aboutsummaryrefslogtreecommitdiffstats
path: root/buch/chapters/060-integral
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--buch/chapters/060-integral/differentialkoerper.tex5
-rw-r--r--buch/chapters/060-integral/diffke.tex225
-rw-r--r--buch/chapters/060-integral/elementar.tex207
-rw-r--r--buch/chapters/060-integral/erweiterungen.tex331
-rw-r--r--buch/chapters/060-integral/logexp.tex131
-rw-r--r--buch/chapters/060-integral/rational.tex195
-rw-r--r--buch/chapters/060-integral/risch.tex12
-rw-r--r--buch/chapters/060-integral/sqrat.tex13
8 files changed, 1103 insertions, 16 deletions
diff --git a/buch/chapters/060-integral/differentialkoerper.tex b/buch/chapters/060-integral/differentialkoerper.tex
index a071ae2..a112e33 100644
--- a/buch/chapters/060-integral/differentialkoerper.tex
+++ b/buch/chapters/060-integral/differentialkoerper.tex
@@ -15,6 +15,11 @@ Doch woher weiss man, dass es keine solche Funktion gibt, und
was heisst überhaupt ``Stammfunktion in geschlossener Form''?
In diesem Abschnitt wird daher ein algebraischer Rahmen entwickelt,
in dem diese Frage sinnvoll gestellt werden kann.
+Das ultimative Ziel, welches aber erst in
+Abschnitt~\ref{buch:integral:section:risch} in Angriff genommen
+wird, ist ein Computer-Algorithmus, der Integrale in geschlossener
+Form findet oder beweist, dass dies für einen gegebenen Integranden
+nicht möglich ist.
\input{chapters/060-integral/rational.tex}
\input{chapters/060-integral/erweiterungen.tex}
diff --git a/buch/chapters/060-integral/diffke.tex b/buch/chapters/060-integral/diffke.tex
index 53b46ad..61badc8 100644
--- a/buch/chapters/060-integral/diffke.tex
+++ b/buch/chapters/060-integral/diffke.tex
@@ -5,16 +5,233 @@
%
\subsection{Differentialkörper und ihre Erweiterungen
\label{buch:integral:subsection:diffke}}
+Die Ableitung wird in den Grundvorlesungen der Analysis jeweils
+als ein Grenzprozess eingeführt.
+Die praktische Berechnung von Ableitungen verwendet aber praktisch
+nie diese Definition, sondern fast ausschliesslich die rein algebraischen
+Ableitungsregeln.
+So wie die Wurzelfunktionen im letzten Abschnitt als algebraische
+Körpererweiterungen erkannt wurden, muss jetzt auch für die Ableitung
+eine rein algebraische Definition gefunden werden.
+Die entstehende Struktur ist der Differentialkörper, der in diesem
+Abschnitt definiert werden soll.
+
+%
+% Derivation
%
\subsubsection{Derivation}
-% Ableitungsaxiome
+Für die praktische Berechnung der Ableitung einer Funktion verwendet
+man in erster Linie die bekannten Rechenregeln.
+Dazu gehören für zwei Funktionen $f$ und $g$
+\begin{itemize}
+\item Linearität: $(\alpha f+\beta g)' = \alpha f' + \beta g'$ für
+Konstanten $\alpha$, $\beta$.
+\item Produktregel: $(fg)'=f'g+fg'$.
+\index{Produktregel}%
+\item Quotientenregel: $(f/g)' = (f'g-fg')/g^2$.
+\index{Quotientenregel}%
+\end{itemize}
+Die ebenfalls häufig verwendete Kettenregel $(f\circ g)' = (f'\circ g) g'$
+\index{Kettenregel}%
+für zusammengesetzte Funktionen wird später kaum benötigt, da wir
+Verkettungen durch Körpererweiterungen ersetzen wollen.
+Die Ableitung hat somit die rein algebraischen Eigenschaften
+einer Derivation gemäss folgender Definition.
-\subsubsection{Ableitungsregeln}
+\begin{definition}
+Sei $\mathscr{F}$ ein Körper.
+Eine {\em Derivation} ist eine lineare Abbildung
+\index{Derivation}%
+$D\colon \mathscr{F}\to\mathscr{F}$
+mit der Eigenschaft
+\[
+D(fg) = (Df)g+f(Dg).
+\]
+Ein {\em Differentialkörper} ist ein Körper mit einer Derivation.
+\index{Differentialkoerper@Differentialkörper}%
+\end{definition}
+
+Die Ableitung in einem Funktionenkörper ist eine Derivation,
+die sich zusätzlich dadurch auszeichnet, dass $Dx=x'=1$.
+Sie wird weiterhin mit dem Strich bezeichnet.
+
+%
% Ableitungsregeln
+%
+\subsubsection{Ableitungsregeln}
+Die Definition einer Derivation macht keine Aussagen über Quotienten,
+diese kann man aber aus den Eigenschaften einer Derivation sofort
+ableiten.
+Wir schreiben $q=f/g$ für $f,g\in\mathscr{F}$, dann ist $f=qg$.
+Nach der Kettenregel gilt
+\(
+f'=q'g+qg'
+\).
+Substituiert man darin $q=f/g$ und löst nach $q'$ auf, erhält man
+\[
+f'=q'g+\frac{fg'}{g}
+\qquad\Rightarrow\qquad
+q'=\frac1{g}\biggl(f'-\frac{fg'}{g}\biggr)
+=
+\frac{f'g-fg'}{g^2}.
+\]
-\subsubsection{Konstantenkörper}
+
+%
% Konstantenkörper
+%
+\subsubsection{Konstantenkörper}
+Die Ableitung einer Konstanten verschwindet.
+Beim Hinzufügen von Funktionen zu einem Funktionenkörper können weitere
+Konstanten hinzukommen, ohne dass dies auf den ersten Blick sichtbar wird.
+Zum Beispiel enthält $\mathbb{Q}(x,\!\sqrt{x+\pi})$ wegen
+$(\!\sqrt{x+\pi})^2-x=\pi$ auch die Konstante $\pi$.
+Eine Derivation ermöglicht dank des nachfolgenden Satzes auch,
+solche Konstanten zu erkennen.
+
+\begin{satz}
+Sei $\mathscr{F}$ ein Körper und $D$ eine Derivation in $\mathscr{F}$.
+Dann ist die Menge $C=\{a\in\mathscr{F}\;|\;Da=0\}$ ein Körper.
+\end{satz}
+
+\begin{proof}[Beweis]
+Es muss gezeigt werden, dass Summe und Produkt von Element von $C$
+wieder in $C$ liegen.
+Wenn $Da=Db=0$, dann ist $D(a+b)=Da+Db=0$, also ist $a+b\in C$.
+Für das Produkt gilt $D(ab)=(Da)b+a(Db)=0b+a0=0$, also ist auch
+$ab\in C$.
+\end{proof}
+
+Die Menge $C$ heisst der {\em Konstantenkörper} von $\mathscr{F}$.
+\index{Konstantenkörper}%
+
+%
+% Ableitung algebraischer Elemente
+%
+\subsubsection{Ableitung und algebraische Körpererweiterungen}
+Die Rechenregeln in einem Differentialkörper $\mathscr{F}$ legen auch die
+Ableitung eines algebraischen Elements fest.
+Sei $m(z)=m_0+m_1z+\ldots+m_{n-1}z^{n-1}+z^n$ das Minimalpolynom eines
+über $\mathscr{F}$ algebraischen Elements $f$.
+Aus $m(f)=0$ folgt durch Ableiten
+\[
+0
+=
+m(f)'
+=
+m_0'
++
+(m_1'f+m_1f')
++
+(m_2'f + m_12f'f)
++
+\ldots
++
+(m_{n-1}'f^{n-1} + m_{n-1} (n-1)f'f^{n-2})
++
+nf'f^{n-1}.
+\]
+Zusammenfassen der Ableitung $f'$ auf der linken Seite liefert die
+Gleichung
+\[
+f'(
+m_1+2m_2f+\ldots+(n-1)m_{n-1}f^{n-2}+nf^{n-1}
+)
+=
+m_0' + m_1'f + m_2'f^2 + \ldots + m_{n-1}'f^{n-1} + f^n,
+\]
+aus der
+\[
+f'
+=
+\frac{
+m_0' + m_1'f + m_2'f^2 + \ldots + m_{n-1}'f^{n-1} + f^n
+}{
+m_1+2m_2f+\ldots+(n-1)m_{n-1}f^{n-2}+nf^{n-1}
+}
+\]
+als Element von $\mathscr{F}(g)$ berechnet werden kann.
+Die Ableitungsoperation lässt sich somit auf die Körpererweiterung
+$\mathscr{F}(f)$ fortsetzen.
+
+\begin{beispiel}
+Das über $\mathbb{Q}(x)$ algebraische Element $y=\sqrt{ax^2+bx+c}$
+hat das Minimalpolynom
+\[
+m(z)
+=
+z^2 - [ax^2+bx+c]
+\in
+\mathbb{Q}(x)[z]
+\]
+mit Koeffizienten $m_0 = ax^2+bx+c,$ $m_1=0$ und $m_2=1$.
+Es hat die Ableitung
+\[
+y'
+=
+\frac{m_0'}{2m_2y}
+=
+\frac{
+2ax+b
+}{
+2y
+}
+\in
+\mathbb{Q}(x,y)
+\]
+wegen $m_0'=2ax+b$.
+\end{beispiel}
+
+\begin{definition}
+Eine differentielle Körpererweiterung ist eine Körpererweiterung
+$\mathscr{K}\subset\mathscr{F}$ von Differentialkörpern derart, dass
+die Ableitungen $D_{\mathscr{K}}$ in $\mathscr{K}$
+und $D_{\mathscr{F}}$ in $\mathscr{F}$ übereinstimmen:
+\(
+D_{\mathscr{K}}g= D_{\mathscr{F}} g
+\)
+für alle $g\in\mathscr{K}$.
+\end{definition}
+%
+% Logarithmus und Exponantialfunktion
+%
\subsubsection{Logarithmus und Exponentialfunktion}
-% Logarithmus und Exponentialfunktion
+Die Exponentialfunktion und der Logarithmus sind nicht algebraisch
+über $\mathbb{Q}(x)$, sie lassen sich nicht durch eine algebraische
+Gleichung charakterisieren.
+Sie zeichnen sich aber durch besondere Ableitungseigenschaften aus.
+Die Theorie der gewöhnlichen Differentialgleichungen garantiert,
+dass eine Funktion durch eine Differentialgleichung und Anfangsbedingungen
+festgelegt ist.
+\label{buch:integral:expundlog}
+Für die Exponentialfunktion und der Logarithmus haben die
+Ableitungseigenschaften
+\[
+\exp'(x) = \exp(x)
+\qquad\text{und}\qquad
+x \log'(x) = 1.
+\]
+\index{Exponentialfunktion}%
+\index{Logarithmus}%
+In der algebraischen Beschreibung eines Funktionenkörpers gibt es
+das Konzept des Wertes einer Funktion an einer bestimmten Stelle nicht.
+Somit können keine Anfangsbedingungen vorgegeben werden.
+Da die Gleichung für $\exp$ linear sind, sind Vielfache einer Lösung wieder
+Lösungen,
+insbesondere ist mit $\exp(x)$ auch $a\exp(x)$ eine Lösung.
+Die Gleichung für $\log$ ist nicht linear, aber es ist
+$\log'(x) = 1/x$, $\log$ ist eine Stammfunktion von $1/x$, die
+nur bis auf eine Konstante bestimmt ist.
+Tatsächlich gilt
+\[
+x(\log(x)+a)'
+=
+x\log(x) + xa' = x\log(x)=1,
+\]
+die Funktion $\log(x)+a$ ist also auch eine Lösung für den Logarithmus.
+
+Die Eigenschaft, dass die Exponentialfunktion die Umkehrfunktion
+des Logarithmus ist, lässt sich mit den Mitteln eines Differentialkörpers
+nicht ausdrücken.
diff --git a/buch/chapters/060-integral/elementar.tex b/buch/chapters/060-integral/elementar.tex
index 2962178..fd5f051 100644
--- a/buch/chapters/060-integral/elementar.tex
+++ b/buch/chapters/060-integral/elementar.tex
@@ -5,3 +5,210 @@
%
\subsection{Elementare Funktionen
\label{buch:integral:subsection:elementar}}
+Etwas allgemeiner kann man sagen, dass in den
+Beispielen~\eqref{buch:integration:risch:eqn:integralbeispiel2}
+algebraische Erweiterungen von $\mathbb{Q}(x)$ und Erweiterungen
+um Logarithmen oder Exponentialfunktionen vorgekommen sind.
+Die Stammfunktionen verwenden dieselben Funktionen oder höchstens
+Erweiterungen um Logarithmen von Funktionen, die man schon im
+Integranden gesehen hat.
+
+%
+% Exponentielle und logarithmische Funktione
+%
+\subsubsection{Exponentielle und logarithmische Funktionen}
+In Abschnitt~\ref{buch:integral:subsection:diffke} haben wir
+bereits die Exponentialfunktion $e^x$ und die Logarithmusfunktion
+$\log x$ charakterisiert als eine Körpererweiterung durch
+Elemente, die der Differentialgleichung
+\[
+\exp' = \exp
+\qquad\text{und}\qquad
+\log' = \frac{1}{x}
+\]
+genügen.
+Für die Stammfunktionen, die in
+Abschnitt~\ref{buch:integral:subsection:logexp}
+gefunden wurden, sind aber Logarithmusfunktionen nicht von
+$x$ sondern von beliebigen über $\mathbb{Q}$ algebraischen Elementen
+nötig.
+Um zu verstehen, wie wir diese Funktion als Körpererweiterung erhalten
+könnten, betrachten wir die Ableitung einer Exponentialfunktion
+$\vartheta(x) = \exp(f(x))$ und eines
+Logarithmus
+$\psi(x) = \log(f(x))$, wie man sie mit der Kettenregel
+berechnet hätte:
+\begin{align*}
+\vartheta'(x)
+&=\exp(f(x)) \cdot f'(x)
+&
+\psi'(x)
+&=
+\frac{f'(x)}{f(x)}
+\quad\Leftrightarrow\quad
+f(x)\psi'(x)
+=
+f'(x).
+\end{align*}
+Dies motiviert die folgende Definition
+
+\begin{definition}
+\label{buch:integral:def:explog}
+Sei $\mathscr{F}$ ein Differentialklörper und $f\in\mathscr{F}$.
+Ein Exponentialfunktion von $f$ ist ein $\vartheta\in \mathscr{F}$mit
+$\vartheta' = \vartheta f'$.
+Ein Logarithmus von $f$ ist ein $\vartheta\in\mathscr{F}$ mit
+$f\vartheta'=f'$.
+\end{definition}
+
+Für $f=x$ mit $f'=1$ reduziert sich die
+Definition~\ref{buch:integral:def:explog}
+auf die Definition der Exponentialfunktion $\exp(x)$ und
+Logarithmusfunktion $\log(x)$ auf Seite~\pageref{buch:integral:expundlog}.
+
+
+%
+%
+%
+\subsubsection{Transzendente Körpererweiterungen}
+Die Wurzelfunktionen haben wir früher als algebraische Erweiterungen
+eines Differentialkörpers erkannt.
+Die logarithmischen und exponentiellen Elemente gemäss
+Definition~\ref{buch:integral:def:explog} sind nicht algebraisch.
+
+\begin{definition}
+\label{buch:integral:def:transzendent}
+Sei $\mathscr{F}\subset\mathscr{G}$ eine Körpererweiterung und
+$\vartheta\in\mathscr{G}$.
+$\vartheta$ heisst {\em transzendent}, wenn $\vartheta$ nicht
+algebraisch ist.
+\end{definition}
+
+\begin{beispiel}
+Die Funktion $f = e^x + e^{2x} + e^{x/2}$ ist sicher transzendent,
+in diesem Beispiel zeigen wir, dass es mindestens drei verschiedene
+Möglichkeiten gibt, eine Körpererweiterung von $\mathbb{Q}(x)$ zu
+konstruieren, die $f$ enthält.
+
+Erste Möglichkeit: $f=\vartheta_1 + \vartheta_2 + \vartheta_3$ mit
+$\vartheta_1=e^x$,
+$\vartheta_2=e^{2x}$
+und
+$\vartheta_3=e^{x/2}$.
+Jedes der Elemente $\vartheta_i$ ist exponentiell über $\mathbb{Q}(x)$ und
+$f$ ist in
+\[
+\mathbb{Q}(x)
+\subset
+\mathbb{Q}(x,\vartheta_1)
+\subset
+\mathbb{Q}(x,\vartheta_1,\vartheta_2)
+\subset
+\mathbb{Q}(x,\vartheta_1,\vartheta_2,\vartheta_3)
+\ni
+f.
+\]
+Jede dieser Körpererweiterungen ist transzendent.
+
+Zweite Möglichkeit: $\vartheta_1=e^x$ ist exponentiell über
+$\mathbb{Q}(x)$ und $\mathbb{Q}(x,\vartheta_1)$ enthält wegen
+\[
+(\vartheta_1^2)'
+=
+2\vartheta_1\vartheta_1'
+=
+2\vartheta_1^2,
+\]
+somit ist $\vartheta_1^2=\vartheta_2$ eine Exponentialfunktion von $2x$
+über $\mathbb{Q}(x)$.
+Das Element $\vartheta_3=e^{x/2}$ ist zwar auch exponentiell über
+$\mathbb{Q}(x)$, es ist aber auch eine Nullstelle des Polynoms
+$m(z)=z^2-[\vartheta_1]$.
+Die Erweiterung
+$\mathbb{Q}(x,\vartheta_1)\subset\mathbb{Q}(x,\vartheta_1,\vartheta_3)$
+ist eine algebraische Erweiterung, die
+$f=\vartheta_1 + \vartheta_1^2+\vartheta_3$ enthält.
+
+Dritte Möglichkeit: $\vartheta_3=e^{x/2}$ ist exponentiell über
+$\mathbb{Q}(x)$.
+Die transzendente Körpererweiterung
+\[
+\mathbb{Q}(x) \subset \mathbb{Q}(x,\vartheta_3)
+\]
+enthält das Element
+$f=\vartheta_3^4+\vartheta_3^2 + \vartheta_3 $.
+\end{beispiel}
+
+Das Beispiel zeigt, dass man nicht sagen kann, dass eine Funktion
+ausschliesslich in einer algebraischen oder transzendenten Körpererweiterung
+zu finden ist.
+Vielmehr gibt es für die gleiche Funktion möglicherweise verschiedene
+Körpererweiterungen, die alle die Funktion enthalten können.
+
+%
+% Elementare Funktionen
+%
+\subsubsection{Elementare Funktionen}
+Die Stammfunktionen~\eqref{buch:integration:risch:eqn:integralbeispiel2}
+können aufgebaut werden, indem man dem Körper $\mathbb{Q}(x)$ schrittweise
+sowohl algebraische wie auch transzendente Elemente hinzufügt,
+wie in der folgenden Definition, die dies für abstrakte
+Differentialkörpererweiterungen formuliert.
+
+\begin{definition}
+Eine Körpererweiterung $\mathscr{F}\subset\mathscr{G}$ heisst
+{\em transzendente elementare Erweiterung}, wenn
+$\mathscr{G} = \mathscr{F}(\vartheta_1,\dots,\vartheta_n)$ und
+jedes der Element $\vartheta_i$ transzendent und logarithmisch oder
+exponentiell ist über
+$\mathscr{F}_{i-1}=\mathscr{F}(\vartheta_1,\dots,\vartheta_{i-1})$.
+Die Körpererweiterung $\mathscr{F}\subset\mathscr{G}$ heisst
+{\em elementare Erweiterung}, wenn
+$\mathscr{G} = \mathscr{F}(\vartheta_1,\dots,\vartheta_n)$ und
+jedes Element $\vartheta_i$ ist entweder logarithmisch, exponentiell
+oder algebraisch über $\mathscr{F}_{i-1}$.
+\end{definition}
+
+Die Funktionen, die als akzeptable Stammfunktionen für das Integrationsproblem
+in Betracht kommen, sind also jene, die in einer geeigneten elementaren
+Erweiterung des von $\mathbb{Q}(x)$ liegen.
+Ausserdem können auch noch weitere Konstanten nötig sein, sowohl
+algebraische Zahlen wie auch Konstanten wie $\pi$ oder $e$.
+
+\begin{definition}
+Sei $\mathscr{K}(x)$ der Differentialklörper der rationalen Funktionen
+über dem Konstantenkörper $\mathscr{K}\supset\mathbb{Q}$, der in $\mathbb{C}$
+enthalten ist.
+Ist $\mathscr{F}\supset \mathscr{K}(x)$ eine transzendente elementare
+Erweiterung von $\mathscr{K}(x)$, dann heisst $\mathscr{F}$
+ein Körper von {\em transzendenten elementaren Funktionen}.
+Ist $\mathscr{F}$ eine elementare Erweiterung von $\mathscr{K}(x)$, dann
+heisst $\mathscr{F}$ ein Körper von {\em elementaren Funktionen}.
+\end{definition}
+
+\subsubsection{Das Integrationsproblem}
+Die elementaren Funktionen enthalten alle Funktionen, die sich mit
+arithmetischen Operationen, Wurzeln, Exponentialfunktionen, Logarithmen und
+damit auch mit trigonometrischen und hyperbolischen Funktionen und ihren
+Umkehrfunktionen aus den rationalen Zahlen, der unabhängigen Variablen $x$
+und möglicherweise einigen zusätzlichen Konstanten aufbauen lassen.
+Sei also $f$ eine Funktion in einem Körper von elementaren
+Funktionen
+\[
+\mathscr(F)
+=
+\mathbb{Q}(\alpha_1,\dots,\alpha_l)(x,\vartheta_1,\dots,\vartheta_n).
+\]
+Eine elementare Stammfunktion ist eine Funktion $F=\int f$ in einer
+elementaren Körpererweiterung
+\[
+\mathscr{G}
+=
+\mathbb{Q}(\alpha_1,\dots,\alpha_l,\dots,\alpha_{l+k})
+(x,\vartheta_1,\dots,\vartheta_n,\dots,\vartheta_{n+m})
+\]
+mit $F'=f$.
+Das Ziel ist, $F$ mit Hilfe eines Algorithmus zu bestimmen.
+
+
+
diff --git a/buch/chapters/060-integral/erweiterungen.tex b/buch/chapters/060-integral/erweiterungen.tex
index f88f6e3..9138f3e 100644
--- a/buch/chapters/060-integral/erweiterungen.tex
+++ b/buch/chapters/060-integral/erweiterungen.tex
@@ -5,8 +5,339 @@
%
\subsection{Körpererweiterungen
\label{buch:integral:subsection:koerpererweiterungen}}
+Das Beispiel des Körpers $\mathbb{Q}(\!\sqrt{2})$ auf Seite
+\pageref{buch:integral:beispiel:Qsqrt2} illustriert eine Möglichkeit,
+einen kleinen Körper zu vergrössern.
+Das Prinzip ist verallgemeinerungsfähig und soll in diesem Abschnitt
+erarbeitet werden.
+
%
% algebraische Zahl-Erweiterungen
+\subsubsection{Algebraische Erweiterungen}
+Der Körper $\mathbb{Q}(\!\sqrt{2})$ entsteht aus dem Körper $\mathbb{Q}$
+dadurch, dass man die Zahl $\sqrt{2}$ hinzufügt und alle erlaubten
+arithmetischen Operationen zulässt.
+Die Darstellung von Elementen von $\mathbb{Q}(\!\sqrt{2})$ als
+$a+b\sqrt{2}$ ist möglich, weil die Zahl $\alpha=\sqrt{2}$ die
+algebraische Relation
+\[
+\alpha^2-2 = \sqrt{2}^2 -2 = 0
+\]
+erfüllt.
+Voraussetzung für diese Aussage ist, dass es die Zahl $\sqrt{2}$ in einem
+geeigneten grösseren Körper gibt.
+Die reellen oder komplexen Zahlen bilden einen solchen Körper.
+Wir verallgemeinern diese Situation wie folgt.
+
+\begin{definition}
+Ist $K$ ein Körper, dann heisst ein Körper $L$ mit $K\subset L$ ein
+{\em Erweiterungskörper} von $K$.
+\index{Erweiterungskoerper@Erweiterungskörper}
+\end{definition}
+
+\begin{definition}
+\label{buch:integral:definition:algebraisch}
+Sei $K\subset L$ eine Körpererweiterung.
+Das Element $\alpha\in L$ heisst {\em algebraisch} über $K$, wenn es
+ein Polynom $p(x)\in K[x]$ gibt derart, dass $\alpha$ eine Nullstelle
+von $p(x)$ ist, also gibt mit $p(\alpha)=0$.
+Das normierte Polynom $m(x)$ geringsten Grades, welches $m(\alpha)=0$
+erfüllt, heisst das {\em Minimalpolynom} von $\alpha$.
+\index{Minimalpolynom}%
+\end{definition}
+
+Man sagt auch $\alpha$ ist algebraisch vom Grad $n$, wenn das Minimalpolynom
+den Grad $n$ hat.
+Wenn $\alpha\ne 0$ algebraisch ist, dann ist auch $1/\alpha$ algebraisch,
+wie das folgende Argument zeigt.
+Für das Minimalpolynom $m(x)$ von $\alpha$, ist $m(\alpha)=0$.
+Teilt man diese Gleichung durch $\alpha^n$ teilt, erhält man
+\[
+m_0\frac{1}{\alpha^n}
++
+m_1\frac{1}{\alpha^{n-1}}
++
+\ldots
++
+m_{n-1}\frac{1}{\alpha}
++
+1
+=
+0,
+\]
+das Polynom
+\[
+\hat{m}(x)
+=
+m_0x^n + m_1x^{n-1} + \ldots m_{n-1} x + 1
+\in
+K[x]
+\]
+hat also $\alpha^{-1}$ als Nullstelle.
+Das Polynom $\hat{m}(x)$ beweist daher, dass $\alpha^{-1}$ algebraisch ist.
+
+Die Zahl $\sqrt{2}\in\mathbb{R}$ ist also algebraisch über $\mathbb{Q}$
+und jede andere Quadratwurzel von Elementen von $\mathbb{Q}$ ist
+ebenfalls algebraisch über $\mathbb{Q}$.
+Auch der Körper $\mathbb{Q}(\alpha)$ kann für jede andere Quadratwurzel
+auf die genau gleiche Art wie für $\sqrt{2}$ konstruiert werden.
+
+\begin{definition}
+\label{buch:integral:definition:algebraischeerweiterung}
+Sei $K\subset L$ eine Körpererweiterung und $\alpha\in L$ ein algebraisches
+Element mit Minimalpolynom $m(x)\in K[x]$.
+Dann heisst die Menge
+\begin{equation}
+K(\alpha)
+=
+\{
+a_0 + a_1\alpha + \ldots +a_n\alpha^n
+\;|\;
+a_i\in K
+\}
+\label{buch:integral:eqn:algelement}
+\end{equation}
+mit $n=\deg m(x) - 1$ der durch {\em Adjunktion} oder Hinzufügen
+von $\alpha$ erhaltene Erweiterungsköper.
+\end{definition}
+
+Wieder muss nur überprüft werden, dass jedes Produkt oder jeder
+Quotient von Ausdrücken der Form~\eqref{buch:integral:eqn:algelement}
+wieder in diese Form gebracht werden kann.
+Dazu sei
+\[
+m(x)
+=
+m_0+m_1x + m_2x^2
++\ldots +m_{n-1}x^{n-1} + x^n
+\]
+das Minimalpolynom von $\alpha$.
+Die Gleichung $m(\alpha)=0$ kann nach $\alpha^n$ aufgelöst werden und
+liefert
+\[
+\alpha^n = -m_0 - m_1\alpha - m_2\alpha^2 -\ldots -m_{n-1}\alpha^{n-1}.
+\]
+Damit kann jede Potenz von $\alpha$ mit einem Exponenten grösser als $n$
+in eine Linearkombination von Potenzen mit kleineren Exponenten
+reduziert werden.
+Ein Polynom in $\alpha$ kann also immer auf die
+Form~\eqref{buch:integral:eqn:algelement}
+gebracht werden.
+
+Es muss aber noch gezeigt werden, dass auch der Kehrwert eines Elements
+der Form~\eqref{buch:integral:eqn:algelement} in dieser Form geschrieben
+werden kann.
+Sei also $a(\alpha)$ so ein Element, dann sind die beiden Polynome
+$a(x)$ und $m(x)$ teilerfremd, der grösste gemeinsame Teiler ist $1$.
+Mit dem erweiterten euklidischen Algorithmus kann man zwei Polynome
+$s(x)$ und $t(x)$ finden derart, dass $s(x)a(x)+t(x)m(x)=1$.
+Setzt man $\alpha$ für $x$ ein, verschwindet das Minimalpolynom und
+es bleibt
+\[
+s(\alpha)a(\alpha) = 1
+\qquad\Rightarrow\qquad
+s(\alpha) = \frac{1}{a(\alpha)}.
+\]
+Damit ist $s(\alpha)$ eine Darstellung von $1/a(\alpha)$ in der
+Form~\eqref{buch:integral:eqn:algelement}.
+
+%
+% Komplexe Zahlen
+%
+\subsubsection{Komplexe Zahlen}
+Die imaginäre Einheit $i$ hat die Eigenschaft, dass $i^2=-1$, insbesondere
+ist sie Nullstelle des Polynoms $m(x)=x^2+1\in\mathbb{Q}[x]$.
+Die Menge $\mathbb{Q}(i)$ ist daher eine algebraische Körpererweiterung
+von $\mathbb{Q}$ bestehend aus den komplexen Zahlen mit rationalem
+Real- und Imaginärteil.
+
+%
+% Transzendente Körpererweiterungen
+%
+\subsubsection{Transzendente Erweiterungen}
+Nicht alle Zahlen in $\mathbb{R}$ sind algebraisch.
+Lindemann bewies 1882 einen allgemeinen Satz, aus dem folgt,
+dass $\pi$ und $e$ nicht algebraisch sind, es gibt also
+kein Polynom mit rationalen Koeffizienten, welches $\pi$
+oder $e$ als Nullstelle hat.
+
+\begin{definition}
+Eine Zahl $\alpha\in L$ in einer Körpererweiterung $K\subset L$
+heisst {\em transzendent}, wenn $\alpha$ nicht algebraisch ist,
+wenn es also kein Polynom in $K[x]$ gibt, welches $\alpha$ als
+Nullstelle hat.
+\end{definition}
+
+Die Zahlen $\pi$ und $e$ sind also transzendent.
+Eine andere Art, diese Eigenschaft zu beschreiben ist zu sagen,
+dass die Potenzen
+\[
+1=\pi^0, \pi, \pi^2,\pi^3,\dots
+\]
+linear unabhängig sind.
+Gäbe es nämlich eine lineare Abhängigkeit, dann gäbe es Koeffizienten
+$l_i$ derart, dass
+\[
+l_0 + l_1\pi^1 + l_2\pi^2 + \ldots + l_{n-1}\pi^{n-1} + l_{n}\pi^n = l(\pi)=0,
+\]
+und damit wäre dann ein Polynom gefunden, welches $\pi$ als Nullstelle hat.
+
+Selbstverstländlich kann man zu einem transzendenten Element $\alpha$
+immer noch einen Körper konstruieren, der alle Zahlen enthält, welche man
+mit den arithmetischen Operationen aus $\alpha$ bilden kann.
+Man kann ihn schreiben als
+\[
+K(\alpha)
+=
+\biggl\{
+\frac{p(\alpha)}{q(\alpha)}
+\;\bigg|\;
+p(x),q(x)\in K[x] \wedge p(x)\ne 0
+\biggr\},
+\]
+aber die Vereinfachungen zur
+Form~\eqref{buch:integral:eqn:algelement}, die bei einem algebraischen
+Element $\alpha$ möglich waren, können jetzt nicht mehr durchgeführt
+werden.
+$K\subset K(\alpha)$ ist zwar immer noch eine Körpererweiterung, aber
+$K(\alpha)$ ist nicht mehr ein endlichdimensionaler Vektorraum.
+Die Körpererweiterung $K\subset K(\alpha)$ heisst {\em transzendent}.
+
+%
% rationale Funktionen als Körpererweiterungen
+%
+\subsubsection{Rationale Funktionen als Körpererweiterung}
+Die unabhängige Variable wird bei Rechnen so behandelt, dass die
+Potenzen alle linear unabhängig sind.
+Dies ist die Grundlage für den Koeffizientenvergleich.
+Der Körper der rationalen Funktion $K(x)$
+ist also eine transzendente Körpererweiterung von $K$.
+
+%
% Erweiterungen mit algebraischen Funktionen
%
+\subsubsection{Algebraische Funktionen}
+Für das Integrationsproblem möchten wir nicht nur rationale Funktionen
+verwenden können, sondern auch Wurzelfunktionen.
+Wir möchten also zum Beispiel auch mit der Funktion $\sqrt{ax^2+bx+c}$
+und allem, was man mit arithmetischen Operationen daraus machen kann,
+arbeiten können.
+Eine Körpererweiterung, die $\sqrt{ax^2+bx+c}$ enthält, enthält auch
+alles, was man daraus bilden kann.
+Doch wie bekommen wir die Funktion $\sqrt{ax^2+bx+c}$ in den Körper?
+
+Die Art und Weise, wie man Wurzeln in der Schule kennenlernt ist als
+eine neue Operation, die zu einer Zahl die Quadratwurzel liefert.
+Diese Idee, den Körper mit einer weiteren Funktion anzureichern,
+führt über nicht auf eine nützliche neue algebraische Struktur.
+Wir dürfen daher $\sqrt{ax^2+bx+c}$ nicht als die Zusammensetzung
+einer einzelnen neuen Funktion $\sqrt{\phantom{A}}$ mit
+einem Polynom betrachten.
+
+Die Wurzel $\sqrt{ax^2+bx+c}$ ist aber auch die Nullstelle des Polynoms
+\[
+p(z)
+=
+z^2 - [ax^2+bx+c]
+\in
+K(x)[z]
+\]
+mit Koeffizienten in $K(x)$.
+Die eckigen Klammern sollen helfen, die Koeffizienten in $K(x)$
+zu erkennen.
+Die Funktion $\sqrt{ax^2+bx+c}$ ist also algebraisch über $K(x)$.
+Einen Funktionenkörper, der die Funktion enthält, kann man also erhalten,
+indem man den Körper $K(x)$ um das über $K(x)$ algebraische Element
+$y=\sqrt{ax^2+bx+c}$ zu $K(x,y)=K(x,\sqrt{ax^2+bx+c}$ erweitert.
+Wurzelfunktion werden daher nicht als Zusammensetzungen, sondern als
+algebraische Erweiterungen eines Funktionenkörpers betrachtet.
+
+%
+% Konjugation
+%
+\subsubsection{Konjugation}
+Die komplexen Zahlen sind die algebraische Erweiterung der reellen Zahlen
+um die Nullstelle $i$ des Polynoms $m(x)=x^2+1$.
+Die Zahl $-i$ ist aber auch eine Nullstelle von $m(x)$, die mit algebraischen
+Mitteln nicht von $i$ unterscheidbar ist.
+Die komplexe Konjugation $a+bi\mapsto a-bi$ vertauscht die beiden
+\index{Konjugation, komplexe}%
+\index{komplexe Konjugation}%
+Nullstellen des Minimalpolynoms.
+
+Ähnliches gilt für die Körpererweiterung $\mathbb{Q}(\!\sqrt{2})$.
+$\sqrt{2}$ und $\sqrt{2}$ sind beide Nullstellen des Minimalpolynoms
+$m(x)=x^2-2$, die mit algebraischen Mitteln nicht unterschiedbar sind.
+Sie haben zwar verschiedene Vorzeichen, doch ohne eine Ordnungsrelation
+können diese nicht unterschieden werden.
+\index{Ordnungsrelation}%
+Eine Ordnungsrelation zwischen rationalen Zahlen lässt sich zwar
+definieren, aber die Zahl $\sqrt{2}$ ist nicht rational, es braucht
+also eine zusätzliche Annahme, zum Beispiel die Identifikation von
+$\sqrt{2}$ mit einer reellen Zahl in $\mathbb{R}$, wo der Vergleich
+möglich ist.
+
+Auch in $\mathbb{Q}(\!\sqrt{2})$ ist die Konjugation
+$a+b\sqrt{2}\mapsto a-b\sqrt{2}$ eine Selbstabbildung, die
+die Körperoperationen respektiert.
+
+Das Polynom $m(x)=x^2-x-1$ hat die Nullstellen
+\[
+\frac12 \pm\sqrt{\biggl(\frac12\biggr)^2+1}
+=
+\frac{1\pm\sqrt{5}}{2}
+=
+\left\{
+\bgroup
+\renewcommand{\arraystretch}{2.20}
+\renewcommand{\arraycolsep}{2pt}
+\begin{array}{lcl}
+\displaystyle
+\frac{1+\sqrt{5}}{2} &=& \phantom{-}\varphi \\
+\displaystyle
+\frac{1-\sqrt{5}}{2} &=& \displaystyle-\frac{1}{\varphi}.
+\end{array}
+\egroup
+\right.
+\]
+Sie erfüllen die gleiche algebraische Relation $x^2=x+1$.
+Sie sind sowohl im Vorzeichen wie auch im absoluten Betrag
+verschieden, beides verlangt jedoch eine Ordnungsrelation als
+Voraussetzung, die uns fehlt.
+Aus beiden kann man mit rationalen Operationen $\sqrt{5}$ gewinnen,
+denn
+\[
+\sqrt{5}
+=
+4\varphi-1
+=
+-4\biggl(-\frac{1}{\varphi}\biggr)^2-1
+\qquad\Rightarrow\qquad
+\mathbb{Q}(\!\sqrt{5})
+=
+\mathbb{Q}(\varphi)
+=
+\mathbb{Q}(-1/\varphi).
+\]
+Die Abbildung $a+b\varphi\mapsto a-b/\varphi$ ist eine Selbstabbildung
+des Körpers $\mathbb{Q}(\!\sqrt{5})$, welche die beiden Nullstellen
+vertauscht.
+
+Dieses Phänomen gilt für jede algebraische Erweiterung.
+Die Nullstellen des Minimalpolynoms, welches die Erweiterung
+definiert, sind grundsätzlich nicht unterscheidbar.
+Mit der Adjunktion einer Nullstelle enthält der Erweiterungskörper
+auch alle anderen.
+Sind $\alpha_1$ und $\alpha_2$ zwei Nullstellen des Minimalpolynoms,
+dann definiert die Abbildung $\alpha_1\mapsto\alpha_2$ eine Selbstabbildung,
+die die Nullstellen permutiert.
+
+Die algebraische Körpererweiterung
+$\mathbb{Q}(x)\subset \mathbb{Q}(x,\sqrt{ax^2+bx+c})$
+ist nicht unterscheidbar von
+$\mathbb{Q}(x)\subset \mathbb{Q}(x,-\!\sqrt{ax^2+bx+c})$.
+Für das Integrationsproblem bedeutet dies, dass alle Methoden so
+formuliert werden müssen, dass die Wahl der Nullstellen auf die
+Lösung keinen Einfluss haben.
+
+
diff --git a/buch/chapters/060-integral/logexp.tex b/buch/chapters/060-integral/logexp.tex
index 7cbb906..e0efab2 100644
--- a/buch/chapters/060-integral/logexp.tex
+++ b/buch/chapters/060-integral/logexp.tex
@@ -3,7 +3,7 @@
%
% (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschlue
%
-\subsection{Log-Exp-Notation für elementare Funktionen
+\subsection{Log-Exp-Notation für trigonometrische und hyperbolische Funktionen
\label{buch:integral:subsection:logexp}}
Die Integration rationaler Funktionen hat bereits gezeigt, dass
eine Stammfunktion nicht immer im Körper der rationalen Funktionen
@@ -13,15 +13,134 @@ $\log(x-\alpha)$ hinzuzufügen.
Es können jedoch noch ganz andere neue Funktionen auftreten, wie die
folgende Zusammenstellung einiger Stammfunktionen zeigt:
-\begin{align*}
+\begin{equation}
+\begin{aligned}
\int\frac{dx}{1+x^2}
&=
-\arctan x
+\arctan x,
\\
-\end{align*}
-
-
+\int \cos x\,dx
+&=
+\sin x,
+\\
+\int\frac{dx}{\sqrt{1-x^2}}
+&=
+\arcsin x,
+\\
+\int
+\operatorname{arcosh} x\,dx
+&=
+x \operatorname{arcosh} x - \sqrt{x^2-1}.
+\end{aligned}
+\label{buch:integration:risch:allgform}
+\end{equation}
+In der Stammfunktion treten Funktionen auf, die auf den ersten
+Blick nichts mit den Funktionen im Integranden zu tun haben.
+\subsubsection{Trigonometrische und hyperbolische Funktionen}
+Die trigonometrischen und hyperbolichen Funktionen
+in~\eqref{buch:integration:risch:allgform}
+lassen sich alle durch Exponentialfunktionen ausdrücken.
+So gilt
+\begin{equation}
+\begin{aligned}
+\sin x &= \frac{1}{2i}\bigl( e^{ix} - e^{-ix}\bigr),
+&
+&\qquad&
+\cos x &= \frac{1}{2}\bigl( e^{ix} + e^{-ix}\bigr),
+\\
+\sinh x &= \frac12\bigl( e^x - e^{-x} \bigr),
+&
+&\qquad&
+\cosh x &= \frac12\bigl( e^x + e^{-x} \bigr).
+\end{aligned}
+\label{buch:integral:risch:trighyp}
+\end{equation}
+Nach Multiplikation mit $e^{ix}$ bzw.~$e^{x}$ entsteht eine
+quadratische Gleichung in $e^{ix}$ bzw.~$e^{x}$.
+Die Lösungsformel für quadratische Gleichungen erlaubt daher, $e^{ix}$
+bzw.~$e^{x}$ zu finden und damit auch die Umkehrfunktionen.
+Die Rechnung ergibt
+\begin{equation}
+\begin{aligned}
+\arcsin y
+&=
+\frac{1}{i}\log\bigl(
+iy\pm\sqrt{1-y^2}
+\bigr),
+&
+&\qquad&
+\arccos y
+&=
+\log\bigl(
+y\pm \sqrt{y^2-1}
+\bigr),
+\\
+\operatorname{arsinh}y
+&=
+\log\bigl(
+y \pm \sqrt{1+y^2}
+\bigr),
+&
+&\qquad&
+\operatorname{arcosh} y
+&=
+\log\bigl(
+y\pm \sqrt{y^2-1}
+\bigr).
+\end{aligned}
+\label{buch:integral:risch:trighypinv}
+\end{equation}
+Alle Funktionen, die man aus dem elementaren Analysisunterricht
+kennt, können also mit Hilfe von Exponentialfunktionen und Logarithmen
+geschrieben werden.
+Man nennt dies die $\log$-$\exp$-Notation der trigonometrischen
+und hyperbolischen Funktionen.
+\index{logexpnotation@$\log$-$\exp$-Notation}%
+\subsubsection{$\log$-$\exp$-Notation}
+Wendet man die Substitutionen
+\eqref{buch:integral:risch:trighyp}
+und
+\eqref{buch:integral:risch:trighypinv}
+auf die Integrale
+\eqref{buch:integration:risch:allgform}
+an, entstehen die Beziehungen
+\begin{equation}
+\begin{aligned}
+\int\frac{1}{1+x^2}
+&=
+\frac12i\bigl(
+\log(1-ix) - \log(1+ix)
+\bigr),
+\\
+\int\bigl(
+{\textstyle\frac12}
+e^{ix}
++
+{\textstyle\frac12}
+e^{-ix}
+\bigr)
+&=
+-{\textstyle\frac12}ie^{ix}
++{\textstyle\frac12}ie^{-ix},
+\\
+\int
+\frac{1}{\sqrt{1-x^2}}
+&=
+-i\log\bigl(ix+\sqrt{1-x^2}),
+\\
+\int \log\bigl(x+\sqrt{x^2-1}\bigr)
+&=
+x\log\bigl(x+\sqrt{x^2-1}\bigr) - \sqrt{x^2-1}.
+\end{aligned}
+\label{buch:integration:risch:eqn:integralbeispiel2}
+\end{equation}
+Die in den Stammfuntionen auftretenden Funktionen treten entweder
+schon im Integranden auf oder sind Logarithmen von solchen
+Funktionen.
+Zum Beispiel hat der Nenner im ersten Integral die Faktorisierung
+$1+x^2=(1+ix)(1-ix)$, in der Stammfunktion findet man die Logarithmen
+der Faktoren.
diff --git a/buch/chapters/060-integral/rational.tex b/buch/chapters/060-integral/rational.tex
index 19f2ad9..0ca164d 100644
--- a/buch/chapters/060-integral/rational.tex
+++ b/buch/chapters/060-integral/rational.tex
@@ -5,4 +5,199 @@
%
\subsection{Rationale Funktionen und Funktionenkörper
\label{buch:integral:subsection:rational}}
+Welche Funktionen sollen als Antwort auf die Frage nach einer Stammfunktion
+akzeptiert werden?
+Polynome in der unabhängigen Variablen $x$ sollten sicher dazu gehören,
+also alles, was man mit Hilfe der Multiplikation, Addition und Subtraktion
+aus Koeffizienten zum Beispiel in den rationalen Zahlen $\mathbb{Q}$ und
+der unabhängigen Variablen aufbauen kann.
+Doch welche weiteren Operationen sollen zugelassen werden und was lässt
+sich über die entstehende Funktionenmenge aussagen?
+
+\subsubsection{Körper}
+Die kleinste Zahlenmenge, in der alle arithmetischen Operationen soweit
+sinnvoll durchgeführt werden können, ist die Menge $\mathbb{Q}$ der
+rationalen Zahlen.
+Etwas formaler ist eine solche Menge, in der die Arithmetik uneingeschränkt
+ausgeführt werden kann, ein Körper gemäss der folgenden Definition.
+\index{Korper@Körper}%
+
+\begin{definition}
+\label{buch:integral:definition:koerper}
+Eine {\em Körper} ist eine Menge $K$ mit zwei Verknüpfungen $+$, die Addition,
+und $\cdot$, die Multiplikation,
+welche die folgenden Eigenschaften haben.
+\begin{center}
+\renewcommand{\tabcolsep}{0pt}
+\begin{tabular}{p{68mm}p{4mm}p{68mm}}
+%Eigenschaften der
+Addition:
+\begin{enumerate}[{\bf A}.1)]
+\item assoziativ: $(a+b)+c=a+(b+c)$
+für alle $a,b,c\in K$
+\item kommutativ: $a+b=b+a$
+für alle $a,b\in K$
+\item Neutrales Element der Addition: es gibt ein Element $0\in K$ mit
+der Eigenschaft $a+0=a$ für alle $a\in K$
+\item Additiv inverses Element: zu jedem Element $a\in K$ gibt es das Element
+$-a$ mit der Eigenschaft $a+(-a)=0$.
+\end{enumerate}
+&&%
+%Eigenschaften der
+Multiplikation:
+\begin{enumerate}[{\bf M}.1)]
+\item assoziativ: $(a\cdot b)\cdot c=a\cdot (b\cdot c)$
+für alle $a,b,c\in K$
+\index{Assoziativgesetz}%
+\index{assoziativ}%
+\item kommutativ: $a\cdot b=b\cdot a$
+für alle $a,b\in K$
+\index{Kommutativgesetz}%
+\index{kommutativ}%
+\item Neutrales Element der Multiplikation: es gibt ein Element $1\in K$ mit
+der Eigenschaft $a\cdot 1 =a$ für alle $a\in K$
+\index{neutrales Element}%
+\item Multiplikativ inverses Element: zu jedem Element
+\index{inverses Element}%
+$a\in K^*=K\setminus\{0\}$
+gibt es das Element $a^{-1}$ mit der Eigenschaft $a\cdot a^{-1}=1$.
+\index{Einheitengruppe}%
+\index{Gruppe der invertierbaren Elemente}%
+\end{enumerate}
+\end{tabular}
+\end{center}
+\vspace{-22pt}
+Ausserdem gilt das Distributivgesetz: für alle $a,b,c\in K$ gilt
+$a\cdot(b+c)=a\cdot b + a\cdot c$.
+\index{Disitributivgesetz}%
+Die Menge $K^*$ heisst auch die {\em Einheitengruppe} oder die
+{\em Gruppe der invertierbaren Elemente} des Körpers.
+\end{definition}
+
+Das Assoziativgesetz {\bf A}.1 besagt, dass Summen mit beliebig
+vielen Termen ohne Klammern geschrieben werden kann, weil es nicht
+darauf ankommt, in welcher Reihenfolge die Additionen ausgeführt werden.
+Ebenso für das Assoziativgesetz {\bf M}.1 der Multiplikation.
+Die Kommutativgesetze {\bf A}.2 und {\bf M}.2 implizieren, dass man
+nicht auf die Reihenfolge der Summanden oder Faktoren achten muss.
+Das Distributivgesetz schliesslich besagt, dass man Produkte ausmultiplizieren
+oder gemeinsame Faktoren ausklammern kann, wie man es in der Schule
+gelernt hat.
+
+Die rellen Zahlen $\mathbb{R}$ und die komplexen Zahlen $\mathbb{C}$
+bilden ebenfalls einen Körper, die von den rationalen Zahlen geerbten
+Eigenschaften der Verknüpfungen setzen sich auf $\mathbb{R}$ und
+$\mathbb{C}$ fort.
+Es lassen sich allerdings auch Zahlkörper zwischen $\mathbb{Q}$ und
+$\mathbb{R}$ konstruieren, wie das folgende Beispiel zeigt.
+
+\begin{beispiel}
+\label{buch:integral:beispiel:Qsqrt2}
+Die Menge
+\[
+\mathbb{Q}(\!\sqrt{2})
+=
+\{
+a+b\sqrt{2}
+\;|\;
+a,b\in \mathbb{Q}
+\}
+\]
+ist eine Teilmenge von $\mathbb{R}$.
+Die Rechenoperationen haben alle verlangten Eigenschaften, wenn gezeigt
+werden kann, dass Produkte und Quotienten von Zahlen in $\mathbb{Q}(\!\sqrt{2})$
+wieder in $\mathbb{Q}(\!\sqrt{2})$ sind.
+Dazu rechnet man
+\begin{align*}
+(a+b\sqrt{2})
+(c+d\sqrt{2})
+&=
+ac + 2bd + (ad+bc)\sqrt{2} \in \mathbb{Q}(\!\sqrt{2})
+\intertext{und}
+\frac{a+b\sqrt{2}}{c+d\sqrt{2}}
+&=
+\frac{a+b\sqrt{2}}{c+d\sqrt{2}}
+\cdot
+\frac{c-d\sqrt{2}}{c-d\sqrt{2}}
+=
+\frac{ac-2bd +(-ad+bc)\sqrt{2}}{c^2-2d^2}
+\\
+&=
+\underbrace{\frac{ac-2bd}{c^2-2d^2}}_{\displaystyle\in\mathbb{Q}}
++
+\underbrace{\frac{-ad+bc}{c^2-2d^2}}_{\displaystyle\in\mathbb{Q}}
+\sqrt{2}
+\in \mathbb{Q}(\!\sqrt{2}).
+\qedhere
+\end{align*}
+\end{beispiel}
+
+%
+% Rationale Funktionen
+%
+\subsubsection{Rationalen Funktionen}
+Die als Antworten auf die Frage nach einer Stammfunktion akzeptablen
+Funktionen sollten alle rationalen Zahlen sowie die unabhängige
+Variable $x$ enthalten.
+Ausserdem sollte man beliebige arithmetische Operationen mit
+diesen Ausdrücken durchführen können.
+Mit Addition, Subtraktion und Multiplikation entstehen aus den
+rationalen Zahlen und der unabhängigen Variablen die Polynome $\mathbb{Q}[x]$
+(siehe auch Abschnitt~\ref{buch:potenzen:section:polynome}).
+
+
+\begin{definition}
+Die Menge
+\[
+\mathbb{Q}(x)
+=
+\biggl\{
+\frac{p(x)}{q(x)}
+\;\bigg|\;
+p(x),q(x)\in\mathbb{Q}[x]
+\wedge
+q(x)\ne 0
+\biggr\},
+\]
+bestehend aus allen Quotienten von Polynomen, deren Nenner nicht
+das Nullpolynom ist, heisst der Körper der {\em rationalen Funktionen}
+\index{rationale Funktion}%
+mit Koeffizienten in $\mathbb{Q}$.
+\end{definition}
+
+Die Definition erlaubt, dass der Nenner Nullstellen hat, die sich in
+Polen der Funktion äussern.
+Die Eigenschaften eines Körpers sind sicher erfüllt, wenn wir uns
+nur davon überzeugen können,
+dass die arithmetischen Operationen nicht aus dieser Funktionenmenge
+herausführen.
+Dazu muss man nur verstehen, dass die Operation des gleichnamig Machens
+zweier Brüche auch für Nenner funktioniert, die Polynome sind, und die
+Summe wzeier Brüche von Polynomen wieder in einen Bruch von Polynomen
+umwandelt.
+
+%
+% Warum rationale Zahlen?
+%
+\subsubsection{Warum die Beschränkung auf rationale Zahlen?}
+Aus mathematischer Sicht gibt es gute Gründe, Analysis im Körper $\mathbb{R}$
+oder $\mathbb{C}$ zu betreiben.
+Da Ableitung und Integral als Grenzwerte definiert sind, stellt diese
+Wahl des Körpers sicher, dass die Grenzwerte auch tatsächlich existieren.
+Der Fundamentalsatz der Algebra garantiert, dass über $\mathbb{C}$
+jedes Polynome in Linearfaktoren zerlegt werden kann.
+
+Der Einfachheit der Analyse in $\mathbb{R}$ oder $\mathbb{C}$ steht
+die Schwierigkeit gegenüber, beliebige Elemente von $\mathbb{R}$ in
+einem Computer exakt darzustellen.
+Für Brüche in $\mathbb{Q}$ gibt es eine solche Darstellung durch
+Paare von Ganzzahlen, wie sie die GNU Multiprecision Arithmetic Library
+\cite{buch:gmp} realisiert.
+Irrationale Zahlen dagegen können nur exakt gehandhabt werden, wenn
+man im wesentlichen symbolisch mit ihnen rechnet.
+Die Grundlage dafür wird in
+Abschnitt~\ref{buch:integral:subsection:koerpererweiterungen}
+gelegt.
+
+
diff --git a/buch/chapters/060-integral/risch.tex b/buch/chapters/060-integral/risch.tex
index 1ba746a..2080ce8 100644
--- a/buch/chapters/060-integral/risch.tex
+++ b/buch/chapters/060-integral/risch.tex
@@ -6,6 +6,18 @@
\section{Der Risch-Algorithmus
\label{buch:integral:section:risch}}
\rhead{Risch-Algorithmus}
+Die Lösung des Integrationsproblem für $\mathbb{Q}(x)$ und für
+$\mathbb{Q}(x,y)$ mit $y=\!\sqrt{ax^2+bx+c}$ hat gezeigt, dass
+ein Differentialkörper genau die richtige Bühne für dieses Unterfangen
+sein dürfte.
+Die Stammfunktionen konnten in einem Erweiterungskörper gefunden
+werden, der ein paar Logarithmen hinzugefügt worden sind.
+Tatsächlich lässt sich in diesem Rahmen sogar ein Algorithmus
+formulieren, der in einem noch zu definierenden Sinn ``elementare''
+Funktionen als Stammfunktionen finden kann oder beweisen kann, dass
+eine solche nicht existiert.
+Dieser Abschnitt soll einen Überblick darüber geben.
+
\input{chapters/060-integral/logexp.tex}
\input{chapters/060-integral/elementar.tex}
diff --git a/buch/chapters/060-integral/sqrat.tex b/buch/chapters/060-integral/sqrat.tex
index 20f1ef7..787cfc9 100644
--- a/buch/chapters/060-integral/sqrat.tex
+++ b/buch/chapters/060-integral/sqrat.tex
@@ -331,13 +331,14 @@ Letzteres wird im nächsten Abschnitt berechnet.
% Das Integral von $1/y$
%
\subsubsection{Das Integral von $1/y$}
-Eine Stammfunktion von $1/y$ kann mit etwas Geschick bekannten
-Interationstechnikgen gefunden werden.
+Eine Stammfunktion von $1/y$ kann mit etwas Geschick mit den
+Interationstechniken gefunden werden, die man in einem Analysis-Kurs
+lernt.
Durch Ableitung der Funktion
\[
F
=
-\frac{1}{\sqrt{a}}\log\biggl(x+\frac{b}{2a}+\frac{y}{\sqrt{y}}\biggr)
+\frac{1}{\sqrt{a}}\log\biggl(x+\frac{b}{2a}+\frac{y}{\sqrt{a}}\biggr)
\]
kann man nachprüfen, dass $F$ eine Stammfunktion von $1/y$ ist,
also
@@ -345,7 +346,7 @@ also
\int
\frac{1}{y}
=
-\frac{1}{\sqrt{a}}\log\biggl(x+\frac{b}{2a}+\frac{y}{\sqrt{y}}\biggr).
+\frac{1}{\sqrt{a}}\log\biggl(x+\frac{b}{2a}+\frac{y}{\sqrt{a}}\biggr).
\end{equation}
%
@@ -458,7 +459,7 @@ Form
=
v_0 +
C
-\log\biggl(x+\frac{b}{2a}+\frac{y}{\sqrt{y}}\biggr)
+\log\biggl(x+\frac{b}{2a}+\frac{y}{\sqrt{a}}\biggr)
+
\sum_{i=1}^n c_i
\log v_i,
@@ -471,7 +472,7 @@ die bei der Berechnung der Integrale \eqref{buch:integral:sqrat:eqn:2teart}
auftreten.
Insbesondere liefert die Rechnung eine Körpererweiterung von
$\mathcal{K}(x,y)$ um die logarithmische Funktionen
-$\log(x+b/2a+y/\sqrt{y})$ und $\log v_i$, in der $R(x,y)$ eine
+$\log(x+b/2a+y/\!\sqrt{y})$ und $\log v_i$, in der $R(x,y)$ eine
Stammfunktion hat.