aboutsummaryrefslogtreecommitdiffstats
path: root/buch/chapters/040-rekursion
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--buch/chapters/040-rekursion/betaverteilung.tex487
1 files changed, 487 insertions, 0 deletions
diff --git a/buch/chapters/040-rekursion/betaverteilung.tex b/buch/chapters/040-rekursion/betaverteilung.tex
new file mode 100644
index 0000000..979d04c
--- /dev/null
+++ b/buch/chapters/040-rekursion/betaverteilung.tex
@@ -0,0 +1,487 @@
+%
+% teil1.tex -- Beispiel-File für das Paper
+%
+% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
+%
+\subsection{Ordnungsstatistik und Beta-Funktion
+\label{buch:rekursion:ordnung:section:ordnungsstatistik}}
+\rhead{Ordnungsstatistik und Beta-Funktion}
+In diesem Abschnitt ist $X$ eine Zufallsvariable mit der Verteilungsfunktion
+$F_X(x)$, und $X_i$, $1\le i\le n$ sei ein Stichprobe von unabhängigen
+Zufallsvariablen, die wie $X$ verteilt sind.
+Ziel ist, die Verteilungsfunktion und die Wahrscheinlichkeitsdichte
+des grössten, zweitgrössten, $k$-t-grössten Wertes in der Stichprobe
+zu finden.
+Wir schreiben $[n]=\{1,\dots,n\}$ für die Menge der natürlichen
+Zahlen von zwischen $1$ und $n$.
+
+\subsubsection{Verteilung von $\operatorname{max}(X_1,\dots,X_n)$ und
+$\operatorname{min}(X_1,\dots,X_n)$
+\label{buch:rekursion:ordnung:subsection:minmax}}
+Die Verteilungsfunktion von $\operatorname{max}(X_1,\dots,X_n)$ hat
+den Wert
+\begin{align*}
+F_{\operatorname{max}(X_1,\dots,X_n)}(x)
+&=
+P(\operatorname{max}(X_1,\dots,X_n) \le x)
+\\
+&=
+P(X_1\le x\wedge \dots \wedge X_n\le x)
+\\
+&=
+P(X_1\le x) \cdot \ldots \cdot P(X_n\le x)
+\\
+&=
+P(X\le x)^n
+=
+F_X(x)^n.
+\end{align*}
+Für die Gleichverteilung ist
+\[
+F_{\text{equi}}(x)
+=
+\begin{cases}
+0&\qquad x< 0
+\\
+x&\qquad 0\le x\le 1
+\\
+1&\qquad 1<x.
+\end{cases}
+\]
+In diesem Fall ist Verteilung des Maximums
+\[
+F_{\operatorname{max}(X_1,\dots,X_n)}(x)
+=
+\begin{cases}
+0&\qquad x<0\\
+x^n&\qquad 0\le x\le 1\\
+1&\qquad 1 < x.
+\end{cases}
+\]
+Mit der zugehörigen Wahrscheinlichkeitsdichte
+\[
+\varphi_{\operatorname{max}(X_1,\dots,X_n)}
+=
+\frac{d}{dx}
+F_{\operatorname{max}(X_1,\dots,X_n)}(x)
+=
+\begin{cases}
+nx^{n-1}&\qquad 0\le x\le 1\\
+0 &\qquad \text{sonst}
+\end{cases}
+\]
+kann man zum Beispiel den Erwartungswert
+\[
+E(\operatorname{max}(X_1,\dots,X_n))
+=
+\int_{-\infty}^\infty
+x
+\varphi_{\operatorname{X_1,\dots,X_n}}(x)
+\,dx
+=
+\int_{0}^1 x\cdot nx^{n-1}\,dt
+=
+\biggl[
+\frac{n}{n+1}x^{n+1}
+\biggr]_0^1
+=
+\frac{n}{n+1}
+\]
+berechnen.
+
+Ganz analog kann man auch die Verteilungsfunktion von
+$\operatorname{min}(X_1,\dots,X_n)$ bestimmen.
+Sie ist
+\begin{align*}
+F_{\operatorname{min}(X_1,\dots,X_n)}(x)
+&=
+P(x\le X_1\vee \dots \vee x\le X_n)
+\\
+&=
+1-
+P(x > X_1\wedge \dots \wedge x > X_n)
+\\
+&=
+1-
+(1-P(x\le X_1)) \cdot\ldots\cdot (1-P(x\le X_n))
+\\
+&=
+1-(1-F_X(x))^n,
+\end{align*}
+Im Speziellen für im Intervall $[0,1]$ gleichverteilte $X_i$ ist die
+Verteilungsfunktion des Minimums
+\[
+F_{\operatorname{min}(X_1,\dots,X_n)}(x)
+=
+\begin{cases}
+0 &\qquad x<0 \\
+1-(1-x)^n&\qquad 0\le x\le 1\\
+1 &\qquad 1 < x
+\end{cases}
+\]
+mit Wahrscheinlichkeitsdichte
+\[
+\varphi_{\operatorname{min}(X_1,\dots,X_n)}
+=
+\frac{d}{dx}
+F_{\operatorname{min}(X_1,\dots,X_n)}
+=
+\begin{cases}
+n(1-x)^{n-1}&\qquad 0\le x\le 1\\
+0 &\qquad \text{sonst}
+\end{cases}
+\]
+und Erwartungswert
+\begin{align*}
+E(\operatorname{min}(X_1,\dots,X_n)
+&=
+\int_{-\infty}^\infty x\varphi_{\operatorname{min}(X_1,\dots,X_n)}(x)\,dx
+=
+\int_0^1 x\cdot n(1-x)^{n-1}\,dx
+\\
+&=
+\bigl[ -x(1-x)^n \bigr]_0^1 + \int_0^1 (1-x)^n\,dx
+=
+\biggl[
+-
+\frac{1}{n+1}
+(1-x)^{n+1}
+\biggr]_0^1
+=
+\frac{1}{n+1}.
+\end{align*}
+Es ergibt sich daraus als natürlich Verallgemeinerung die Frage nach
+der Verteilung des zweitegrössten oder zweitkleinsten Wertes unter den
+Werten $X_i$.
+
+\subsubsection{Der $k$-t-grösste Wert}
+Sie wieder $X_i$ eine Stichprobe von $n$ unabhängigen wie $X$ verteilten
+Zufallsvariablen.
+Diese werden jetzt der Grösse nach sortiert, die sortierten Werte werden
+mit
+\[
+X_{1:n} \le X_{2:n} \le \dots \le X_{(n-1):n} \le X_{n:n}
+\]
+bezeichnet.
+Die Grössen $X_{k:n}$ sind Zufallsvariablen, sie heissen die $k$-ten
+Ordnungsstatistiken.
+Die in Abschnitt~\ref{buch:rekursion:ordnung:subsection:minmax} behandelten Zufallsvariablen
+$\operatorname{min}(X_1,\dots,X_n)$
+und
+$\operatorname{max}(X_1,\dots,X_n)$
+sind die Fälle
+\begin{align*}
+X_{1:n} &= \operatorname{min}(X_1,\dots,X_n) \\
+X_{n:n} &= \operatorname{max}(X_1,\dots,X_n).
+\end{align*}
+
+Um den Wert der Verteilungsfunktion von $X_{k:n}$ zu berechnen, müssen wir
+die Wahrscheinlichkeit bestimmen, dass $k$ der $n$ Werte $X_i$ $x$ nicht
+übersteigen.
+Der $k$-te Wert $X_{k:n}$ übersteigt genau dann $x$ nicht, wenn
+mindestens $k$ der Zufallswerte $X_i$ $x$ nicht übersteigen, also
+\[
+P(X_{k:n} \le x)
+=
+P\left(
+|\{i\in[n]\,|\, X_i\le x\}| \ge k
+\right).
+\]
+
+Das Ereignis $\{X_i\le x\}$ ist eine Bernoulli-Experiment, welches mit
+Wahrscheinlichkeit $F_X(x)$ eintritt.
+Die Anzahl der Zufallsvariablen $X_i$, die $x$ übertreffen, ist also
+Binomialverteilt mit $p=F_X(x)$.
+Damit haben wir gefunden, dass mit Wahrscheinlichkeit
+\begin{equation}
+F_{X_{k:n}}(x)
+=
+P(X_{k:n}\le x)
+=
+\sum_{i=k}^n \binom{n}{i}F_X(x)^i (1-F_X(x))^{n-i}
+\label{buch:rekursion:ordnung:eqn:FXkn}
+\end{equation}
+mindestens $k$ der Zufallsvariablen den Wert $x$ überschreiten.
+
+\subsubsection{Wahrscheinlichkeitsdichte der Ordnungsstatistik}
+Die Wahrscheinlichkeitsdichte der Ordnungsstatistik kann durch Ableitung
+von \eqref{buch:rekursion:ordnung:eqn:FXkn} gefunden, werden, sie ist
+\begin{align*}
+\varphi_{X_{k:n}}(x)
+&=
+\frac{d}{dx}
+F_{X_{k:n}}(x)
+\\
+&=
+\sum_{i=k}^n
+\binom{n}{i}
+\bigl(
+iF_X(x)^{i-1}\varphi_X(x) (1-F_X(x))^{n-i}
+-
+F_X(x)^k
+(n-i)
+(1-F_X(x))^{n-i-1}
+\varphi_X(x)
+\bigr)
+\\
+&=
+\sum_{i=k}^n
+\binom{n}{i}
+\varphi_X(x)
+F_X(x)^{i-1}(1-F_X(x))^{n-i-1}
+\bigl(
+iF_X(x)-(n-i)(1-F_X(x))
+\bigr)
+\\
+&=
+\varphi_X(x)
+\biggl(
+\sum_{i=k}^n i\binom{n}{i} F_X(x)^{i-1}(1-F_X(x))^{n-i}
+-
+\sum_{j=k}^n (n-j)\binom{n}{j} F_X(x)^{j}(1-F_X(x))^{n-j-1}
+\biggr)
+\\
+&=
+\varphi_X(x)
+\biggl(
+\sum_{i=k}^n i\binom{n}{i} F_X(x)^{i-1}(1-F_X(x))^{n-i}
+-
+\sum_{i=k+1}^{n+1} (n-i+1)\binom{n}{i-1} F_X(x)^{i-1}(1-F_X(x))^{n-i}
+\biggr)
+\\
+&=
+\varphi_X(x)
+\biggl(
+k\binom{n}{k}F_X(x)^{k-1}(1-F_X(x))^{n-k}
++
+\sum_{i=k+1}^{n+1}
+\left(
+i\binom{n}{i}
+-
+(n-i+1)\binom{n}{i-1}
+\right)
+F_X(x)^{i-1}(1-F_X(x))^{n-i}
+\biggr)
+\end{align*}
+Mit den wohlbekannten Identitäten für die Binomialkoeffizienten
+\begin{align*}
+i\binom{n}{i}
+-
+(n-i+1)\binom{n}{i-1}
+&=
+n\binom{n-1}{i-1}
+-
+n
+\binom{n-1}{i-1}
+=
+0
+\end{align*}
+folgt jetzt
+\begin{align*}
+\varphi_{X_{k:n}}(x)
+&=
+\varphi_X(x)k\binom{n}{k} F_X(x)^{k-1}(1-F_X(x))^{n-k}(x).
+\intertext{Im Speziellen für gleichverteilte Zufallsvariablen $X_i$ ist
+}
+\varphi_{X_{k:n}}(x)
+&=
+k\binom{n}{k} x^{k-1}(1-x)^{n-k}.
+\end{align*}
+Dies ist die Wahrscheinlichkeitsdichte einer Betaverteilung
+\[
+\beta(k,n-k+1)(x)
+=
+\frac{1}{B(k,n-k+1)}
+x^{k-1}(1-x)^{n-k}.
+\]
+Tatsächlich ist die Normierungskonstante
+\begin{align}
+\frac{1}{B(k,n-k+1)}
+&=
+\frac{\Gamma(n+1)}{\Gamma(k)\Gamma(n-k+1)}
+=
+\frac{n!}{(k-1)!(n-k)!}.
+\label{buch:rekursion:ordnung:betaverteilung:normierung1}
+\end{align}
+Andererseits ist
+\[
+k\binom{n}{k}
+=
+k\frac{n!}{k!(n-k)!}
+=
+\frac{n!}{(k-1)!(n-k)!},
+\]
+in Übereinstimmung mit~\eqref{buch:rekursion:ordnung:betaverteilung:normierung1}.
+Die Verteilungsfunktion und die Wahrscheinlichkeitsdichte der
+Ordnungsstatistik sind in Abbildung~\ref{buch:rekursion:ordnung:fig:order} dargestellt.
+
+\begin{figure}
+\centering
+\includegraphics{chapters/040-rekursion/images/order.pdf}
+\caption{Verteilungsfunktion und Wahrscheinlichkeitsdichte der
+Ordnungsstatistiken $X_{k:n}$ einer gleichverteilung Zuvallsvariable
+mit $n=10$.
+\label{buch:rekursion:ordnung:fig:order}}
+\end{figure}
+
+%
+% Die Beta-Funktion
+%
+\subsection{Die Beta-Verteilung
+\label{buch:rekursion:subsection:beta-verteilung}}
+Die Wahrscheinlichkeitsdichte, die im
+Abschnitt~\ref{buch:rekursion:ordnung:section:ordnungsstatistik}
+gefunden worden ist, ist nicht nur für ganzzahlige Exponenten
+definiert.
+
+\begin{figure}
+\centering
+\includegraphics[width=0.92\textwidth]{chapters/040-rekursion/images/beta.pdf}
+\caption{Wahrscheinlichkeitsdichte der Beta-Verteilung
+$\beta(a,b,x)$
+für verschiedene Werte der Parameter $a$ und $b$.
+Die Werte des Parameters für einen Graphen einer Beta-Verteilung
+sind im kleinen Quadrat rechts im Graphen
+als Punkt mit der gleichen Farbe dargestellt.
+\label{buch:rekursion:ordnung:fig:betaverteilungn}}
+\end{figure}
+
+\begin{definition}
+Die Beta-Verteilung ist die Verteilung mit der Wahrscheinlichkeitsdichte
+\[
+\beta_{a,b}(x)
+=
+\begin{cases}
+\displaystyle
+\frac{1}{B(a,b)}
+x^{a-1}(1-x)^{b-1}&\qquad 0\le x \le 1\\
+0&\qquad\text{sonst.}
+\end{cases}
+\]
+\end{definition}
+
+Die Beta-Funktion ist also die Normierungskonstante der Beta-Verteilung.
+Die wichtigsten Kennzahlen der Beta-Verteilung wie Erwartungswert und
+Varianz lassen sich alle ebenfalls als Werte der Beta-Funktion ausdrücken.
+
+\subsubsection{Erwartungswert}
+Mit der Wahrscheinlichkeitsdichte kann man jetzt auch den Erwartungswerte
+der $k$-ten Ordnungsstatistik bestimmen.
+Die Rechnung ergibt:
+\begin{align*}
+E(X_{k:n})
+&=
+\int_0^1 x\cdot k\binom{n}{k} x^{k-1}(1-x)^{n-k}\,dx
+=
+k
+\binom{n}{k}
+\int_0^1
+x^{k}(1-x)^{n-k}\,dx.
+\intertext{Dies ist das Beta-Integral}
+&=
+k\binom{n}{k}
+B(k+1,n-k+1)
+\intertext{welches man durch Gamma-Funktionen bzw.~durch Fakultäten wie in}
+&=
+k\frac{n!}{k!(n-k)!}
+\frac{\Gamma(k+1)\Gamma(n-k+1)}{n+2}
+=
+k\frac{n!}{k!(n-k)!}
+\frac{k!(n-k)!}{(n+1)!}
+=
+\frac{k}{n+1}
+\end{align*}
+ausdrücken kann.
+Die Erwartungswerte haben also regelmässige Abstände, sie sind in
+Abbildung~\ref{buch:rekursion:ordnung:fig:order} als blaue vertikale Linien eingezeichnet.
+
+Für die Beta-Verteilung lässt sich die Rechnung noch allgemeiner
+durchführen.
+Der Erwartungswert einer $\beta_{a,b}$-verteilten Zufallsvariablen $X$
+ist
+\begin{align*}
+E(X)
+&=
+\int_0^1 x \beta_{a,b}(x)\,dx
+=
+\frac{1}{B(a,b)}
+\int_0^1 x\cdot x^{a-1}(1-x)^{b-1}\,dx
+=
+\frac{B(a+1,b)}{B(a,b)}
+=
+\frac{a}{a+b}.
+\end{align*}
+Durch Einsetzen von $a=k+1$ und $b=n-k+1$ lassen sich die für die
+Ordnungsstatistik berechneten Werte wiederfinden.
+
+\subsubsection{Varianz}
+Auch die Varianz lässt sich einfach berechnen, dazu muss zunächst
+der Erwartungswert von $X_{k:n}^2$ bestimmt werden.
+Er ist
+\begin{align*}
+E(X_{k:n}^2)
+&=
+\int_0^1 x^2\cdot k\binom{n}{k} x^{k-1}(1-x)^{n-k}\,dx
+=
+k
+\binom{n}{k}
+\int_0^1
+x^{k+1}(1-x)^{n-k}\,dx.
+\intertext{Auch dies ist ein Beta-Integral, nämlich}
+&=
+k\binom{n}{k}
+B(k+2,n-k+1)
+=
+k\frac{n!}{k!(n-k)!}
+\frac{(k+1)!(n-k)!}{(n+2)!}
+=
+\frac{k(k+1)}{(n+1)(n+2)}.
+\end{align*}
+Die Varianz wird damit
+\begin{align}
+\operatorname{var}(X_{k:n})
+&=
+E(X_{k:n}^2) - E(X_{k:n})^2
+\notag
+\\
+&
+=
+\frac{k(k+1)}{(n+1)(n+2)}-\frac{k^2}{(n+1)^2}
+=
+\frac{k(k+1)(n+1)-k^2(n+2)}{(n+1)^2(n+2)}
+=
+\frac{k(n-k+1)}{(n+1)^2(n+2)}.
+\label{buch:rekursion:ordnung:eqn:ordnungsstatistik:varianz}
+\end{align}
+In Abbildung~\ref{buch:rekursion:ordnung:fig:order} ist die Varianz der
+Ordnungsstatistik $X_{k:n}$ für $k=7$ und $n=10$ als oranges
+Rechteck dargestellt.
+
+Auch die Varianz kann ganz allgemein für die Beta-Verteilung
+bestimmt werden.
+Dazu berechnen wir zunächst
+\begin{align*}
+E(X^2)
+&=
+\frac{1}{B(a,b)}
+\int_0^1
+x^2\cdot x^{a-1}(1-y)^{b-1}\,dx
+=
+\frac{B(a+2,b)}{B(a,b)}.
+\end{align*}
+Daraus folgt dann
+\[
+\operatorname{var}(X)
+=
+E(X^2)-E(X)^2
+=
+\frac{B(a+2,b)B(a,b)-B(a+1,b)^2}{B(a,b)^2}.
+\]
+
+Die Formel~\eqref{buch:rekursion:ordnung:eqn:ordnungsstatistik:varianz}
+besagt auch, dass die Varianz der proportional ist zu $k((n+1)-k)$.
+Dieser Ausdruck ist am grössten für $k=(n+1)/2$, die Varianz ist
+also grösser für die ``mittleren'' Ordnungstatistiken als für die
+extremen $X_{1:n}=\operatorname{min}(X_1,\dots,X_n)$ und
+$X_{n:n}=\operatorname{max}(X_1,\dots,X_n)$.
+