diff options
Diffstat (limited to '')
-rw-r--r-- | buch/chapters/050-differential/potenzreihenmethode.tex | 69 |
1 files changed, 46 insertions, 23 deletions
diff --git a/buch/chapters/050-differential/potenzreihenmethode.tex b/buch/chapters/050-differential/potenzreihenmethode.tex index 2d95fb2..9f2e0a6 100644 --- a/buch/chapters/050-differential/potenzreihenmethode.tex +++ b/buch/chapters/050-differential/potenzreihenmethode.tex @@ -44,6 +44,7 @@ Tatsächlich gilt der folgende sehr viel allgemeinere Satz von Cauchy und Kowalevskaja: \begin{satz}[Cauchy-Kowalevskaja] +\index{Satz!von Cauchy-Kowalevskaja}% Eine partielle Differentialgleichung der Ordnung $k$ für eine Funktion $u(x_1,\dots,x_n,t)=u(x,t)$ in expliziter Form @@ -176,7 +177,8 @@ b_2\,2!\,a_{2+k} + b_1\, a_{1+k} + b_0\, a_k % % Die Newtonsche Reihe % -\subsection{Die Newtonsche Reihe} +\subsection{Die Newtonsche Reihe +\label{buch:differentialgleichungen:subsection:newtonschereihe}} Wir lösen die Differentialgleichung~\eqref{buch:differentialgleichungen:eqn:wurzeldgl1} mit der Anfangsbedingung $y(t)=1$ mit der Potenzreihenmethode. @@ -289,7 +291,7 @@ Für ganzzahliges $\alpha$ wird daraus die binomische Formel \] % -% Lösung als hypergeometrische Riehe +% Lösung als hypergeometrische Reihe % \subsubsection{Lösung als hypergeometrische Funktion} Die Newtonreihe verwendet ein absteigendes Produkt im Zähler. @@ -333,6 +335,8 @@ wir die Darstellung Damit haben wir den folgenden Satz gezeigt. \begin{satz} +\index{Satz!Newtonsche Reihe}% +\label{buch:differentialgleichungen:satz:newtonschereihe} Die Newtonsche Reihe für $(1-t)^\alpha$ ist der Wert \[ (1-t)^\alpha @@ -370,7 +374,7 @@ entwickeln lassen. \subsubsection{Die Potenzreihenmethode funktioniert nicht} Für die Differentialgleichung \eqref{buch:differentialgleichungen:eqn:dglverallg} -funktioniert die Potenzreihenmethod oft nicht. +funktioniert die Potenzreihenmethode oft nicht. Sind die Funktionen $p(x)$ und $q(x)$ zum Beispiel Konstante $p(x)=p_0$ und $q(x)=q_0$, dann führt der Potenzreihenansatz \[ @@ -418,25 +422,43 @@ $a_k=0$ sein, die einzige Potenzreihe ist die triviale Funktion $y(x)=0$. Für Differentialgleichungen der Art \eqref{buch:differentialgleichungen:eqn:dglverallg} ist also ein anderer Ansatz nötig. -Die Schwierigkeit bestand darin, dass die Gleichungen für die einzelnen -Koeffizienten $a_k$ voneinander unabhängig waren. -Mit einem zusätzlichen Potenzfaktor $x^\varrho$ mit nicht -notwendigerweise ganzzahligen Wert kann die nötige Flexibilität -erreicht werden. -Wir verwenden daher den Ansatz -\[ +Ursache für das Versagen des Potenzreihenansatzes ist, dass die +Koeffizienten der Differentialgleichung bei $x=0$ eine +Singularität haben. +Ist ist daher damit zu rechnen, dass auch die Lösung $y(x)$ an dieser +Stelle singuläres Verhalten zeigen wird. +Die Terme einer Potenzreihe um den Punkt $x=0$ sind nicht singulär, +können eine solche Singularität also nicht wiedergeben. +Der neue Ansatz sollte ähnlich einfach sein, aber auch gewisse ``einfache'' +Singularitäten darstellen können. +Die Potenzfunktionen $x^\varrho$ mit $\varrho<1$ erfüllen beide +Anforderungen. + +\begin{definition} +\label{buch:differentialgleichungen:def:verallpotenzreihe} +Eine {\em verallgemeinerte Potenzreihe} ist eine Funktion der Form +\begin{equation} y(x) = x^\varrho \sum_{k=0}^\infty a_kx^k = \sum_{k=0}^\infty a_k x^{\varrho+k} -\] -und versuchen nicht nur die Koeffizienten $a_k$ sondern auch den -Exponenten $\varrho$ zu bestimmen. -Durch Modifikation von $\varrho$ können wir immer erreichen, dass -$a_0\ne 0$ ist. - -Die Ableitungen von $y(x)$ mit der zugehörigen Potenz von x sind +\label{buch:differentialgleichungen:eqn:verallpotenzreihe} +\end{equation} +mit $a_0\ne 0$. +\end{definition} + +Die Forderung $a_0\ne 0$ kann nötigenfalls durch Modifikation des +Exponenten $\varrho$ immer erreicht werden. + +Wir verwenden also eine verallgemeinerte Potenzreihe der Form +\eqref{buch:differentialgleichungen:eqn:verallpotenzreihe} +als Lösungsansatz für die +Differentialgleichung~\eqref{buch:differentialgleichungen:eqn:dglverallg}. +Wir berechnen die Ableitungen von $y(x)$ und um sie in der +Differentialgleichung einzusetzen, versehen wir sie auch gleich mit den +benötigten Potenzen von $x$. +So erhalten wir \begin{align*} xy'(x) &= @@ -451,8 +473,9 @@ x^2y''(x) \sum_{k=0}^\infty (\varrho+k)(\varrho+k-1)a_kx^{\varrho+k}. \end{align*} -Diese Ableitungen setzen wir jetzt in die Differentialgleichung ein, -die dadurch zu +Diese Ausdrücke setzen wir jetzt in die +Differentialgleichung~\eqref{buch:differentialgleichungen:eqn:dglverallg} +ein, die dadurch zu \begin{equation} \sum_{k=0}^\infty (\varrho+k)(\varrho+k-1) a_k x^{\varrho+k} + @@ -487,6 +510,7 @@ Ausgeschrieben geben die einzelnen Terme \bigl((\varrho +2)a_2p_0 + (\varrho+1)a_1p_1 + \varrho a_0 p_2\bigr) x^{\varrho+2} + \dots +\label{buch:differentialgleichungen:eqn:dglverallg} \\ &+ q_0a_0x^{\varrho} @@ -683,18 +707,17 @@ Kapitel~\ref{buch:chapter:funktionentheorie} dargestellt werden. \item -Fall 3: $\varrho_1-\varrho-2$ ist eine positive ganze Zahl. +Fall 3: $\varrho_1-\varrho_2$ ist eine positive ganze Zahl. In diesem Fall ist im Allgemeinen nur eine Lösung in Form einer verallgemeinerten Potenzreihe möglich. Auch hier müssen Techniken der Funktionentheorie aus Kapitel~\ref{buch:chapter:funktionentheorie} verwendet werden, um eine zweite Lösung zu finden. -\end{itemize} - Wenn $\varrho_1-\varrho_2$ eine negative ganze Zahl ist, kann man die beiden Nullstellen vertauschen. -Es folgt dann, dass es eine +\end{itemize} + |