diff options
Diffstat (limited to '')
-rw-r--r-- | buch/chapters/040-rekursion/beta.tex | 2 | ||||
-rw-r--r-- | buch/chapters/040-rekursion/gamma.tex | 3 | ||||
-rw-r--r-- | buch/chapters/040-rekursion/hypergeometrisch.tex | 4 |
3 files changed, 9 insertions, 0 deletions
diff --git a/buch/chapters/040-rekursion/beta.tex b/buch/chapters/040-rekursion/beta.tex index 35ff758..20e3f0e 100644 --- a/buch/chapters/040-rekursion/beta.tex +++ b/buch/chapters/040-rekursion/beta.tex @@ -234,6 +234,7 @@ Durch Einsetzen der Integralformel im Ausdruck Satz. \begin{satz} +\index{Satz!Beta-Funktion und Gamma-Funktion}% Die Beta-Funktion kann aus der Gamma-Funktion nach \begin{equation} B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)} @@ -423,6 +424,7 @@ Die trigonometrische Substitution kann dazu verwendet werden, die Legendresche Verdoppelungsformel für die Gamma-Funktion herzuleiten. \begin{satz}[Legendre] +\index{Satz!Verdoppelungsformel@Verdoppelungsformel für $\Gamma(x)$}% \[ \Gamma(x)\Gamma(x+{\textstyle\frac12}) = diff --git a/buch/chapters/040-rekursion/gamma.tex b/buch/chapters/040-rekursion/gamma.tex index 2b0700e..7f19637 100644 --- a/buch/chapters/040-rekursion/gamma.tex +++ b/buch/chapters/040-rekursion/gamma.tex @@ -240,6 +240,7 @@ Durch Iteration der Rekursionsformel für $\Gamma(x)$ folgt jetzt Damit folgt \begin{satz} +\index{Satz!Pochhammer-Symbol@Pochhammer-Symbol und $\Gamma(x)$}% \label{buch:rekursion:gamma:satz:gamma-pochhammer} Die Rekursionsformel für die Gamma-Funktion kann geschrieben werden als \[ @@ -344,6 +345,7 @@ in den Zähler zu bringen, so dass er der Konvergenz etwas nachhilft. Wir berechnen daher den Kehrwert $1/\Gamma(x)$. \begin{satz} +\index{Satz!Produktformel@Produktformel für $\Gamma(x)$}% \label{buch:rekursion:gamma:satz:produktformel} Der Kehrwert der Gamma-Funktion kann geschrieben werden als \begin{equation} @@ -695,6 +697,7 @@ Laplace-Transformation der Potenzfunktion zu berechnen. \index{Laplace-Transformierte der Potenzfunktion}% \begin{satz} +\index{Satz!Laplace-Transformierte der Potenzfunktion}% Die Laplace-Transformierte der Potenzfunktion $f(t)=t^\alpha$ ist \[ (\mathscr{L}f)(s) diff --git a/buch/chapters/040-rekursion/hypergeometrisch.tex b/buch/chapters/040-rekursion/hypergeometrisch.tex index 3b72ffa..13ba3b2 100644 --- a/buch/chapters/040-rekursion/hypergeometrisch.tex +++ b/buch/chapters/040-rekursion/hypergeometrisch.tex @@ -68,6 +68,7 @@ oder Binomialkoeffizienten definiert sind, wie die beiden folgenden Sätze zeigen. \begin{satz} +\index{Satz!Quotienten von Fakultäten}% \label{buch:rekursion:hypergeometrisch:satz:fakquo} Der Quotient aufeinanderfolgender Folgenglieder der Folge $c_k=(a+bk)!$ ist der ein Polynom vom Grad $b$. @@ -89,6 +90,7 @@ Das Pochhammer-Symbol hat $b$ Faktoren, es ist ein Polynom vom Grad $b$. \end{proof} \begin{satz} +\index{Satz!Quotienten von Binomialkoeffizienten}% \label{buch:rekursion:hypergeometrisch:satz:binomquo} Die Quotienten aufeinanderfolgender Werte der Binomialkoeffizienten \[ @@ -432,6 +434,7 @@ Definition~\ref{buch:rekursion:hypergeometrisch:def} offensichtlichen Regeln: \begin{satz}[Permutationsregel] +\index{Satz!Permutationsregel für hypergeometrische Funktionen}% \label{buch:rekursion:hypergeometrisch:satz:permuationsregel} Sei $\pi$ eine beliebige Permutation der Zahlen $1,\dots,p$ und $\sigma$ eine beliebige Permutation der Zahlen $1,\dots,q$, dann ist @@ -454,6 +457,7 @@ a_{\pi(1)},\dots,a_{\pi(p)}\\b_{\sigma(1)},\dots,b_{\sigma(q)} \end{satz} \begin{satz}[Kürzungsformel] +\index{Satz!Kürzungsformel für hypergeometrische Funktionen}% \label{buch:rekursion:hypergeometrisch:satz:kuerzungsregel} Stimmt einer der Koeffizienten $a_k$ mit einem der Koeffizienten $b_i$ überein, dann können sie weggelassen werden: |