.tex
+++ b/buch/chapters/040-rekursion/beta.tex
@@ -3,11 +3,17 @@
%
% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
%
-\subsection{Die Beta-Funktion
-\label{buch:rekursion:gamma:subsection:beta}}
+\section{Die Beta-Funktion
+\label{buch:rekursion:gamma:section:beta}}
Die Eulersche Integralformel für die Gamma-Funktion in
-Definition~\ref{buch:rekursion:def:gamma} wurde bisher nicht
-gerechtfertigt.
+Definition~\ref{buch:rekursion:def:gamma} wurde in
+Abschnitt~\ref{buch:subsection:integral-eindeutig}
+mit dem Satz von Mollerup gerechtfertigt.
+Man kann Sie aber auch als Grenzfall der Beta-Funktion verstehen,
+die in diesem Abschnitt dargestellt wird.
+
+
+\subsection{Beta-Integral}
In diesem Abschnitt wird das Beta-Integral eingeführt, eine Funktion
von zwei Variablen, welches eine Integral-Definition mit einer
reichaltigen Menge von Rekursionsbeziehungen hat, die sich direkt auf
@@ -233,6 +239,16 @@ B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}
berechnet werden.
\end{satz}
+%
+% Info über die Beta-Verteilung
+%
+\input{chapters/040-rekursion/betaverteilung.tex}
+
+\subsection{Weitere Eigenschaften der Gamma-Funktion}
+Die nahe Verwandtschaft der Gamma- mit der Beta-Funktion ermöglicht
+nun, weitere Eigenschaften der Gamma-Funktion mit Hilfe der Beta-Funktion
+herzuleiten.
+
\subsubsection{Nochmals der Wert von $\Gamma(\frac12)$?}
Der Wert von $\Gamma(\frac12)=\sqrt{\pi}$ wurde bereits in
\eqref{buch:rekursion:gamma:wert12}
@@ -484,83 +500,3 @@ Setzt man $x=\frac12$ in die Verdoppelungsformel ein, erhält man
in Übereinstimmung mit dem aus \eqref{buch:rekursion:gamma:gamma12}
bereits bekannten Wert.
-\subsubsection{Beta-Funktion und Binomialkoeffizienten}
-Die Binomialkoeffizienten können mit Hilfe der Fakultät als
-\begin{align*}
-\binom{n}{k}
-&=
-\frac{n!}{(n-k)!\,k!}
-\intertext{geschrieben werden.
-Drückt man die Fakultäten durch die Gamma-Funktion aus, erhält man}
-&=
-\frac{\Gamma(n+1)}{\Gamma(n-k+1)\Gamma(k+1)}.
-\intertext{Schreibt man $x=k-1$ und $y=n-k+1$, wird daraus
-wegen $x+y=k+1+n-k+1=n+2=(n+1)+1$}
-&=
-\frac{\Gamma(x+y-1)}{\Gamma(x)\Gamma(y)}.
-\intertext{Die Rekursionsformel für die Gamma-Funktion erlaubt,
-den Zähler umzuwandeln in $\Gamma(x+y-1)=\Gamma(x+y)/(x+y-1)$, so dass
-der Binomialkoeffizient schliesslich}
-&=
-\frac{\Gamma(x+y)}{(x+y-1)\Gamma(x)\Gamma(y)}
-=
-\frac{1}{(n-1)B(n-k+1,k+1)}
-\label{buch:rekursion:gamma:binombeta}
-\end{align*}
-geschrieben werden kann.
-Die Rekursionsbeziehung
-\[
-\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}
-\]
-der Binomialkoeffizienten erzeugt das vertraute Pascal-Dreieck,
-die Formel \eqref{buch:rekursion:gamma:binombeta} für die
-Binomialkoeffizienten macht daraus
-\[
-\frac{n-1}{B(n-k,k-1)}
-=
-\frac{n-2}{B(n-k,k-2)}
-+
-\frac{n-2}{B(n-k-1,k-1)},
-\]
-die für ganzzahlige Argumente gilt.
-Wir wollen nachrechnen, dass dies für beliebige Argumente gilt.
-\begin{align*}
-\frac{(n-1)\Gamma(n-1)}{\Gamma(n-k)\Gamma(k-1)}
-&=
-\frac{(n-2)\Gamma(n-2)}{\Gamma(n-k)\Gamma(k-2)}
-+
-\frac{(n-2)\Gamma(n-2)}{\Gamma(n-k-1)\Gamma(k-1)}
-\\
-\frac{\Gamma(n)}{\Gamma(n-k)\Gamma(k-1)}
-&=
-\frac{\Gamma(n-1)}{\Gamma(n-k)\Gamma(k-2)}
-+
-\frac{\Gamma(n-1)}{\Gamma(n-k-1)\Gamma(k-1)}
-\intertext{Durch Zusammenfassen der Faktoren im Zähler mit Hilfe
-der Rekursionsformel für die Gamma-Funktion und Multiplizieren
-mit dem gemeinsamen Nenner
-$\Gamma(n-k)\Gamma(k-1)=(n-k-1)\Gamma(n-k-1)(k-2)\Gamma(k-2)$ wird daraus}
-\Gamma(n)
-&=
-(k-2)
-\Gamma(n-1)
-+
-(n-k-1)
-\Gamma(n-1)
-\intertext{Indem wir die Rekursionsformel für die Gamma-Funktion auf
-die rechte Seite anwenden können wir erreichen, dass in allen Termen
-ein Faktor
-$\Gamma(n-1)$ auftritt:}
-(n-1)\Gamma(n-1)
-&=
-(k-2)\Gamma(n-1)
-+
-(n+k-1)\Gamma(n-1)
-\\
-n-1
-&=
-k-2
-+
-n-k-1
-\end{align*}
-
diff --git a/buch/chapters/040-rekursion/bohrmollerup.tex b/buch/chapters/040-rekursion/bohrmollerup.tex
new file mode 100644
index 0000000..cd9cadc
--- /dev/null
+++ b/buch/chapters/040-rekursion/bohrmollerup.tex
@@ -0,0 +1,196 @@
+%
+% bohrmollerup.tex
+%
+% (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\subsection{Der Satz von Bohr-Mollerup
+\label{buch:rekursion:subsection:bohr-mollerup}}
+Die Integralformel und die Grenzwertdefinition für die Gamma-Funktion
+zeigen beide, dass das Problem der Ausdehnung der Fakultät zu einer
+Funktion $\mathbb{C}\to\mathbb{C}$ eine Lösung hat, aber es ist noch
+nicht klar, in welchem Sinn dies die einzig mögliche Lösung ist.
+Der Satz von Bohr-Mollerup gibt darauf eine Antwort.
+
+\begin{satz}
+\label{buch:satz:bohr-mollerup}
+Eine Funktion $f\colon \mathbb{R}^+\to\mathbb{R}$ mit den Eigenschaften
+\begin{enumerate}[i)]
+\item $f(1)=1$,
+\item $f(x+1)=xf(x)$ für alle $x\in\mathbb{R}^+$ und
+\item die Funktion $\log f(t)$ ist konvex
+\end{enumerate}
+ist die Gamma-Funktion: $f(t)=\Gamma(t)$.
+\end{satz}
+
+Für den Beweis verwenden wir die folgende Eigenschaft einer konvexen
+Funktion $g(x)$.
+Sei
+\begin{equation}
+S(y,x) = \frac{g(y)-g(x)}{y-x}
+\qquad\text{für $y-x$}
+\end{equation}
+die Steigung der Sekante zwischen den Punkten $(x,g(x))$ und $(y,g(y))$
+des Graphen von $g$.
+Da $g$ konvex ist, ist $S(y,x)$ eine monoton wachsende Funktion
+der beiden Variablen $x$ und $y$, solange $y>x$.
+
+\begin{proof}[Beweis]
+Wir halten zunächst fest, dass die Bedingungen i) und ii) zur Folge haben,
+dass $f(n+1)=n!$ ist für alle positiven natürlichen Zahlen.
+Für die Steigung einer Sekante der Funktion $g(x)=\log f(x)$ kann damit
+für natürliche Argumente bereits berechnet werden, es ist
+\[
+S(n,n+1)
+=
+\frac{\log n! - \log (n-1)!}{n+1-n}
+=
+\frac{\log n + \log (n-1)! - \log(n-1)!}{1}
+=
+\log n
+\]
+und entsprechend auch $S(n-1,n) = \log(n-1)$.
+
+\begin{figure}
+\begin{center}
+\begin{tikzpicture}[>=latex,thick]
+\draw (-6,0) -- (6,0);
+
+\node at (-5,0) [above] {$n-1\mathstrut$};
+\node at (0,0) [above] {$n\mathstrut$};
+\node at (3,0) [above] {$n+x\mathstrut$};
+\node at (5,0) [above] {$n+1\mathstrut$};
+
+\node[color=blue] at (-5,-2.3) {$S(n-1,n)\mathstrut$};
+\node[color=red] at (-1.666,-2.3) {$S(n-1,n+x)\mathstrut$};
+\node[color=darkgreen] at (1.666,-2.3) {$S(n,n+x)\mathstrut$};
+\node[color=orange] at (5,-2.3) {$S(n,n+1)\mathstrut$};
+
+\node at (-3.333,-2.3) {$<\mathstrut$};
+\node at (0,-2.3) {$<\mathstrut$};
+\node at (3.333,-2.3) {$<\mathstrut$};
+
+\draw[color=blue] (-5,0) -- (-5,-2) -- (0,0);
+\draw[color=red] (-5,0) -- (-1.666,-2) -- (3,0);
+\draw[color=darkgreen] (0,0) -- (1.666,-2) -- (3,0);
+\draw[color=orange] (0,0) -- (5,-2) -- (5,0);
+
+\fill (-5,0) circle[radius=0.08];
+\fill (0,0) circle[radius=0.08];
+\fill (3,0) circle[radius=0.08];
+\fill (5,0) circle[radius=0.08];
+
+\draw[double,color=blue] (-5,-2.5) -- (-5,-3.0);
+\draw[double,color=orange] (5,-2.5) -- (5,-3.0);
+
+\node[color=blue] at (-5,-3.3) {$\log (n-1)\mathstrut$};
+\node[color=orange] at (5,-3.3) {$\log (n)\mathstrut$};
+
+\end{tikzpicture}
+\end{center}
+\caption{Für den Beweis des Satzes von Bohr-Mollerup wird die
+Sekantensteigung $S(x,y)$ für die Argumente $n-1$, $n$, $n+x$ und $n+1$
+verwendet.
+\label{buch:rekursion:fig:bohr-mollerup}}
+\end{figure}
+Wir wenden jetzt die eben erwähnte Tatsache, dass $S(x,y)$ monoton
+wachsend ist, auf die Punkte $n-1$, $n$, $n+x$ und $n+1$ wie
+in Abbildung~\ref{buch:rekursion:fig:bohr-mollerup} an, wobei
+$0<x<1$ ist.
+
+Die linke Ungleichung in Abbildung~\ref{buch:rekursion:fig:bohr-mollerup}
+ist
+\begin{align}
+\log(n-1)
+&<
+S(n-1,n+x)
+=
+\frac{\log f(n+x) -\log(n-2)!}{n+x-n+1}
+\notag
+\\
+(x+1)\log(n-1) + \log(n-2)!
+&< \log f(n+x),
+\notag
+\\
+x\log(n-1) + \log(n-1)!
+&< \log f(n+x)
+\label{buch:rekursion:bohr-mollerup:eqn1}
+\intertext{sie schätzt $\log f(n+x)$ nach unten ab.
+Die Exponentialfunktion ist monoton wachsen, wendet man sie auf
+\eqref{buch:rekursion:bohr-mollerup:eqn1} an, erhält man}
+(n-1)^x (n-1)!
+&<
+f(n+x).
+\label{buch:rekursion:bohr-mollerup:ungllinks}
+\end{align}
+Ganz ähnlich folgt aus der Ungleichung rechts in
+Abbildung~\ref{buch:rekursion:fig:bohr-mollerup}
+\begin{align}
+\frac{\log f(n+x)-\log (n-1)!}{n+x-n}
+&< \log n
+\notag
+\\
+\log f(n+x) - \log(n-1)!
+&<
+x \log n
+\notag
+\\
+\log f(n+x)
+&<
+x\log n + \log(n-1)!
+\notag
+\intertext{und nach Anwendung der Exponentialfunktion}
+f(n+x)
+&<
+n^x (n-1)!
+\label{buch:rekursion:bohr-mollerup:unglrechts}
+\end{align}
+Die Funktion $f(n+x)$ können wir jetzt mit der Funktionalgleichung ii)
+durch $f(x)$ ausdrücken:
+\begin{align*}
+f(n+x)
+&=
+(x+n-1)f(n+x-1)
+\\
+&=
+(x+n-1)(x+n-2)f(n+x-2)
+\\
+&\vdots
+\\
+&=
+(x+n-1)(x+n-2)\dots x\,f(x)
+=
+(x)_n f(x).
+\end{align*}
+Zusammen mit den Ungleichungen
+\eqref{buch:rekursion:bohr-mollerup:ungllinks}
+und
+\eqref{buch:rekursion:bohr-mollerup:unglrechts}
+erhalten wir
+\begin{align*}
+(n-1)^x (n-1)!
+&<
+(x)_n f(x)
+<
+n^x (n-1)!
+\intertext{oder nach Division durch $(x)_n$}
+%\underbrace{
+\frac{(n-1)^x (n-1)!}{(x)_n}
+%}_{\displaystyle\to \Gamma(x)}
+&< f(x)
+<
+\frac{n^x (n-1)!}{(x)_n}
+=
+%\underbrace{
+\frac{n^x n!}{(x)_{n+1}}
+%}_{\displaystyle\to \Gamma(x)}
+\cdot
+%\underbrace{
+\frac{x+n}{n}
+%}_{\displaystyle\to 1}
+.
+\end{align*}
+Der Ausdruck ganz links und der erste Bruch rechts konvergieren
+für $n\to\infty$ beide gegen $\Gamma(x)$ und der Bruch ganz rechts
+konvergiert gegen $1$.
+Daher muss auch $f(x)=\Gamma(x)$ sein.
+\end{proof}
diff --git a/buch/chapters/040-rekursion/gamma.tex b/buch/chapters/040-rekursion/gamma.tex
index 737cf7f..7d4453b 100644
--- a/buch/chapters/040-rekursion/gamma.tex
+++ b/buch/chapters/040-rekursion/gamma.tex
@@ -651,8 +651,11 @@ Abschnitt~\ref{buch:funktionentheorie:section:fortsetzung}
beschrieben wird, kann die Funktion auf ganz $\mathbb{C}$ ausgedehnt
werden, mit Ausnahme einzelner Pole.
Die Funktionalgleichung gilt natürlich für alle $z\in\mathbb{C}$,
-für die $\Gamma(z)$ definiert ist.
-In einer Umgebung von $z=-n$ gilt
+für die $\Gamma(z)$ definiert ist, nicht nur für diejenigen $z$, für
+die das Integral konvergiert.
+Wir können Sie daher verwenden, um das Argument in den Bereich
+zu bringen, wo das Integral zur Berechnung verwendet werden kann.
+Dazu berechnen wir
\[
\Gamma(z)
=
@@ -665,12 +668,20 @@ In einer Umgebung von $z=-n$ gilt
\dots
=
\frac{\Gamma(z+n)}{z(z+1)(z+2)\cdots(z+n-1)}
+=
+\frac{\Gamma(z+n)}{(z)_n}.
\]
-Keiner der Faktoren im Nenner verschwindet in der Nähe von $z=-n$, der
-Zähler hat aber einen Pol erster Ordnung an dieser Stelle.
-Daher hat auch der Quotient einen Pol erster Ordnung.
-Abbildung~\ref{buch:rekursion:fig:gamma} zeigt die Pole bei den
-nicht negativen ganzen Zahlen.
+Dies gilt für jedes natürlich $n$.
+Für $n$ gross genug, genauer für
+$n\ge |\operatorname{Re}z|$,
+ist $\operatorname{Re}(z+n)=\operatorname{Re}z + n>0$ und damit
+kann $\Gamma(z+n)$ mit der Integralformel berechnet werden.
+
+Die Gamma-Funktion hat keine Nullstellen, aber in der Nähe von $z=-n$
+hat der Nenner eine Nullstelle erster Ordnung.
+Somit hat $\Gamma(z)$ Pole erster Ordnung bei den negativen
+ganzen Zahlen und bei $0$, wie sie in
+Abbildung~\ref{buch:rekursion:fig:gamma} gezeigt werden.
\subsubsection{Numerische Berechnung}
\begin{table}
@@ -714,4 +725,6 @@ Die Genauigkeit erreicht sechs korrekte Nachkommastellen mit nur
%
%
%
+\input{chapters/040-rekursion/bohrmollerup.tex}
+\input{chapters/040-rekursion/integral.tex}
diff --git a/buch/chapters/040-rekursion/images/Makefile b/buch/chapters/040-rekursion/images/Makefile
index 9608a94..86dfa1e 100644
--- a/buch/chapters/040-rekursion/images/Makefile
+++ b/buch/chapters/040-rekursion/images/Makefile
@@ -3,7 +3,7 @@
#
# (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
#
-all: gammaplot.pdf fibonacci.pdf
+all: gammaplot.pdf fibonacci.pdf order.pdf beta.pdf
gammaplot.pdf: gammaplot.tex gammapaths.tex
pdflatex gammaplot.tex
@@ -16,3 +16,17 @@ fibonaccigrid.tex: fibonacci.m
fibonacci.pdf: fibonacci.tex fibonaccigrid.tex
pdflatex fibonacci.tex
+
+order.pdf: order.tex orderpath.tex
+ pdflatex order.tex
+
+orderpath.tex: order.m
+ octave order.m
+
+beta.pdf: beta.tex betapaths.tex
+ pdflatex beta.tex
+
+betapaths.tex: betadist.m
+ octave betadist.m
+
+
diff --git a/buch/chapters/040-rekursion/images/beta.pdf b/buch/chapters/040-rekursion/images/beta.pdf
new file mode 100644
index 0000000..0e6567b
--- /dev/null
+++ b/buch/chapters/040-rekursion/images/beta.pdf
Binary files differ
diff --git a/buch/chapters/040-rekursion/images/beta.tex b/buch/chapters/040-rekursion/images/beta.tex
new file mode 100644
index 0000000..1e1a1b3
--- /dev/null
+++ b/buch/chapters/040-rekursion/images/beta.tex
@@ -0,0 +1,236 @@
+%
+% beta.tex -- display some symmetric beta distributions
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\documentclass[tikz]{standalone}
+\usepackage{amsmath}
+\usepackage{times}
+\usepackage{txfonts}
+\usepackage{pgfplots}
+\usepackage{csvsimple}
+\usetikzlibrary{arrows,intersections,math,calc}
+\input{betapaths.tex}
+\begin{document}
+\def\skala{12}
+\definecolor{colorone}{rgb}{1.0,0.6,0.0}
+\definecolor{colortwo}{rgb}{1.0,0.0,0.0}
+\definecolor{colorthree}{rgb}{0.6,0.0,0.6}
+\definecolor{colorfour}{rgb}{0.6,0.0,1.0}
+\definecolor{colorfive}{rgb}{0.0,0.0,1.0}
+\definecolor{colorsix}{rgb}{0.4,0.6,1.0}
+\definecolor{colorseven}{rgb}{0.0,0.0,0.0}
+\definecolor{coloreight}{rgb}{0.0,0.8,0.8}
+\definecolor{colornine}{rgb}{0.0,0.8,0.2}
+\definecolor{colorten}{rgb}{0.2,0.4,0.0}
+\definecolor{coloreleven}{rgb}{0.6,1.0,0.0}
+\definecolor{colortwelve}{rgb}{1.0,0.8,0.4}
+
+\def\achsen{
+ \foreach \x in {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9}{
+ \draw ({\x*\dx},{-0.1/\skala}) -- ({\x*\dx},{0.1/\skala});
+ \node at ({\x*\dx},{-0.1/\skala}) [below] {$\x$};
+ }
+ \foreach \y in {1,2,3,4}{
+ \draw ({-0.1/\skala},{\y*\dy}) -- ({0.1/\skala},{\y*\dy});
+ \node at ({-0.1/\skala},{\y*\dy}) [left] {$\y$};
+ }
+ \def\x{1}
+ \draw ({\x*\dx},{-0.1/\skala}) -- ({\x*\dx},{0.1/\skala});
+ \node at ({\x*\dx},{-0.1/\skala}) [below] {$\x$};
+ \def\x{0}
+ \node at ({\x*\dx},{-0.1/\skala}) [below] {$\x$};
+
+ \draw[->] ({-0.1/\skala},0) -- ({1*\dx+0.4/\skala},0)
+ coordinate[label={$x$}];
+ \draw[->] (0,{-0.1/\skala}) -- (0,{\betamax*\dy+0.4/\skala},0)
+ coordinate[label={right:$\beta(a,b,x)$}];
+}
+
+\def\farbcoord#1#2{
+ ({\dx*(0.63+((#1)/5)*0.27)},{\dx*(0.18+((#2)/5)*0.27)})
+}
+\def\farbviereck{
+ \foreach \x in {1,2,3,4}{
+ \draw[color=gray!30] \farbcoord{\x}{0} -- \farbcoord{\x}{4};
+ \draw[color=gray!30] \farbcoord{0}{\x} -- \farbcoord{4}{\x};
+ }
+ \draw[->] \farbcoord{0}{0} -- \farbcoord{4.4}{0}
+ coordinate[label={$a$}];
+ \draw[->] \farbcoord{0}{0} -- \farbcoord{0}{4.4}
+ coordinate[label={left: $b$}];
+ \foreach \x in {1,2,3,4}{
+ \node[color=gray] at \farbcoord{4}{\x} [right] {\tiny $b=\x$};
+ %\fill[color=white,opacity=0.7]
+ % \farbcoord{(\x-0.1)}{3.3}
+ % rectangle
+ % \farbcoord{(\x+0.1)}{4};
+ \node[color=gray] at \farbcoord{\x}{4} [right,rotate=90]
+ {\tiny $a=\x$};
+ }
+}
+\def\farbpunkt#1#2#3{
+ \fill[color=#3] \farbcoord{#1}{#2} circle[radius={0.1/\skala}];
+}
+
+\begin{tikzpicture}[>=latex,thick,scale=\skala]
+
+\def\dx{1.15}
+\def\dy{0.1}
+\def\opa{0.1}
+
+\def\betamax{4.9}
+
+\begin{scope}
+\clip (0,0) rectangle ({1*\dx},{\betamax*\dy});
+\fill[color=colorone,opacity=\opa] (0,0) -- \betaaa -- (\dx,0) -- cycle;
+\fill[color=colortwo,opacity=\opa] (0,0) -- \betabb -- (\dx,0) -- cycle;
+\fill[color=colorthree,opacity=\opa] (0,0) -- \betacc -- (\dx,0) -- cycle;
+\fill[color=colorfour,opacity=\opa] (0,0) -- \betadd -- (\dx,0) -- cycle;
+\fill[color=colorfive,opacity=\opa] (0,0) -- \betaee -- (\dx,0) -- cycle;
+\fill[color=colorsix,opacity=\opa] (0,0) -- \betaff -- (\dx,0) -- cycle;
+\fill[color=colorseven,opacity=\opa] (0,0) -- \betagg -- (\dx,0) -- cycle;
+\fill[color=coloreight,opacity=\opa] (0,0) -- \betahh -- (\dx,0) -- cycle;
+\fill[color=colornine,opacity=\opa] (0,0) -- \betaii -- (\dx,0) -- cycle;
+\fill[color=colorten,opacity=\opa] (0,0) -- \betajj -- (\dx,0) -- cycle;
+\fill[color=coloreleven,opacity=\opa] (0,0) -- \betakk -- (\dx,0) -- cycle;
+\fill[color=colortwelve,opacity=\opa] (0,0) -- \betall -- (\dx,0) -- cycle;
+
+\draw[color=colorone] \betaaa;
+\draw[color=colortwo] \betabb;
+\draw[color=colorthree] \betacc;
+\draw[color=colorfour] \betadd;
+\draw[color=colorfive] \betaee;
+\draw[color=colorsix] \betaff;
+\draw[color=colorseven] \betagg;
+\draw[color=coloreight] \betahh;
+\draw[color=colornine] \betaii;
+\draw[color=colorten] \betajj;
+\draw[color=coloreleven] \betakk;
+\draw[color=colortwelve] \betall;
+
+\end{scope}
+
+\achsen
+
+\farbviereck
+
+\farbpunkt{\alphatwelve}{\betatwelve}{colortwelve}
+\farbpunkt{\alphaeleven}{\betaeleven}{coloreleven}
+\farbpunkt{\alphaten}{\betaten}{colorten}
+\farbpunkt{\alphanine}{\betanine}{colornine}
+\farbpunkt{\alphaeight}{\betaeight}{coloreight}
+\farbpunkt{\alphaseven}{\betaseven}{colorseven}
+\farbpunkt{\alphasix}{\betasix}{colorsix}
+\farbpunkt{\alphafive}{\betafive}{colorfive}
+\farbpunkt{\alphafour}{\betafour}{colorfour}
+\farbpunkt{\alphathree}{\betathree}{colorthree}
+\farbpunkt{\alphatwo}{\betatwo}{colortwo}
+\farbpunkt{\alphaone}{\betaone}{colorone}
+
+
+\def\betamax{4.9}
+
+\begin{scope}[yshift=-0.6cm]
+
+\begin{scope}
+\clip (0,0) rectangle ({1*\dx},{\betamax*\dy});
+\fill[color=colorone,opacity=\opa] (0,0) -- \betaea -- (\dx,0) -- cycle;
+\fill[color=colortwo,opacity=\opa] (0,0) -- \betaeb -- (\dx,0) -- cycle;
+\fill[color=colorthree,opacity=\opa] (0,0) -- \betaec -- (\dx,0) -- cycle;
+\fill[color=colorfour,opacity=\opa] (0,0) -- \betaed -- (\dx,0) -- cycle;
+\fill[color=colorfive,opacity=\opa] (0,0) -- \betaee -- (\dx,0) -- cycle;
+\fill[color=colorsix,opacity=\opa] (0,0) -- \betaef -- (\dx,0) -- cycle;
+\fill[color=colorseven,opacity=\opa] (0,0) -- \betaeg -- (\dx,0) -- cycle;
+\fill[color=coloreight,opacity=\opa] (0,0) -- \betaeh -- (\dx,0) -- cycle;
+\fill[color=colornine,opacity=\opa] (0,0) -- \betaei -- (\dx,0) -- cycle;
+\fill[color=colorten,opacity=\opa] (0,0) -- \betaej -- (\dx,0) -- cycle;
+\fill[color=coloreleven,opacity=\opa] (0,0) -- \betaek -- (\dx,0) -- cycle;
+\fill[color=colortwelve,opacity=\opa] (0,0) -- \betael -- (\dx,0) -- cycle;
+
+\draw[color=colorone] \betaea;
+\draw[color=colortwo] \betaeb;
+\draw[color=colorthree] \betaec;
+\draw[color=colorfour] \betaed;
+\draw[color=colorfive] \betaee;
+\draw[color=colorsix] \betaef;
+\draw[color=colorseven] \betaeg;
+\draw[color=coloreight] \betaeh;
+\draw[color=colornine] \betaei;
+\draw[color=colorten] \betaej;
+\draw[color=coloreleven] \betaek;
+\draw[color=colortwelve] \betael;
+\end{scope}
+
+\achsen
+
+\farbviereck
+
+\farbpunkt{\alphafive}{\betatwelve}{colortwelve}
+\farbpunkt{\alphafive}{\betaeleven}{coloreleven}
+\farbpunkt{\alphafive}{\betaten}{colorten}
+\farbpunkt{\alphafive}{\betanine}{colornine}
+\farbpunkt{\alphafive}{\betaeight}{coloreight}
+\farbpunkt{\alphafive}{\betaseven}{colorseven}
+\farbpunkt{\alphafive}{\betasix}{colorsix}
+\farbpunkt{\alphafive}{\betafive}{colorfive}
+\farbpunkt{\alphafive}{\betafour}{colorfour}
+\farbpunkt{\alphafive}{\betathree}{colorthree}
+\farbpunkt{\alphafive}{\betatwo}{colortwo}
+\farbpunkt{\alphafive}{\betaone}{colorone}
+
+\end{scope}
+
+\begin{scope}[yshift=-1.2cm]
+
+\begin{scope}
+\clip (0,0) rectangle ({1*\dx},{\betamax*\dy});
+\fill[color=colorone,opacity=\opa] (0,0) -- \betaal -- (\dx,0) -- cycle;
+\fill[color=colortwo,opacity=\opa] (0,0) -- \betabl -- (\dx,0) -- cycle;
+\fill[color=colorthree,opacity=\opa] (0,0) -- \betacl -- (\dx,0) -- cycle;
+\fill[color=colorfour,opacity=\opa] (0,0) -- \betadl -- (\dx,0) -- cycle;
+\fill[color=colorfive,opacity=\opa] (0,0) -- \betael -- (\dx,0) -- cycle;
+\fill[color=colorsix,opacity=\opa] (0,0) -- \betafl -- (\dx,0) -- cycle;
+\fill[color=colorseven,opacity=\opa] (0,0) -- \betagl -- (\dx,0) -- cycle;
+\fill[color=coloreight,opacity=\opa] (0,0) -- \betahl -- (\dx,0) -- cycle;
+\fill[color=colornine,opacity=\opa] (0,0) -- \betail -- (\dx,0) -- cycle;
+\fill[color=colorten,opacity=\opa] (0,0) -- \betajl -- (\dx,0) -- cycle;
+\fill[color=coloreleven,opacity=\opa] (0,0) -- \betakl -- (\dx,0) -- cycle;
+\fill[color=colortwelve,opacity=\opa] (0,0) -- \betall -- (\dx,0) -- cycle;
+
+\draw[color=colorone] \betaal;
+\draw[color=colortwo] \betabl;
+\draw[color=colorthree] \betacl;
+\draw[color=colorfour] \betadl;
+\draw[color=colorfive] \betael;
+\draw[color=colorsix] \betafl;
+\draw[color=colorseven] \betagl;
+\draw[color=coloreight] \betahl;
+\draw[color=colornine] \betail;
+\draw[color=colorten] \betajl;
+\draw[color=coloreleven] \betakl;
+\draw[color=colortwelve] \betall;
+\end{scope}
+
+\achsen
+
+\farbviereck
+
+\farbpunkt{\alphatwelve}{\betatwelve}{colortwelve}
+\farbpunkt{\alphaeleven}{\betatwelve}{coloreleven}
+\farbpunkt{\alphaten}{\betatwelve}{colorten}
+\farbpunkt{\alphanine}{\betatwelve}{colornine}
+\farbpunkt{\alphaeight}{\betatwelve}{coloreight}
+\farbpunkt{\alphaseven}{\betatwelve}{colorseven}
+\farbpunkt{\alphasix}{\betatwelve}{colorsix}
+\farbpunkt{\alphafive}{\betatwelve}{colorfive}
+\farbpunkt{\alphafour}{\betatwelve}{colorfour}
+\farbpunkt{\alphathree}{\betatwelve}{colorthree}
+\farbpunkt{\alphatwo}{\betatwelve}{colortwo}
+\farbpunkt{\alphaone}{\betatwelve}{colorone}
+
+\end{scope}
+
+\end{tikzpicture}
+\end{document}
+
diff --git a/buch/chapters/040-rekursion/images/betadist.m b/buch/chapters/040-rekursion/images/betadist.m
new file mode 100644
index 0000000..5b466a6
--- /dev/null
+++ b/buch/chapters/040-rekursion/images/betadist.m
@@ -0,0 +1,58 @@
+#
+# betadist.m
+#
+# (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+#
+global N;
+N = 201;
+global nmin;
+global nmax;
+nmin = -4;
+nmax = 7;
+n = nmax - nmin + 1
+A = 3;
+
+t = (nmin:nmax) / nmax;
+alpha = 1 + A * t .* abs(t)
+#alpha(1) = 0.01;
+
+#alpha = [ 1, 1.03, 1.05, 1.1, 1.25, 1.5, 2, 2.5, 3, 4, 5 ];
+beta = alpha;
+names = [ "one"; "two"; "three"; "four"; "five"; "six"; "seven"; "eight";
+ "nine"; "ten"; "eleven"; "twelve" ]
+
+function retval = Beta(a, b, x)
+ retval = x^(a-1) * (1-x)^(b-1) / beta(a, b);
+ if (retval > 100)
+ retval = 100
+ end
+end
+
+function plotbeta(fn, a, b, name)
+ global N;
+ fprintf(fn, "\\def\\beta%s{\n", strtrim(name));
+ fprintf(fn, "\t({%.4f*\\dx},{%.4f*\\dy})", 0, Beta(a, b, 0));
+ for x = (1:N-1)/(N-1)
+ X = (1-cos(pi * x))/2;
+ fprintf(fn, "\n\t--({%.4f*\\dx},{%.4f*\\dy})",
+ X, Beta(a, b, X));
+ end
+ fprintf(fn, "\n}\n");
+end
+
+fn = fopen("betapaths.tex", "w");
+
+for i = (1:n)
+ fprintf(fn, "\\def\\alpha%s{%f}\n", strtrim(names(i,:)), alpha(i));
+ fprintf(fn, "\\def\\beta%s{%f}\n", strtrim(names(i,:)), beta(i));
+end
+
+for i = (1:n)
+ for j = (1:n)
+ printf("working on %d,%d:\n", i, j);
+ plotbeta(fn, alpha(i), beta(j),
+ char(['a' + i - 1, 'a' + j - 1]));
+ end
+end
+
+fclose(fn);
diff --git a/buch/chapters/040-rekursion/images/order.m b/buch/chapters/040-rekursion/images/order.m
new file mode 100644
index 0000000..762f458
--- /dev/null
+++ b/buch/chapters/040-rekursion/images/order.m
@@ -0,0 +1,119 @@
+#
+# order.m
+#
+# (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+#
+global N;
+N = 10;
+global subdivisions;
+subdivisions = 100;
+global P;
+P = 0.5
+
+function retval = orderF(p, n, k)
+ retval = 0;
+ for i = (k:n)
+ retval = retval + nchoosek(n,i) * p^i * (1-p)^(n-i);
+ end
+end
+
+function retval = orderd(p, n, k)
+ retval = 0;
+ for i = (k:n)
+ s = i * p^(i-1) * (1-p)^(n-i);
+ s = s - p^i * (n-i) * (1-p)^(n-i-1);
+ retval = retval + nchoosek(n,i) * s;
+ end
+end
+
+function retval = orders(p, n, k)
+ retval = k * nchoosek(n, k) * p^(k-1) * (1-p)^(n-k);
+end
+
+function orderpath(fn, k, name)
+ fprintf(fn, "\\def\\order%s{\n\t(0,0)", name);
+ global N;
+ global subdivisions;
+ for i = (0:subdivisions)
+ p = i/subdivisions;
+ fprintf(fn, "\n\t-- ({%.4f*\\dx},{%.4f*\\dy})",
+ p, orderF(p, N, k));
+ end
+ fprintf(fn, "\n}\n");
+end
+
+function orderdpath(fn, k, name)
+ fprintf(fn, "\\def\\orderd%s{\n\t(0,0)", name);
+ global N;
+ global subdivisions;
+ for i = (1:subdivisions-1)
+ p = i/subdivisions;
+ fprintf(fn, "\n\t-- ({%.4f*\\dx},{%.4f*\\dy})",
+ p, orderd(p, N, k));
+ end
+ fprintf(fn, "\n\t-- ({1*\\dx},0)");
+ fprintf(fn, "\n}\n");
+end
+
+function orderspath(fn, k, name)
+ fprintf(fn, "\\def\\orders%s{\n\t(0,0)", name);
+ global N;
+ global subdivisions;
+ for i = (1:subdivisions-1)
+ p = i/subdivisions;
+ fprintf(fn, "\n\t-- ({%.4f*\\dx},{%.4f*\\dy})",
+ p, orders(p, N, k));
+ end
+ fprintf(fn, "\n\t-- ({1*\\dx},0)");
+ fprintf(fn, "\n}\n");
+end
+
+fn = fopen("orderpath.tex", "w");
+
+orderpath(fn, 0, "zero");
+orderdpath(fn, 0, "zero");
+orderspath(fn, 0, "zero");
+
+orderpath(fn, 1, "one");
+orderdpath(fn, 1, "one");
+orderspath(fn, 1, "one");
+
+orderpath(fn, 2, "two");
+orderdpath(fn, 2, "two");
+orderspath(fn, 2, "two");
+
+orderpath(fn, 3, "three");
+orderdpath(fn, 3, "three");
+orderspath(fn, 3, "three");
+
+orderpath(fn, 4, "four");
+orderdpath(fn, 4, "four");
+orderspath(fn, 4, "four");
+
+orderpath(fn, 5, "five");
+orderdpath(fn, 5, "five");
+orderspath(fn, 5, "five");
+
+orderpath(fn, 6, "six");
+orderdpath(fn, 6, "six");
+orderspath(fn, 6, "six");
+
+orderpath(fn, 7, "seven");
+orderdpath(fn, 7, "seven");
+orderspath(fn, 7, "seven");
+
+orderpath(fn, 8, "eight");
+orderdpath(fn, 8, "eight");
+orderspath(fn, 8, "eight");
+
+orderpath(fn, 9, "nine");
+orderdpath(fn, 9, "nine");
+orderspath(fn, 9, "nine");
+
+orderpath(fn, 10, "ten");
+orderdpath(fn, 10, "ten");
+orderspath(fn, 10, "ten");
+
+fclose(fn);
+
+
diff --git a/buch/chapters/040-rekursion/images/order.pdf b/buch/chapters/040-rekursion/images/order.pdf
new file mode 100644
index 0000000..cc175a9
--- /dev/null
+++ b/buch/chapters/040-rekursion/images/order.pdf
Binary files differ
diff --git a/buch/chapters/040-rekursion/images/order.tex b/buch/chapters/040-rekursion/images/order.tex
new file mode 100644
index 0000000..9a2511c
--- /dev/null
+++ b/buch/chapters/040-rekursion/images/order.tex
@@ -0,0 +1,125 @@
+%
+% order.tex -- Verteilungsfunktion für Ordnungsstatistik
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\documentclass[tikz]{standalone}
+\usepackage{amsmath}
+\usepackage{times}
+\usepackage{txfonts}
+\usepackage{pgfplots}
+\usepackage{csvsimple}
+\usetikzlibrary{arrows,intersections,math}
+\begin{document}
+\def\skala{8}
+\definecolor{darkgreen}{rgb}{0,0.6,0}
+
+\def\n{10}
+\def\E#1#2{
+ \draw[color=#2]
+ ({\dx*#1/(\n+1)},{-0.1/\skala}) -- ({\dx*#1/(\n+1)},{4.4*\dy});
+ \node[color=#2] at ({\dx*#1/(\n+1)},{3.2*\dy})
+ [rotate=90,above right] {$k=#1$};
+}
+\def\var#1#2{
+ \pgfmathparse{\dx*sqrt(#1*(\n-#1+1)/((\n+1)*(\n+1)*(\n+2)))}
+ \xdef\var{\pgfmathresult}
+ \fill[color=#2,opacity=0.5]
+ ({\dx*#1/(\n+1)-\var},0) rectangle ({\dx*#1/(\n+1)+\var},{4.4*\dy});
+}
+
+\input{orderpath.tex}
+\begin{tikzpicture}[>=latex,thick,scale=\skala]
+
+\def\dx{1.6}
+\def\dy{0.5}
+
+\def\pfad#1#2{
+\draw[color=#2,line width=1.4pt] ({-0.1/\skala},0)
+ --
+ #1
+ --
+ ({1*\dx+0.1/\skala},0.5);
+}
+
+\pfad{\orderzero}{darkgreen!20}
+\pfad{\orderone}{darkgreen!20}
+\pfad{\ordertwo}{darkgreen!20}
+\pfad{\orderthree}{darkgreen!20}
+\pfad{\orderfour}{darkgreen!20}
+\pfad{\orderfive}{darkgreen!20}
+\pfad{\ordersix}{darkgreen!20}
+\pfad{\ordereight}{darkgreen!20}
+\pfad{\ordernine}{darkgreen!20}
+\pfad{\orderten}{darkgreen!20}
+\pfad{\orderseven}{darkgreen}
+
+\draw[->] ({-0.1/\skala},0) -- ({1.03*\dx},0) coordinate[label={$x$}];
+\draw[->] (0,{-0.1/\skala}) -- (0,0.6) coordinate[label={right:$F(X)$}];
+\foreach \x in {0,0.2,0.4,0.6,0.8,1}{
+ \draw ({\x*\dx},{-0.1/\skala}) -- ({\x*\dx},{0.1/\skala});
+ \node at ({\x*\dx},{-0.1/\skala}) [below] {$\x$};
+}
+\foreach \y in {0.5,1}{
+ \draw ({-0.1/\skala},{\y*\dy}) -- ({0.1/\skala},{\y*\dy});
+ \node at ({-0.1/\skala},{\y*\dy}) [left] {$\y$};
+}
+
+\node[color=darkgreen] at (0.65,{0.5*\dy}) [above,rotate=55] {$k=7$};
+
+\begin{scope}[yshift=-0.7cm]
+\def\dy{0.125}
+
+\foreach \k in {1,2,3,4,5,6,8,9,10}{
+ \E{\k}{blue!30}
+}
+\def\k{7}
+\var{\k}{orange!40}
+\node[color=blue] at ({\dx*\k/(\n+1)},{4.3*\dy}) [above] {$E(X_{7:n})$};
+
+\def\pfad#1#2{
+ \draw[color=#2,line width=1.4pt] ({-0.1/\skala},0)
+ --
+ #1
+ --
+ ({1*\dx+0.1/\skala},0.0);
+}
+
+\begin{scope}
+\clip ({-0.1/\skala},{-0.1/\skala})
+ rectangle ({1*\dx+0.1/\skala},{0.56+0.1/\skala});
+
+\pfad{\orderdzero}{red!20}
+\pfad{\orderdone}{red!20}
+\pfad{\orderdtwo}{red!20}
+\pfad{\orderdthree}{red!20}
+\pfad{\orderdfour}{red!20}
+\pfad{\orderdfive}{red!20}
+\pfad{\orderdsix}{red!20}
+\pfad{\orderdeight}{red!20}
+\pfad{\orderdnine}{red!20}
+\pfad{\orderdten}{red!20}
+\E{\k}{blue}
+\pfad{\orderdseven}{red}
+
+\end{scope}
+
+\draw[->] ({-0.1/\skala},0) -- ({1.03*\dx},0) coordinate[label={$x$}];
+\draw[->] (0,{-0.1/\skala}) -- (0,0.6) coordinate[label={right:$\varphi(X)$}];
+\foreach \x in {0,0.2,0.4,0.6,0.8,1}{
+ \draw ({\x*\dx},{-0.1/\skala}) -- ({\x*\dx},{0.1/\skala});
+ \node at ({\x*\dx},{-0.1/\skala}) [below] {$\x$};
+}
+\foreach \y in {1,2,3,4}{
+ \draw ({-0.1/\skala},{\y*\dy}) -- ({0.1/\skala},{\y*\dy});
+ \node at ({-0.1/\skala},{\y*\dy}) [left] {$\y$};
+}
+
+\node[color=red] at ({0.67*\dx},{2.7*\dy}) [above] {$k=7$};
+
+
+\end{scope}
+
+\end{tikzpicture}
+\end{document}
+
diff --git a/buch/chapters/040-rekursion/integral.tex b/buch/chapters/040-rekursion/integral.tex
new file mode 100644
index 0000000..df52a58
--- /dev/null
+++ b/buch/chapters/040-rekursion/integral.tex
@@ -0,0 +1,103 @@
+%
+% integral.tex
+%
+% (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Hochschule
+%
+\subsection{Integraldarstellung und der Satz von Bohr-Mollerup
+\label{buch:subsection:integral-eindeutig}}
+Die Integralformel
+\[
+f(x)
+=
+\int_0^\infty t^{x-1}e^{-t}\,dt
+\]
+für die Gamma-Funktion erfüllt die Funktionalgleichung der Gamma-Funktion.
+Aus dem Satz von Bohr-Mollerup~\ref{buch:satz:bohr-mollerup} folgt,
+dass $f(x)=\Gamma(x)$, wenn gezeigt werden kann, dass $\log f(x)$
+konvex ist.
+Dies soll im Folgenden gezeigt werden.
+
+\subsubsection{Logarithmische Ableitung}
+Die Ableitungen der Funktion $\log f(x)$ sind die erste und
+zweite logarithmische
+Ableitung
+\begin{align}
+\frac{d}{dx}\log f(x)
+&=
+\frac{f'(x)}{f(x)}
+\notag
+\\
+\frac{d^2}{dx^2} \log f(x)
+&=
+\frac{f''(x)f(x)-f'(x)^2}{f(x)^2}.
+\label{buch:rekursion:eqn:zweiteablteitung}
+\end{align}
+Durch Ableiten unter dem Integralzeichen können die Ableitungen
+von $f$ als
+\begin{align*}
+f'(x)
+&=
+\int_0^\infty \log(t)\, t^{x-1} e^{-t}\,dt
+\\
+f''(x)
+&=
+\int_0^\infty \log(t)^2\, t^{x-1} e^{-t}\,dt
+\end{align*}
+bestimmt werden.
+Um nachzuweisen, dass $\log f(x)$ konvex ist, muss nur gezeigt werden,
+dass die zweite logarithmische Ableitung von $f(x)$ positiv ist, was
+gemäss~\eqref{buch:rekursion:eqn:zweiteablteitung} mit
+\begin{equation}
+f''(x)f(x)-f'(x)^2
+=
+\int_0^\infty \log(t)^2\, t^{x-1}e^{-t}\,dt
+\int_0^\infty t^{x-1}e^{-t}\,dt
+-
+\biggl(
+\int_0^\infty \log(t)\, t^{x-1}e^{-t}\,dt
+\biggr)^2
+\ge 0
+\label{buch:rekursion:gamma-integral:ungleichung}
+\end{equation}
+gleichbedeutend ist.
+
+\subsubsection{Skalarprodukt}
+Die Integral in~\eqref{buch:rekursion:gamma-integral:ungleichung}
+können als Werte eines Skalarproduktes von Funktionen auf $\mathbb{R}^+$
+gelesen werden.
+Dazu definieren wir
+\begin{align}
+\langle u,v\rangle
+&=
+\int_0^\infty u(t)v(t)\,t^{x-1}e^{-t}\,dt
+\label{buch:rekursion:gamma-integral:eqn:skalarprodukt}
+\\
+\|u\|^2
+&=
+\int_0^\infty u(t)^2 \,t^{x-1}e^{-t}\,dt,
+\notag
+\end{align}
+für alle Funktionen $u$ und $v$, für die die Integrale definiert sind.
+
+\subsubsection{Cauchy-Schwarz-Ungleichung}
+Die Cauchy-Schwarz-Ungleichung für das
+Skalarprodukt~\eqref{buch:rekursion:gamma-integral:eqn:skalarprodukt}
+für die Funktion $u(t)=1$ und $v(t)=\log(t)$
+lautet
+\[
+|\langle u,v\rangle|^2
+=
+\biggl|
+\int_0^1 \log(t)\,t^{x-1}e^{-t}\,dt
+\biggr|^2
+\le
+\|u\|^2\cdot \|v\|^2
+=
+\int_0^\infty 1\cdot t^{x-1}e^{-t}\,dt
+\int_0^\infty \log(t)^2\cdot t^{x-1}e^{-t}\,dt.
+\]
+Daraus folgt aber durch Umstellen unmittelbar die
+Ungleichung~\eqref{buch:rekursion:gamma-integral:ungleichung}.
+Damit ist gezeigt, dass $\log f(t)$ konvex ist und nach
+dem Satz~\ref{buch:satz:bohr-mollerup} folgt nun, dass $f(x)=\Gamma(x)$.
+