aboutsummaryrefslogtreecommitdiffstats
path: root/buch/chapters/060-integral
diff options
context:
space:
mode:
Diffstat (limited to 'buch/chapters/060-integral')
-rw-r--r--buch/chapters/060-integral/Makefile.inc7
-rw-r--r--buch/chapters/060-integral/differentialkoerper.tex1972
-rw-r--r--buch/chapters/060-integral/differentialkoerper2.tex1953
-rw-r--r--buch/chapters/060-integral/diffke.tex237
-rw-r--r--buch/chapters/060-integral/elementar.tex214
-rw-r--r--buch/chapters/060-integral/erweiterungen.tex343
-rw-r--r--buch/chapters/060-integral/eulertransformation.tex2
-rw-r--r--buch/chapters/060-integral/experiments/rxy.maxima9
-rw-r--r--buch/chapters/060-integral/fehlerfunktion.tex4
-rw-r--r--buch/chapters/060-integral/iproblem.tex93
-rw-r--r--buch/chapters/060-integral/irat.tex140
-rw-r--r--buch/chapters/060-integral/logexp.tex146
-rw-r--r--buch/chapters/060-integral/rational.tex203
-rw-r--r--buch/chapters/060-integral/risch.tex13
-rw-r--r--buch/chapters/060-integral/sqrat.tex480
15 files changed, 3867 insertions, 1949 deletions
diff --git a/buch/chapters/060-integral/Makefile.inc b/buch/chapters/060-integral/Makefile.inc
index d85caad..e0dfc21 100644
--- a/buch/chapters/060-integral/Makefile.inc
+++ b/buch/chapters/060-integral/Makefile.inc
@@ -8,5 +8,12 @@ CHAPTERFILES += \
chapters/060-integral/fehlerfunktion.tex \
chapters/060-integral/eulertransformation.tex \
chapters/060-integral/differentialkoerper.tex \
+ chapters/060-integral/rational.tex \
+ chapters/060-integral/erweiterungen.tex \
+ chapters/060-integral/diffke.tex \
+ chapters/060-integral/irat.tex \
+ chapters/060-integral/sqratrat.tex \
chapters/060-integral/risch.tex \
+ chapters/060-integral/logexp.tex \
+ chapters/060-integral/elementar.tex \
chapters/060-integral/chapter.tex
diff --git a/buch/chapters/060-integral/differentialkoerper.tex b/buch/chapters/060-integral/differentialkoerper.tex
index f41d3ba..a112e33 100644
--- a/buch/chapters/060-integral/differentialkoerper.tex
+++ b/buch/chapters/060-integral/differentialkoerper.tex
@@ -1,1953 +1,29 @@
%
-% differentialalgebren.tex
+% differentialkoerper.tex
%
% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
%
-\section{Differentialkörper und der Satz von Liouville
+\section{Differentialkörper und das Integrationsproblem
\label{buch:integrale:section:dkoerper}}
-\rhead{Differentialkörper und der Satz von Liouville}
-Das Problem der Darstellbarkeit eines Integrals in geschlossener
-Form verlangt zunächst einmal nach einer Definition dessen, was man
-als ``geschlossene Form'' akzeptieren will.
-Die sogenannten {\em elementaren Funktionen} von
-Abschnitt~\ref{buch:integrale:section:elementar}
-bilden dafür den theoretischen Rahmen.
-Das Problem ist dann die Frage zu beantworten, ob ein Integral eine
-Stammfunktion hat, die eine elementare Funktion ist.
-Der Satz von Liouville von Abschnitt~\ref{buch:integrale:section:liouville}
-löst das Problem.
-
-\subsection{Eine Analogie
-\label{buch:integrale:section:analogie}}
-% XXX Analogie: Formel für Polynom-Nullstellen
-% XXX Stammfunktion als elementare Funktion
-Das Analysis-Problem, eine Stammfunktion zu finden, ist analog zum
-wohlbekannten algebraischen Problem, Nullstellen von Polynomen zu finden.
-Wir entwickeln diese Analogie in etwas mehr Detail, um zu sehen, ob man
-aus dem algebraischen Problem etwas über das Problem der Analysis
-lernen kann.
-
-Für ein Polynom $p(X) = a_nX^n+a_{n-1}X^{n-1}+\dots+a_1X+a_0\in\mathbb{C}[X]$
-mit Koeffizienten $a_k\in\mathbb{C}$ ist es sehr einfach, für jede beliebige
-komplexe Zahl $z\in\mathbb{C}$ den Wert $p(z)$ des Polynoms auszurechnen.
-Ein paar wenige Rechenregeln genügen dazu, man kann leicht einem Kind
-beibringen, mit einem Taschenrechner so einen Wert auszurechnen.
-
-Ähnlich sieht es mit der Ableitungsoperation aus.
-Einige wenige Ableitungsregeln, die man in der Analysis~I lernt,
-erlauben, auf mehr oder weniger mechanische Art und Weise, jede
-beliebige Funktion abzuleiten.
-Man kann auch leicht einen Computer dazu programmieren, solche Ableitungen
-symbolisch zu berechnen.
-
-Aus dem Fundamentalsatz der Algebra, der von Gauss vollständig bewiesen
-wurde, ist bekannt, dass jedes Polynom mit Koeffizienten in $\mathbb{C}$
-genau so viele Lösungen in $\mathbb{C}$, wie der Grad des Polynoms angibt.
-Dies ist aber ein Existenzsatz, er sagt nichts darüber aus, wie man diese
-Lösungen finden kann.
-In Spezialfällen, wie zum Beispiel für quadratische Polynome, gibt
-es spezialsierte Lösungsverfahren, mit denen man Lösungen angeben kann.
-Natürlich existieren numerische Methoden wie zum Beispiel das
-Newton-Verfahren, mit dem man Nullstellen von Polynomen beliebig genau
-bestimmen kann.
-
-Der Fundamentalsatz der Integralrechnung besagt, dass jede stetige
-Funktion eine Stammfunktion hat, die bis auf eine Konstante eindeutig
-bestimmt ist.
-Auch dieser Existenzsatz gibt keinerlei Hinweise darauf, wie man die
-Stammfunktion finden kann.
-In der Analysis-Vorlesung lernt man viele Tricks, die in einer
-beindruckenden Zahl von Spezialfällen ermöglichen, ein passende
-Funktion anzugeben.
-Man lernt auch numerische Verfahren kennen, mit denen sich Werte der
-Stammfunktion, also bestimmte Integrale, mit beliebiger Genauigkeit
-finden kann.
-
-Die numerische Lösung des Nullstellenproblems ist insofern unbefriedigend,
-als sie nur schwer eine Diskussion der Abhängigkeit der Nullstellen von
-den Koeffizienten des Polynoms ermöglichen.
-Eine Formel wie die Lösungsformel für die quadratische Gleichung
-stellt genau für solche Fälle ein ideales Werkzeug bereit.
-Was man sich also wünscht ist nicht nur einfach eine Lösung, sondern eine
-einfache Formel zur Bestimmung aller Lösungen.
-Im Zusammenhang mit algebraischen Gleichungen erwartet man eine Formel,
-in der nur arithmetische Operationen und Wurzeln vorkommen.
-Für quadratische Gleichungen ist so eine Formel seit dem Altertum bekannt,
-Formeln für die kubische Gleichung und die Gleichung vierten Grades wurden
-im 16.~Jahrhundert von Cardano bzw.~Ferrari gefunden.
-Erst viel später haben Abel und Ruffini gezeigt, dass so eine allgemeine
-Formel für Polynome höheren Grades als 4 nicht existiert.
-Die Galois-Theorie, die auf den Ideen von Évariste Galois beruht,
-stellt eine vollständige Theorie unter anderem für die Lösbarkeit
-von Gleichungen durch Wurzelausdrücke dar.
-
-Numerische Integralwerte haben ebenfalls den Nachteil, dass damit
-Diskussionen wie die Abhängigkeit von Parametern eines Integranden
-nur schwer möglich sind.
-Was man sich daher wünscht ist eine Formel für die Stammfunktion,
-die Werte als Zusammensetzung gut bekannter Funktionen wie der Exponential-
-und Logarithmus-Funktionen oder der trigonometrischen Funktionen
-sowie Wurzeln, Potenzen und den arithmetischen Operationen.
-Man sagt, man möchte die Stammfunktion in ``geschlossener Form''
-dargestellt haben.
-Tatsächlich ist dieses Problem auch zu Beginn des 19.~Jahrhunderts
-von Joseph Liouville genauer untersucht worden.
-Er hat zunächst eine Klasse von ``elementaren Funktionen'' definiert,
-die als Darstellungen einer Stammfunktion in Frage kommen.
-Der Satz von Liouville besagt dann, dass nur Funktionen mit einer
-ganz speziellen Form eine elementare Stammfunktion haben.
-Damit wird es möglich, zu entscheiden, ob ein Integrand wie $e^{-x^2}$
-eine elementare Stammfunktion hat.
-Seit dieser Zeit weiss man zum Beispiel, dass die Fehlerfunktion nicht
-mit den bekannten Funktionen dargestellt werden kann.
-
-Mit dem Aufkommen der Computer und vor allem der Computer-Algebra-System (CAS)
-wurde die Frage nach der Bestimmung einer Stammfunktion erneut aktuell.
-Die ebenfalls weiter entwickelte abstrakte Algebra hat ermöglicht, die
-Ideen von Liouville in eine erweiterte, sogenannte differentielle
-Galois-Theorie zu verpacken, die eine vollständige Lösung des Problems
-darstellt.
-Robert Henry Risch hat in den Sechzigerjahren auf dieser Basis
-einen Algorithmus entwickelt, mit dem es möglich wird, zu entscheiden,
-ob eine Funktion eine elementare Stammfunktion hat und diese
-gegebenenfalls auch zu finden.
-Moderne CAS implementieren diesen Algorithmus
-in Teilen, besonders weit zu gehen scheint das quelloffene System
-Axiom.
-
-Der Risch-Algorithmus hat allerdings eine Achillesferse: er benötigt
-eine Method zu entscheiden, ob zwei Ausdrücke übereinstimmen.
-Dies ist jedoch ein im Allgemeinen nicht entscheidbares Problem.
-Moderne CAS treiben einigen Aufwand, um die
-Gleichheit von Ausdrücken zu entscheiden, sie können das Problem
-aber grundsätzlich nicht vollständig lösen.
-Damit kann der Risch-Algorithmus in praktischen Anwendungen das
-Stammfunktionsproblem ebenfalls nur mit Einschränkungen lösen,
-die durch die Fähigkeiten des Ausdrucksvergleichs in einem CAS
-gesetzt werden.
-
-Im Folgenden sollen elementare Funktionen definiert werden, es sollen
-die Grundideen der differentiellen Galois-Theorie zusammengetragen werden
-und der Satz von Liouvill vorgestellt werden.
-An Hand der Fehler-Funktion soll dann gezeigt werden, wie man jetzt
-einsehen kann, dass die Fehlerfunktion nicht elementar darstellbar ist.
-Im nächsten Abschnitt dann soll der Risch-Algorithmus skizziert werden.
-
-\subsection{Elementare Funktionen
-\label{buch:integrale:section:elementar}}
-Es soll die Frage beantwortet werden, welche Stammfunktionen sich
-in ``geschlossener Form'' oder durch ``wohlbekannte Funktionen''
-ausdrücken lassen.
-Welche Funktionen dabei als ``wohlbekannt'' gelten dürfen ist
-ziemlich willkürlich.
-Sicher möchte man Potenzen und Wurzeln, Logarithmus und Exponentialfunktion,
-aber auch die trigonometrischen Funktionen dazu zählen dürfen.
-Ausserdem will man beliebig mit den arithmetischen Operationen
-rechnen.
-So entsteht die Menge der Funktionen, die man ``elementar'' nennen
-will.
-
-In der Menge der elementaren Funktionen möchte man jetzt
-Stammfunktionen ausgewählter Funktionen suchen.
-Dazu muss man von jeder Funktion ihre Ableitung kennen.
-Die Ableitungsoperation macht aus der Funktionenmenge eine
-differentielle Algebra.
-Der Satz von Liouville (Satz~\ref{buch:integrale:satz:liouville1})
-liefert Bedingungen, die erfüllt sein müssen, wenn eine Funktion
-eine elementare Stammfunktion hat.
-Sind diese Bedingungen nicht erfüllbar, ist auch keine
-elementare Stammfunktion möglich.
-
-In den folgenden Abschnitten soll die differentielle Algebra
-der elementaren Funktionen konstruiert werden.
-
-\subsubsection{Körper}
-Die einfachsten Funktionen sind die die Konstanten, für die wir
-für die nachfolgenden Betrachtungen fast immer die komplexen Zahlen
-$\mathbb{C}$
-zu Grunde legen wollen.
-Dabei ist vor allem wichtig, dass sich darin alle arithmetischen
-Operationen durchführen lassen mit der einzigen Ausnahme, dass
-nicht durch $0$ dividiert werden darf.
-Man nennt $\mathbb{C}$ daher ein {\em Körper}.
-\index{Körper}%
-\label{buch:integrale:def:koerper}
-
-\subsubsection{Polynome und rationale Funktionen}
-Die Polynome einer Variablen beschreiben eine Menge von
-Funktionen, in der Addition, Subtraktion, Multiplikation
-von Funktionen und Multiplikation mit komplexen Zahlen
-uneingeschränkt möglich ist.
-Wir bezeichen wie früher die Menge der Polynome in $z$ mit
-$\mathbb{C}[z]$.
-
-Die Division ist erst möglich, wenn man beliebige Brüche
-zulässt, deren Zähler und Nenner Polynome sind.
-Die Menge
-\[
-\mathbb{C}(z)
-=
-\biggl\{
-\frac{p(z)}{q(z)}
-\;\bigg|\;
-p,q\in \mathbb{C}[z]
-\biggr\}
-\]
-heisst die Menge der {\em rationalen Funktionen}.
-\label{buch:integrale:def:rationalefunktion}
-\index{Funktion, rationale}%
-\index{rationale Funktion}%
-In ihr sind jetzt alle arithmetischen Operationen ausführbar
-ausser natürlich die Division durch die Nullfunktion.
-Die rationalen Funktionen bilden also wieder eine Körper.
-
-Die Tatsache, dass die rationalen Funktionen einen Körper
-bilden bedeutet auch, dass die Konstruktion erneut durchgeführt
-werden kann.
-Ausgehend von einem beliebigen Körper $K$ können wieder zunächst
-die Polynome $K[X]$ und anschliesen die rationalen Funktionen $K[X]$
-in der neuen Variablen, jetzt aber mit Koeffizienten in $K$
-gebildet werden.
-So entstehen Funktionen von mehreren Variablen und, indem
-wir für die neue Variable $X$ zum Beispiel die im übernächsten
-Abschnitt betrachtete Wurzel $X=\sqrt{z}$
-einsetzen, rationale Funktionen in $z$ und $\sqrt{z}$.
-
-Solche Funktionenkörper werden im folgenden mit geschweiften
-Buchstaben $\mathscr{D}$ bezeichnet.
-\index{Funktionenkörper}%
-
-\subsubsection{Ableitungsoperation}
-In allen Untersuchungen soll immer die Ableitungsoperation
-mit berücksichtigt werden.
-In unserer Betrachtungsweise spielt es keine Rolle, dass die
-Ableitung aus einem Grenzwert entsteht, es sind nur die algebraischen
-Eigenschaften wichtig.
-Diese sind in der folgenden Definition zusammengefasst.
-
-\begin{definition}
-\label{buch:integrale:def:derivation}
-Ein {\em Ableitungsoperator} oder eine {\em Derivation} einer Algebra
-$\mathscr{D}$ von Funktionen ist eine lineare Abbildung
-\[
-\frac{d}{dz}
-\colon \mathscr{D} \to \mathscr{D}
-:
-f \mapsto \frac{df}{dz} = f',
-\]
-die zusätzlich die Produktregel
-\begin{equation}
-\frac{d}{dz} (fg)
-=
-\frac{df}{dz} \cdot g + f \cdot \frac{dg}{dz}
-\qquad\Leftrightarrow\qquad
-(fg)' = f' g + fg'
-\label{buch:integrale:eqn:produktregel}
-\end{equation}
-\index{Produktregel}%
-erfüllt.
-Die Funktion $f'\in \mathscr{D}$ heisst auch die {\em Ableitung}
-von $f\in\mathscr{D}$.
-\index{Derivation}%
-\index{Ableitungsoperator}%
-\index{Ableitung}%
-\end{definition}
-
-Die Produktregel hat zum Beispiel auch die bekannten Quotientenregel
-zur Folge.
-Dazu betrachten wir das Produkt $f= (f/g)\cdot g$ und leiten es mit
-Hilfe der Produktregel ab:
-\[
-\frac{d}{dz}f
-=
-\frac{d}{dz}
-\biggl(
-\frac{f}{g}\cdot g
-\biggr)
-=
-{\color{darkred}
-\frac{d}{dz}
-\biggl(
-\frac{f}{g}
-\biggr)}
-\cdot g
-+
-\frac{f}{g}\cdot \frac{d}{dz}g.
-\]
-Jetzt lösen wir nach der {\color{darkred}roten} Ableitung des Quotienten
-auf und erhalten
-\begin{equation}
-\biggl(\frac{f}{g}\biggr)'
-=
-\frac{d}{dz}\biggl(\frac{f}{g}\biggr)
-=
-\frac1g\biggl(
-\frac{d}{dz}f - \frac{f}{g}\cdot \frac{d}{dz}g
-\biggr)
-=
-\frac{1}{g}
-\biggl(
-f'-\frac{fg'}{g}
-\biggr)
-=
-\frac{f'g-fg'}{g^2}.
-\label{buch:integrale:eqn:quotientenregel}
-\end{equation}
-Dies ist die Quotientenregel.
-
-Aus der Produktregel folgt natürlich sofort auch die Potenzregel
-für die Ableitung der $n$ten Potenz einer Funktion $f\in\mathscr{D}$,
-sie lautet:
-\begin{equation}
-\frac{d}{dz} f^n
-=
-\underbrace{
-f'f^{n-1} + ff'f^{n-2} + f^2f'f^{n-3}+\dots f^{n-1}f'
-}_{\displaystyle \text{$n$ Terme}}
-=
-nf^{n-1}f'.
-\label{buch:integrale:eqn:potenzregel}
-\end{equation}
-In dieser Form versteckt sich natürlich auch die Kettenregel, die
-Potenzfunktion ist die äussere Funktion, $f$ die innere, $f'$ ist also
-die Ableitung er inneren Funktion, wie in der Kettenregel verlangt.
-Falls $f$ ein Element von $\mathscr{D}$ ist mit der Eigenschaft
-$df/dz=1$, dann entsteht die übliche Produktregel.
-
-\begin{definition}
-Eine Algebra $\mathscr{D}$ von Funktionen mit einem Ableitungsoperator
-$d/dz$ heisst eine {\em differentielle Algebra}.
-\index{differentielle Algebra}%
-\index{Algebra, differentielle}%
-In einer differentiellen Algebra gelten die üblichen
-Ableitungsregeln.
-\end{definition}
-
-Die Potenzregel war in der Form~\eqref{buch:integrale:eqn:potenzregel}
-geschrieben worden, nicht als die Ableitung von $z$.
-Der Grund dafür ist, dass wir gar nicht voraussetzen wollen, dass in
-unserer differentiellen Algebra eine Funktion existiert, die die
-Rolle von $z$ hat.
-Dies ist gar nicht nötig, wie das folgende Beispiel zeigt.
-
-\begin{beispiel}
-Als Funktionenmenge $\mathscr{D}$ nehmen wir rationale Funktionen
-in zwei Variablen, die wir $\cos x $ und $\sin x$ nennen.
-Diese Menge bezeichnen wir mit
-$\mathscr{D}=\mathbb{Q}(\cos x,\sin x)$
-Der Ableitungsoperator ist
-\begin{align*}
-\frac{d}{dx} \cos x &= -\sin x
-\\
-\frac{d}{dx} \sin x &= \phantom{-}\cos x.
-\end{align*}
-Die Funktionen von $\mathbb{Q}(\cos x,\sin x)$ sind also Brüche,
-deren Zähler und Nenner Polynome in $\cos x$ und $\sin x$ sind.
-Aus den Produkt- und Quotientenregeln und den Ableitungsregeln für
-$\cos x$ und $\sin x$ folgt, dass die Ableitung einer Funktion in
-$\mathscr{D}$ wieder in $\mathscr{D}$ ist, $\mathscr{D}$ ist eine
-differentielle Algebra.
-\end{beispiel}
-
-Die konstanten Funktionen spielen eine besondere Rolle.
-Da wir bei der Ableitung nicht von der Vorstellung einer
-Funktion mit einem variablen Argument ausgehen wollten und
-die Ableitung nicht als Grenzwert definieren wollten, müssen
-wir auch bei der Definition der ``Konstanten'' einen neuen
-Weg gehen.
-In der Analysis sind die Konstanten genau die Funktionen,
-deren Ableitung $0$ ist.
-
-\begin{definition}
-\label{buch:integrale:def:konstante}
-Ein Element $f\in \mathscr{D}$ mit $df/dz=f'=0$ heissen
-{\em Konstante} in $\mathscr{D}$.
-\index{Konstante}%
-\end{definition}
-
-Die in der Potenzregel~\eqref{buch:integrale:eqn:potenzregel}
-vermisste Funktion $z$ kann man ähnlich zu den Konstanten
-zu definieren versuchen.
-$z$ müsste ein Element von $\mathscr{D}$ mit $z' = 1$ sein.
-Allerdings gibt es viele solche Elemente, ist $c$ eine Konstanten
-und $z'=1$, dann ist auch $(z+c)'=1$, $(z+c)$ hat also für
-die Zwecke unserer Untersuchung die gleichen Eigenschaften wie
-$z$.
-Dies deckt sich natürlich auch mit der Erwartung, dass Stammfunktionen
-nur bis auf eine Konstante bestimmt sind.
-Eine differentielle Algebra muss allerdings kein Element $z$ mit der
-Eigenschaft $z'=1$ enthalten.
-
-\begin{beispiel}
-In $\mathscr{D}=\mathbb{Q}(\cos x,\sin x)$ gibt es kein Element $x$.
-Ein solches wäre von der Form
-\[
-x = \frac{p(\cos x,\sin x)}{q(\cos x,\sin x)}.
-\]
-Eine solche goniometrische Beziehung würde für $x=\frac{\pi}4$ bedeuten,
-dass
-\[
-\frac{\pi}4
-=
-\frac{p(\sqrt{2}/2,\sqrt{2}/2)}{q(\sqrt{2}/2,\sqrt{2}/2)}.
-\]
-Auf der rechten Seite steht ein Quotient von Polynome, in dessen
-Argument nur rationale Zahlen und $\sqrt{2}$ steht.
-So ein Ausdruck kann immer in die Form
-\[
-\pi
-=
-4\frac{a\sqrt{2}+b}{c\sqrt{2}+d}
-=
-\frac{4(a\sqrt{2}+b)(c\sqrt{2}-d)}{2c^2+d^2}
-=
-r\sqrt{2}+s
-\]
-gebracht werden.
-Die Zahl auf der rechten Seite ist zwar irrational, aber sie ist Nullstelle
-des quadratischen Polynoms
-\[
-p(x)
-=
-(x-r\sqrt{2}-s)(x+r\sqrt{2}-s)
-=
-x^2
--2sx
--2r^2+s^2
-\]
-mit rationalen Koeffizienten, wie man mit der Lösungsformel für die
-quadratische Gleichung nachprüfen kann.
-Es ist bekannt, dass $\pi$ als transzendente Zahl nicht Nullstelle
-eines Polynoms mit rationalen Koeffizienten ist.
-Dieser Widerspruch zeigt, dass $x$ nicht in $\mathbb{Q}(\cos x, \sin x)$
-vorkommen kann.
-\end{beispiel}
-
-In einer differentiellen Algebra kann jetzt die Frage nach der
-Existenz einer Stammfunktion gestellt werden.
-
-\begin{aufgabe}
-\label{buch:integrale:aufgabe:existenz-stammfunktion}
-Gegeben eine differentielle Algebra $\mathscr{D}$ und ein Element
-$f\in\mathscr{D}$, entscheide, ob es ein Element $F\in\mathscr{D}$
-gibt mit der Eigenschaft $F'=f$.
-Ein solches $F\in\mathscr{D}$ heisst {\em Stammfunktion} von $f$.
-\end{aufgabe}
-
-\begin{satz}
-In einer differentiellen Algebra $\mathscr{D}$ mit $z\in\mathscr{D}$
-hat die Potenzfunktion $f=z^n$ für $n\in\mathbb{N}\setminus\{-1\}$
-ein Stammfunktion, nämlich
-\[
-F = \frac{1}{n+1} z^{n+1}.
-\]
-\label{buch:integrale:satz:potenzstammfunktion}
-\end{satz}
-
-\begin{proof}[Beweis]
-Tatsächlich kann man dies sofort nachrechnen, muss allerdings die
-Fälle $n+1 >0$ und $n+1<0$ unterscheiden, da die Potenzregel
-\eqref{buch:integrale:eqn:potenzregel} nur für natürliche Exponenten
-gilt.
-Man erhält
-\begin{align*}
-n+1&>0\colon
-&
-\frac{d}{dz}\frac{1}{n+1}z^{n+1}
-&=
-\frac{1}{n+1}(n+1)z^{n+1-1}
-=
-z^n,
-\\
-n+1&<0\colon
-&
-\frac{d}{dz}\frac{1}{n+1}\frac{1}{z^{-(n+1)}}
-&=
-\frac{1}{n+1}\frac{1'z^{-(n+1)}-1(-(n+1))z^{-n-1-1}}{z^{-2n-2}}
-\\
-&&
-&=
-\frac{1}{n+1}
-\frac{(n+1)z^n{-n-2}}{z^{-2n-2}}
-\\
-&&
-&=
-\frac{1}{z^{-n}}=z^n.
-\end{align*}
-Man beachte, dass in dieser Rechnung nichts anderes als die
-algebraischen Eigenschaften der Produkt- und Quotientenregel
-verwendet wurden.
-\end{proof}
-
-\subsubsection{Wurzeln}
-Die Wurzelfunktionen sollen natürlich als elementare Funktionen
-erlaubt sein.
-Es ist bekannt, dass $\sqrt{z}\not\in \mathscr{D}=\mathbb{C}(z)$
-ist, ein solches Element müsste also erst noch hinzugefügt werden.
-Dabei muss auch seine Ableitung definiert werden.
-Auch dabei dürfen wir nicht auf eine Grenzwertüberlegung zurückgreifen,
-vielmehr müssen wir die Ableitung auf vollständig algebraische
-Weise bestimmen.
-
-Wir schreiben $f=\sqrt{z}$ und leiten die Gleichung $f^2=z$ nach $z$ ab.
-Dabei ergibt sich nach der Potenzregel
-\[
-\frac{d}{dz}f^2 = 2f'f = \frac{d}{dz}z=1
-\qquad\Rightarrow\qquad f' = \frac{1}{2f}.
-\]
-Diese Rechnung lässt sich auch auf $n$-Wurzeln $g=\root{n}\of{z}$ mit
-der Gleichung $g^n = z$ verallgemeinern.
-Die Ableitung der $n$-ten Wurzel ist
-\begin{equation}
-\frac{d}{dz}g^n
-=
-ng^{n-1} = \frac{d}{dz}z=1
-\qquad\Rightarrow\qquad
-\frac{d}{dz}g = \frac{1}{ng^{n-1}}.
-\end{equation}
-Es ist also möglich, eine differentielle Algebra $\mathscr{D}$ mit einer
-$n$-ten Wurzel $g$ zu einer grösseren differentiellen Algebra $\mathscr{D}(g)$
-zu erweitern, in der wieder alle Regeln für das Rechnen mit Ableitungen
-erfüllt sind.
-
-\subsubsection{Algebraische Elemente}
-Die Charakterisierung der Wurzelfunktionen passt zwar zum verlangten
-algebraischen Vorgehen, ist aber zu spezielle und nicht gut für die
-nachfolgenden Untersuchengen geeignet.
-Etwas allgemeiner ist der Begriff der algebraischen Elemente.
-
-\begin{definition}
-\label{buch:integrale:def:algebraisches-element}
-Seien $K\subset L$ zwei Körper.
-Ein Element $\alpha \in L$ heisst {\em algebraisch} über $K$,
-wenn $\alpha$ Nullstelle eines Polynoms $p\in K[X]$ mit Koeffizienten
-in $K$ ist.
-\index{algebraisch}%
-\end{definition}
-
-Jedes Element $\alpha\in K$ ist algebraisch, da $\alpha$ Nullstelle
-von $X-\alpha\in K[X]$ ist.
-Die $n$tem Wurzeln eines Elemente $\alpha\in K$ sind ebenfalls algebraisch,
-da sie Nullstellen des Polynoms $p(X) = X^n - \alpha$ sind.
-Allerdings ist nicht klar, dass diese Wurzeln überhaupt existieren.
-Nach dem Satz von Abel~\ref{buch:potenzen:satz:abel} gibt es aber
-Nullstellen von Polynomen, die sich nicht als Wurzelausdrücke schreiben
-lassen.
-Der Begriff der algebraischen Elemente ist also allgemeiner als der
-Begriff der Wurzel.
-
-\begin{definition}
-\label{buch:integrale:def:algebraisch-abgeschlossen}
-Ein Körper $K$ heisst {\em algebraisch abgeschlossen}, wenn jedes Polynom mit
-Koeffizienten in $K$ eine Nullstelle in $K$ hat.
-\end{definition}
-
-Der Körper $\mathbb{C}$ ist nach dem
-Fundamentalsatz~\label{buch:potenzen:satz:fundamentalsatz}
-der Algebra algebraisch abgeschlossen.
-Da wir aber mit Funktionen arbeiten, müssen wir auch Wurzeln
-von Funktionen finden können.
-Dies ist nicht selbstverständlich, wie das folgende Beispiel zeigt.
-
-\begin{beispiel}
-Es gibt keine stetige Funktion $f\colon \mathbb{C}\to\mathbb{C}$, die
-die Gleichung $f(z)^2 = z$ und $f(1)=1$ erfüllt.
-Für die Argumente $z(t)= e^{it}$ folgt, dass $f(z(t)) = e^{it/2}$ sein
-muss.
-Setzt man aber $t=\pm \pi$ ein, ergeben sich die Werte
-$f(z(\pm\pi))=e^{\pm i\pi/2}=\pm 1$, die beiden Grenzwerte
-für $t\to\pm\pi$ sind also verschieden.
-\end{beispiel}
-
-Die Mathematik hat verschiedene ``Tricks'' entwickelt, wie mit diesem
-Problem umgegangen werden kann: Funktionskeime, Garben, Riemannsche
-Flächen.
-Sie sind alle gleichermassen gut geeignet, das Problem zu lösen.
-Für die vorliegende Aufgabe genügt es aber, dass es tatsächlich
-immer ein wie auch immer geartetes Element gibt, welches Nullstelle
-des Polynoms ist.
-
-Ist $f$ eine Nullstelle des Polynoms $p(X)$ mit Koeffizienten in
-$\mathscr{D}$, dann kann man die Ableitung wie folgt berechnen.
-Zunächst leitet man $p(f)$ ab:
-\begin{align}
-0&=
-\frac{d}{dz}(a_nf^n + a_{n-1}f^{n-1}+\ldots+a_1f+a_0)
-\notag
-\\
-&=
-a_n'f^n + a_{n-1}'f^{n-1}+\ldots+a_1'f+a_0'
-+
-na_nf^{n-1}f'
-+
-(n-1)a_nf^{n-2}f'
-+
-\ldots
-+
-a_2ff'
-+
-a_1f'
-\notag
-\\
-&=
-a_n'f^n + a_{n-1}'f^{n-1}+\ldots+a_1'f+a_0'
-+
-(
-na_nf^{n-1}
-+
-(n-1)a_nf^{n-2}
-+
-\ldots
-+
-a_2f
-+
-a_1
-)f'
-\notag
-\\
-\Rightarrow
-\qquad
-f'&=\frac{
-a_n'f^n + a_{n-1}'f^{n-1}+\dots+a_1'f+a_0'
-}{
-na_nf^{n-1}
-+
-(n-1)a_nf^{n-2}
-+
-\dots
-+
-a_1
-}.
-\label{buch:integrale:eqn:algabl}
-\end{align}
-Das einzige, was dabei schief gehen könnte ist, dass der Nenner ebenfalls
-verschwindet.
-Dieses Problem kann man dadurch lösen, dass man als Polynom das
-sogenannte Minimalpolynom verwendet.
-
-\begin{definition}
-Das {\em Minimalpolynome} $m(X)$ eines algebraischen Elementes $\alpha$ ist
-das Polynom kleinsten Grades, welches $m(\alpha)=0$ erfüllt.
-\end{definition}
-
-Da das Minimalpolynom den kleinstmöglichen Grad hat, kann der Nenner
-von~\eqref{buch:integrale:eqn:algabl},
-der noch kleineren Grad hat, unmöglich verschwinden.
-Das Minimalpolynom ist auch im wesentlichen eindeutig.
-Gäbe es nämlich zwei verschiedene Minimalpolynome $m_1$ und $m_2$,
-dann müsste $\alpha$ auch eine Nullstelle des grössten gemeinsamen
-Teilers $m_3=\operatorname{ggT}(m_1,m_2)$ sein.
-Wären die beiden Polynome wesentlich verschieden, dann hätte $m_3$
-kleineren Grad, im Widerspruch zur Definition des Minimalpolynoms.
-Also unterscheiden sich die beiden Polynome $m_1$ und $m_2$ nur um
-einen skalaren Faktor.
-
-\subsubsection{Konjugation, Spur und Norm}
-% Konjugation, Spur und Norm
-Das Minimalpolynom eines algebraischen Elementes ist nicht
-eindeutig bestimmt.
-Zum Beispiel ist $\sqrt{2}$ algebraisch über $\mathbb{Q}$, das
-Minimalpolynom ist $m(X)=X^2-2\in\mathbb{Q}[X]$.
-Es hat aber noch eine zweite Nullstelle $-\sqrt{2}$.
-Mit rein algebraischen Mitteln sind die beiden Nullstellen $\pm\sqrt{2}$
-nicht zu unterscheiden, erst die Verwendung der Vergleichsrelation
-ermöglicht, sie zu unterscheiden.
-
-Dasselbe gilt für die imaginäre Einheit $i$, die das Minimalpolynom
-$m(X)=X^2+1\in\mathbb{R}[X]$ hat.
-Hier gibt es nicht einmal mehr eine Vergleichsrelation, mit der man
-die beiden Nullstellen unterscheiden könnte.
-In der Tat ändert sich aus algebraischer Sicht nichts, wenn man in
-allen Formeln $i$ durch $-i$ ersetzt.
-
-Etwas komplizierter wird es bei $\root{3}\of{2}$.
-Das Polynom $m=x^3-2\in\mathbb{Q}[X]$ hat $\root{3}\of{2}$ als
-Nullstelle und dies ist auch tatsächlich das Minimalpolynom.
-Das Polynom hat noch zwei weitere Nullstellen
-\[
-\alpha_+ = \frac{-1+i\sqrt{3}}{2}\root{3}\of{2}
-\qquad\text{und}\qquad
-\alpha_- = \frac{-1-i\sqrt{3}}{2}\root{3}\of{2}.
-\]
-Die beiden Lösungen gehen durch die Vertauschung von $i$ und $-i$
-auseinander hervor.
-Betrachtet man dasselbe Polynom aber als Polynom in $\mathbb{R}[X]$,
-dann ist es nicht mehr das Minimalpolynom von $\root{3}\of{2}$, da
-$X-\root{3}\of{2}\in\mathbb{R}[X]$ kleineren Grad und $\root{3}\of{2}$
-als Nullstelle hat.
-Indem man
-\[
-m(X)/(X-\root{3}\of{2})=X^2+\root{3}\of{2}X+\root{3}\of{2}^2=m_2(X)
-\]
-rechnet, bekommt man das Minimalpolynom der beiden Nullstellen $\alpha_+$
-und $\alpha_-$.
-Wir lernen aus diesen Beispielen, dass das Minimalpolynom vom Grundkörper
-abhängig ist (Die Faktorisierung $(X-\root{3}\of{2})\cdot m_2(X)$ von
-$m(X)$ ist in $\mathbb{Q}[X]$ nicht möglich) und dass wir keine
-algebraische Möglichkeit haben, die verschiedenen Nullstellen des
-Minimalpolynoms zu unterscheiden.
-
-Die beiden Nullstellen $\alpha_+$ und $\alpha_-$ des Polynoms $m_2(X)$
-erlauben, $m_2(X)=(X-\alpha_+)(X-\alpha_-)$ zu faktorisieren.
-Durch Ausmultiplizieren
-\[
-(X-\alpha_+)(X-\alpha_-)
-=
-X^2 -(\alpha_++\alpha_-)X+\alpha_+\alpha_-
-\]
-und Koeffizientenvergleich mit $m_2(X)$ findet man die symmetrischen
-Formeln
-\[
-\alpha_+ + \alpha_- = \root{3}\of{2}
-\qquad\text{und}\qquad
-\alpha_+ \alpha_ = \root{3}\of{2}.
-\]
-Diese Ausdrücke sind nicht mehr abhängig von einer speziellen Wahl
-der Nullstellen.
-
-Das Problem verschärft sich nocheinmal, wenn wir Funktionen betrachten.
-Das Polynom $m(X)=X^3-z$ ist das Minimalpolynom der Funktion $\root{3}\of{z}$.
-Die komplexe Zahl $z=re^{i\varphi}$ hat aber drei die algebraisch nicht
-unterscheidbaren Nullstellen
-\[
-\alpha_0(z)=\root{3}\of{r}e^{i\varphi/3},
-\quad
-\alpha_1(z)=\root{3}\of{r}e^{i\varphi/3+2\pi/3}
-\qquad\text{und}\qquad
-\alpha_2(z)=\root{3}\of{r}e^{i\varphi/3+4\pi/3}.
-\]
-Aus der Faktorisierung $ (X-\alpha_0(z)) (X-\alpha_1(z)) (X-\alpha_2(z))$
-und dem Koeffizientenvergleich mit dem Minimalpolynom kann man wieder
-schliessen, dass die Relationen
-\[
-\alpha_0(z) + \alpha_1(z) + \alpha_2(z)=0
-\qquad\text{und}\qquad
-\alpha_0(z) \alpha_1(z) \alpha_2(z) = z
-\]
-gelten.
-
-Wir können also oft keine Aussagen über individuelle Nullstellen
-eines Minimalpolynoms machen, sondern nur über deren Summe oder
-Produkt.
-
-\begin{definition}
-\index{buch:integrale:def:spur-und-norm}
-Sie $m(X)\in K[X]$ das Minimalpolynom eines über $K$ algebraischen
-Elements und
-\[
-m(X) = a_nX^n + a_{n-1}X^{n-1} + \ldots + a_1X + a_0.
-\]
-Dann heissen
-\[
-\operatorname{Tr}(\alpha) = -a_{n-1}
-\qquad\text{und}\qquad
-\operatorname{Norm}(\alpha) = (-1)^n a_0
-\]
-die {\em Spur} und die {\em Norm} des Elementes $\alpha$.
-\index{Spur eines algebraischen Elementes}%
-\index{Norm eines algebraischen Elementes}%
-\end{definition}
-
-Die Spur und die Norm können als Spur und Determinante einer Matrix
-verstanden werden, diese allgemeineren Definitionen, die man in der
-Fachliteratur, z.~B.~in~\cite{buch:lang} nachlesen kann, führen aber
-für unsere Zwecke zu weit.
-
-\begin{hilfssatz}
-Die Ableitungen von Spur und Norm sind
-\[
-\operatorname{Tr}(\alpha)'
-=
-\operatorname{Tr}(\alpha')
-\qquad\text{und}\qquad
-\operatorname{Norm}(\alpha)'
-=
-\operatorname{Tr}(\alpha)'
-\]
-XXX Wirklich?
-\end{hilfssatz}
-
-\subsubsection{Logarithmen und Exponentialfunktionen}
-Die Funktion $z^{-1}$ musste im
-Satz~\ref{buch:integrale:satz:potenzstammfunktion}
-ausgeschlossen werden, sie hat keine Stammfunktion in $\mathbb{C}(z)$.
-Aus der Analysis ist bekannt, dass die Logarithmusfunktion $\log z$
-eine Stammfunktion ist.
-Der Logarithmus von $z$ aber auch der Logarithmus $\log f(z)$
-einer beliebigen Funktion $f(z)$ oder die Exponentialfunktion $e^{f(z)}$
-sollen ebenfalls elementare Funktionen sein.
-Da wir aber auch hier nicht auf die analytischen Eigenschaften zurückgreifen
-wollen, brauchen wir ein rein algebraische Definition.
-
-\begin{definition}
-\label{buch:integrale:def:logexp}
-Sei $\mathscr{D}$ ein differentielle Algebra und $f\in\mathscr{D}$.
-Ein Element $\vartheta\in\mathscr{D}$ heisst ein {\em Logarithmus}
-von $f$, geschrieben $\vartheta = \log f$, wenn $f\vartheta' = f'$ gilt.
-$\vartheta$ heisst eine Exponentialfunktion von $f$ wenn
-$\vartheta'=\vartheta f'$ gilt.
-\end{definition}
-
-Die Formel für die Exponentialfunktion ist etwas vertrauter, sie ist
-die bekannte Kettenregel
-\begin{equation}
-\vartheta'
-=
-\frac{d}{dz} e^f
-=
-e^f \cdot \frac{d}{dz} f
-=
-\vartheta \cdot f'.
-\label{buch:integrale:eqn:exponentialableitung}
-\end{equation}
-Da wir uns vorstellen, dass Logarithmen Umkehrfunktionen von
-Exponentialfunktionen sein sollen,
-muss die definierende Gleichung genau wie
-\eqref{buch:integrale:eqn:exponentialableitung}
-aussehen, allerdings mit vertauschten Plätzen von $f$ und $\vartheta$,
-also
-\begin{equation}
-\vartheta' = \vartheta\cdot f'
-\qquad
-\rightarrow
-\qquad
-f' = f\cdot \vartheta'
-\;\Leftrightarrow\;
-\vartheta' = (\log f)' = \frac{f'}{f}.
-\label{buch:integrale:eqn:logarithmischeableitung}
-\end{equation}
-Dies ist die aus der Analysis bekannte Formel für die logarithmische
-Ableitung.
-
-Der Logarithmus von $f$ und die Exponentialfunktion von $f$ sollen
-also ebenfalls als elementare Funktionen betrachtet werden.
-
-\subsubsection{Die trigonometrischen Funktionen}
-Die bekannten trigonometrischen Funktionen und ihre Umkehrfunktionen
-sollten natürlich auch elementare Funktionen sein.
-Dabei kommt uns zur Hilfe, dass sie sich mit Hilfe der Exponentialfunktion
-als
-\[
-\cos f = \frac{e^{if}+e^{-if}}2
-\qquad\text{und}\qquad
-\sin f = \frac{e^{if}-e^{-if}}{2i}
-\]
-schreiben lassen.
-Eine differentielle Algebra, die die Exponentialfunktionen von $if$ und
-$-if$ enthält, enthält also automatisch auch die trigonometrischen
-Funktionen.
-Im Folgenden ist es daher nicht mehr nötig, die trigonometrischen
-Funktionen speziell zu untersuchen.
-
-\subsubsection{Elementare Funktionen}
-Damit sind wir nun in der Lage, den Begriff der elementaren Funktion
-genau zu fassen.
-
-\begin{definition}
-\label{buch:integrale:def:einfache-elementare-funktion}
-Sie $\mathscr{D}$ eine differentielle Algebra über $\mathbb{C}$ und
-$\mathscr{D}(\vartheta)$ eine Erweiterung von $\mathscr{D}$ um eine
-neue Funktion $\vartheta$, dann heissen $\vartheta$ und die Elemente
-von $\mathscr{D}(\vartheta)$ einfach elementar, wenn eine der folgenden
-Bedingungen erfüllt ist:
-\begin{enumerate}
-\item $\vartheta$ ist algebraisch über $\mathscr{D}$, d.~h.~$\vartheta$
-ist eine ``Wurzel''.
-\item $\vartheta$ ist ein Logarithmus einer Funktion in $\mathscr{D}$,
-d.~h.~es gibt $f\in \mathscr{D}$ mit $f'=f\vartheta'$
-(Definition~\ref{buch:integrale:def:logexp}).
-\item $\vartheta$ ist eine Exponentialfunktion einer Funktion in $\mathscr{D}$,
-d.~h.~es bit $f\in\mathscr{D}$ mit $\vartheta'=\vartheta f'$
-(Definition~\ref{buch:integrale:def:logexp}).
-\end{enumerate}
-\end{definition}
-
-Einfache elementare Funktionen entstehen also ausgehend von einer
-differentiellen Algebra, indem man genau einmal eine Wurzel, einen
-Logarithmus oder eine Exponentialfunktion hinzufügt.
-So etwas wie die zusammengesetzte Funktion $e^{\sqrt{z}}$ ist
-damit noch nicht möglich.
-Daher erlauben wir, dass man die gesuchten Funktionen in mehreren
-Schritten aufbauen kann.
-
-\begin{definition}
-Sei $\mathscr{F}$ eine differentielle Algebra, die die differentielle
-Algebra $\mathscr{D}$ enthält, also $\mathscr{D}\subset\mathscr{F}$.
-$\mathscr{F}$ und die Elemente von $\mathscr{F}$ heissen einfach,
-wenn es endlich viele Elemente $\vartheta_1,\dots,\vartheta_n$ gibt
-derart, dass
-\[
-\renewcommand{\arraycolsep}{2pt}
-\begin{array}{ccccccccccccc}
-\mathscr{D}
-&\subset&
-\mathscr{D}(\vartheta_1)
-&\subset&
-\mathscr{D}(\vartheta_1,\vartheta_2)
-&\subset&
-\;
-\cdots
-\;
-&\subset&
-\mathscr{D}(\vartheta_1,\vartheta_2,\dots,\vartheta_{n-1})
-&\subset&
-\mathscr{D}(\vartheta_1,\vartheta_2,\dots,\vartheta_{n-1},\vartheta_n)
-&=&
-\mathscr{F}
-\\
-\|
-&&
-\|
-&&
-\|
-&&
-&&
-\|
-&&
-\|
-&&
-\\
-\mathscr{F}_0
-&\subset&
-\mathscr{F}_1
-&\subset&
-\mathscr{F}_2
-&\subset&
-\cdots
-&\subset&
-\mathscr{F}_{n-1}
-&\subset&
-\mathscr{F}_{n\mathstrut}
-&&
-\end{array}
-\]
-gilt so, dass jedes $\vartheta_{i+1}$ einfach ist über
-$\mathscr{F}_i=\mathscr{D}(\vartheta_1,\dots,\vartheta_i)$.
-\end{definition}
-
-In Worten bedeutet dies, dass man den Funktionen von $\mathscr{D}$
-nacheinander Wurzeln, Logarithmen oder Exponentialfunktionen einzelner
-Funktionen hinzufügt.
-Die Aufgabe~\ref{buch:integrale:aufgabe:existenz-stammfunktion} kann
-jetzt so formuliert werden.
-
-\begin{aufgabe}
-\label{buch:integrale:aufgabe:existenz-stammfunktion-dalg}
-Gegeben ist eine Differentielle Algebra $\mathscr{D}$ und eine
-Funktion $f\in \mathscr{D}$.
-Gibt es eine Folge $\vartheta_1,\dots,\vartheta_n$ und eine Funktion
-$F\in\mathscr{D}(\vartheta_1,\dots,\vartheta_n)$ derart, dass
-$F'=f$.
-\end{aufgabe}
-
-Das folgende Beispiel zeigt, wie man möglicherweise mehrere
-Erweiterungsschritte vornehmen muss, um zu einer Stammfunktion
-zu kommen.
-Es illustriert auch die zentrale Rolle, die der Partialbruchzerlegung
-in der weiteren Entwicklung zukommen wird.
-
-\begin{beispiel}
-\label{buch:integrale:beispiel:nichteinfacheelementarefunktion}
-Es soll eine Stammfunktion der Funktion
-\[
-f(z)
-=
-\frac{z}{(az+b)(cz+d)}
-\in
-\mathbb{C}(z)
-\]
-gefunden werden.
-In der Analysis lernt man, dass solche Integrale mit der
-Partialbruchzerlegung
-\[
-\frac{z}{(az+b)(cz+d)}
-=
-\frac{A_1}{az+b}+\frac{A_2}{cz+d}
-=
-\frac{A_1cz+A_1d+A_2az+A_2b}{(az+b)(cz+d)}
-\quad\Rightarrow\quad
-\left\{
-\renewcommand{\arraycolsep}{2pt}
-\begin{array}{rcrcr}
-cA_1&+&aA_2&=&1\\
-dA_1&+&bA_2&=&0
-\end{array}
-\right.
-\]
-bestimmt werden.
-Die Lösung des Gleichungssystems ergibt
-$A_1=b/(bc-ad)$ und $A_2=d/(ad-bc)$.
-Die Stammfunktion kann dann aus
-\begin{align*}
-\int f(z)\,dz
-&=
-\int\frac{A_1}{az+b}\,dz
-+
-\int\frac{A_2}{cz+d}\,dz
-=
-\frac{A_1}{a}\int\frac{a}{az+b}\,dz
-+
-\frac{A_2}{c}\int\frac{c}{cz+d}\,dz
-\end{align*}
-bestimmt werden.
-In den Integralen auf der rechten Seite ist der Zähler jeweils die
-Ableitung des Nenners, der Integrand hat also die Form $g'/g$.
-Genau diese Form tritt in der Definition eines Logarithmus auf.
-Die Stammfunktion ist jetzt
-\[
-F(z)
-=
-\int f(z)\,dz
-=
-\frac{A_1}{a}\log(az+b)
-+
-\frac{A_2}{c}\log(cz+d)
-=
-\frac{b\log(az+b)}{a(bc-ad)}
-+
-\frac{d\log(cz+d)}{c(ad-bc)}.
-\]
-Die beiden Logarithmen kann man nicht durch rein rationale Operationen
-ineinander überführen.
-Sie müssen daher beide der Algebra $\mathscr{D}$ hinzugefügt werden.
-\[
-\left.
-\begin{aligned}
-\vartheta_1&=\log(az+b)\\
-\vartheta_2&=\log(cz+d)
-\end{aligned}
-\quad
-\right\}
-\qquad\Rightarrow\qquad
-F(z) \in \mathscr{F}=\mathscr{D}(\vartheta_1,\vartheta_2).
-\]
-Die Stammfunktion $F(z)$ ist also keine einfache elementare Funktion,
-aber $F$ ist immer noch eine elementare Funktion.
-\end{beispiel}
-
-\subsection{Partialbruchzerlegung
-\label{buch:integrale:section:partialbruchzerlegung}}
-Die Konstruktionen des letzten Abschnitts haben gezeigt,
-wie man die Funktionen, die man als Stammfunktionen einer Funktion
-zulassen möchte, schrittweise konstruieren kann.
-Die Aufgabe~\ref{buch:integrale:aufgabe:existenz-stammfunktion-dalg}
-ist eine rein algebraische Formulierung der ursprünglichen
-Aufgabe~\ref{buch:integrale:aufgabe:existenz-stammfunktion}.
-Schliesslich hat das Beispiel auf
-Seite~\pageref{buch:integrale:beispiel:nichteinfacheelementarefunktion}
-gezeigt, dass es im allgemeinen mehrere Schritte braucht, um zu einer
-elementaren Stammfunktion zu gelangen.
-Die Lösung setzt sich aus den Termen der Partialbruchzerlegung.
-In diesem Abschnitt soll diese genauer studiert werden.
-
-In diesem Abschnitt gehen wir immer von einer differentiellen
-Algebra über den komplexen Zahlen aus und verlangen, dass die
-Konstanten in allen betrachteten differentiellen Algebren
-$\mathbb{C}$ sind.
-
-\subsubsection{Monome}
-Die beiden Funktionen $\vartheta-1=\log(az+b)$ und $\vartheta_2=(cz+d)$,
-die im Beispiel hinzugefügt werden mussten, verhalten sich ich algebraischer
-Hinsicht wie ein Monom: man kann es nicht faktorisieren oder bereits
-bekannte Summanden aufspalten.
-Solchen Funktionen kommt eine besondere Bedeutung zu.
-
-\begin{definition}
-\label{buch:integrale:def:monom}
-Die Funktion $\vartheta$ heisst ein Monom, wenn $\vartheta$ nicht
-algebraisch ist über $\mathscr{D}$ und $\mathscr{D}(\vartheta)$ die
-gleichen Konstanten enthält wie $\mathscr{D}$.
-\end{definition}
-
-\begin{beispiel}
-Als Beispiel beginnen wir mit den komplexen Zahlen $\mathbb{C}$
-und fügen die Funktion $\vartheta_1=z$ hinzu und erhalten
-$\mathscr{D}=\mathbb{C}(z)$.
-Die Funktionen $z^k$ sind für alle $k$ linear unabhängig, d.~h.~es
-gibt keinen Ausdruck
-\[
-a_nz^n + a_{n-1}z^{n-1}+\cdots+a_1z+a_0=0.
-\]
-Dies ist gleichbedeutend damit, dass $z$ nicht algebraisch ist.
-Das Monom $z$ ist also auch ein Monom im Sinne der
-Definition~\ref{buch:integrale:def:monom}.
-\end{beispiel}
-
-\begin{beispiel}
-Wir beginnen wieder mit $\mathbb{C}$ und fügen die Funktion
-$e^z$ hinzu.
-Gäbe es eine Beziehung
-\[
-b_m(e^z)^m + b_{m-1}(e^z)^{m-1}+\dots+b_1e^z + b_0=0
-\]
-mit komplexen Koeffizienten $b_i\in\mathbb{C}$,
-dann würde daraus durch Einsetzen von $z=1$ die Relation
-\[
-b_me^m + b_{m-1}e^{m-1} + \dots + b_1e + b_0=0,
-\]
-die zeigen würde, dass $e$ eine algebraische Zahl ist.
-Es ist aber bekannt, dass $e$ transzendent ist.
-Dieser Widersprich zeigt, dass $e^z$ ein Monom ist.
-\end{beispiel}
-
-\begin{beispiel}
-Jetzt fügen wir die Exponentialfunktion $\vartheta_2=e^z$
-der differentiellen Algebra $\mathscr{D}=\mathbb{C}(z)$ hinzu
-und erhalten $\mathscr{F}_1=\mathscr{D}(e^z) = \mathbb{C}(z,e^z)$.
-Gäbe es das Minimalpolynom
-\begin{equation}
-b_m(z)(e^z)^m + b_{m-1}(z)(e^z)^{m-1}+\dots+b_1(z)e^z + b_0(z)=0
-\label{buch:integrale:beweis:exp-analytisch}
-\end{equation}
-mit Koeffizienten $b_i\in\mathbb{C}(z)$, dann könnte man mit dem
-gemeinsamen Nenner der Koeffizienten durchmultiplizieren und erhielte
-eine Relation~\eqref{buch:integrale:beweis:exp-analytisch} mit
-Koeffizienten in $\mathbb{C}[z]$.
-Dividiert man durch $e^{mz}$ erhält man
-\[
-b_m(z) + b_{m-1}(z)\frac{1}{e^z} + \dots + b_1(z)\frac{1}{(e^z)^{m-1}} + b_0(z)\frac{1}{(e^z)^m}=0.
-\]
-Aus der Analysis weiss man, dass die Exponentialfunktion schneller
-anwächst als jedes Polynom, alle Terme auf der rechten Seite
-konvergieren daher gegen 0 für $z\to\infty$.
-Das bedeutet, dass $b_m(z)\to0$ für $z\to \infty$.
-Das Polynom~\eqref{buch:integrale:beweis:exp-analytisch} wäre also gar
-nicht das Minimalpolynom.
-Dieser Widerspruch zeigt, dass $e^z$ nicht algebraisch ist über
-$\mathbb{C}(z)$ und damit ein Monom ist\footnote{Etwas unbefriedigend
-an diesem Argument ist, dass man hier wieder rein analytische statt
-algebraische Eigenschaften von $e^z$ verwendet.
-Gäbe es aber eine minimale Relation wie
-\eqref{buch:integrale:beweis:exp-analytisch}
-mit Polynomkoeffizienten, dann wäre sie von der Form
-\[
-P(z,e^z)=p(z)(e^z)^m + q(z,e^z)=0,
-\]
-wobei Grad von $e^z$ in $q$ höchstens $m-1$ ist.
-Die Ableitung wäre dann
-\[
-Q(z,e^z)
-=
-mp(z)(e^z)^m + p'(z)(e^z)^m + r(z,e^z)
-=
-(mp(z) + p'(z))(e^z)^m + r(z,e^z)
-=0,
-\]
-wobei der Grad von $e^z$ in $r$ wieder höchstens $m-1$ ist.
-Bildet man $mP(z,e^z) - Q(z,e^z) = 0$ ensteht eine Relation,
-in der der Grad des Koeffizienten von $(e^z)^m$ um eins abgenommen hat.
-Wiederholt man dies $m$ mal, verschwindet der Term $(e^z)^m$, die
-Relation~\eqref{buch:integrale:beweis:exp-analytisch}
-war also gar nicht minimal.
-Dieser Widerspruch zeigt wieder, dass $e^z$ nicht algebraisch ist,
-verwendet aber nur die algebraischen Eigenschaften der differentiellen
-Algebra.
-}.
-\end{beispiel}
-
-\begin{beispiel}
-Wir hätten auch in $\mathbb{Q}$ arbeiten können und $\mathbb{Q}$
-erst die Exponentialfunktion $e^z$ und dann den Logarithmus $z$ von $e^z$
-hinzufügen können.
-Es gibt aber noch weitere Logarithmen von $e^z$ zum Beispiel $z+2\pi i$.
-Offenbar ist $\psi=z+2\pi i\not\in \mathbb{Q}(z,e^z)$, wir könnten also
-auch noch $\psi$ hinzufügen.
-Zwar ist $\psi$ auch nicht algebraisch, aber wenn wir $\psi$ hinzufügen,
-dann wird aber die Menge der Konstanten grösser, sie umfasst jetzt
-$\mathbb{Q}(2\pi i)$.
-Die Bedingung in der Definition~\ref{buch:integrale:def:monom},
-dass die Menge der Konstanten nicht grösser werden darf, ist also
-verletzt.
-
-Hätte man mit $\mathbb{Q}(e^z, z+2\pi i)$ begonnen, wäre $z$ aus
-dem gleichen Grund kein Monom, aber $z+2\pi i$ wäre eines im Sinne
-der Definition~\ref{buch:integrale:def:monom}.
-In allen Rechnungen könnte man $\psi=z+2\pi i$ nicht weiter aufteilen,
-da $\pi$ oder seine Potenzen keine Elemente von $\mathbb{Q}(e^z)$ sind.
-\end{beispiel}
-
-Da wir im Folgenden davon ausgehen, dass die Konstanten unserer
-differentiellen Körper immer $\mathbb{C}$ sind, wird es jeweils
-genügen zu untersuchen, ob eine neu hinzuzufügende Funktion algebraisch
-ist oder nicht.
-
-\subsubsection{Ableitungen von Polynomen und rationalen Funktionen von Monomen}
-Fügt man einer differentiellen Algebra ein Monom hinzu, dann lässt
-sich etwas mehr über Ableitungen von Polynomen oder Brüchen in diesen
-Monomen sagen.
-Diese Eigenschaften werden später bei der Auflösung der Partialbruchzerlegung
-nützlich sein.
-
-\begin{satz}
-\label{buch:integrale:satz:polynom-ableitung-grad}
-Sei
-\[
-P
-=
-A_nX^n + A_{n-1}X^{n-1} + \dots A_1X+A_0
-\in\mathscr{D}[X]
-\]
-ein Polynom mit Koeffizienten in einer differentiellen Algebra $\mathscr{D}$
-und $\vartheta$ ein Monom über $\mathscr{D}$.
-Dann gilt
-\begin{enumerate}
-\item
-\label{buch:integrale:satz:polynom-ableitung-grad-log}
-Falls $\vartheta=\log f$ ist, ist $P(\vartheta)'$ ein
-Polynom vom Grad $n$ in $\vartheta$, wenn der Leitkoeffizient $A_n$
-nicht konstant ist, andernfalls ein Polynom vom Grad $n-1$.
-\item
-\label{buch:integrale:satz:polynom-ableitung-grad-exp}
-Falls $\vartheta = \exp f$ ist, dann ist $P(\vartheta)'$ ein Polynom
-in $\vartheta$ vom Grad $n$.
-\end{enumerate}
-\end{satz}
-
-Der Satz macht also genaue Aussagen darüber, wie sich der Grad eines
-Polynoms in $\vartheta$ beim Ableiten ändert.
-
-\begin{proof}[Beweis]
-Für Exponentialfunktion ist $\vartheta'=\vartheta f'$, die Ableitung
-fügt also einfach einen Faktor $f'$ hinzu.
-Terme der Form $A_k\vartheta^k$ haben die Ableitung
-\[
-(A_k\vartheta^k)
-=
-A'_k\vartheta^k + A_kk\vartheta^{k-1}\vartheta'
-=
-A'_k\vartheta^k + A_kk\vartheta^{k-1}\vartheta f'
-=
-(A'_k + kA_k f)\vartheta^k.
-\]
-Damit wird die Ableitung des Polynoms
-\begin{equation}
-P(\vartheta)'
-=
-\underbrace{(A'_n+nA_nf')\vartheta^n}_{\displaystyle=(A_n\vartheta^n)'}
-+
-(A'_{n-1}+(n-1)A_{n-1}f')\vartheta^{n-1}
-+ \dots +
-(A'_1+A_1f')\vartheta + A_0'.
-\label{buch:integrale:ableitung:polynom}
-\end{equation}
-Der Grad der Ableitung kann sich also nur ändern, wenn $A_n'+nA_nf'=0$ ist.
-Dies bedeutet aber wegen
-\(
-(A_n\vartheta^n)'
-=
-0
-\), dass $A_n\vartheta^n=c$ eine Konstante ist.
-Da alle Konstanten bereits in $\mathscr{D}$ sind, folgt, dass
-\[
-\vartheta^n=\frac{c}{A_n}
-\qquad\Rightarrow\qquad
-\vartheta^n - \frac{c}{A_n}=0,
-\]
-also wäre $\vartheta$ algebraisch über $\mathscr{D}$, also auch kein Monom.
-Dieser Widerspruch zeigt, dass der Leitkoeffizient nicht verschwinden kann.
-
-Für die erste Aussage ist die Ableitung der einzelnen Terme des Polynoms
-\[
-(A_k\vartheta^k)'
-=
-A_k'\vartheta^k + A_kk\vartheta^{k-1}\vartheta'
-=
-A_k'\vartheta^k + A_kk\vartheta^{k-1}\frac{f'}{f}
-=
-\biggl(A_k'\vartheta + kA_k\frac{f'}{f}\biggr)\vartheta^{k-1}.
-\]
-Die Ableitung des Polynoms ist daher
-\[
-P(\vartheta)'
-=
-A_n'\vartheta^n + \biggl(nA_n\frac{f'}{f}+ A'_{n-1}\biggr)\vartheta^{n-1}+\dots
-\]
-Wenn $A_n$ keine Konstante ist, ist $A_n'\ne 0$ und der Grad von
-$P(\vartheta)'$ ist $n$.
-Wenn $A_n$ eine Konstante ist, müssen wir noch zeigen, dass der nächste
-Koeffizient nicht verschwinden kann.
-Wäre der zweite Koeffizient $=0$, dann wäre die Ableitung
-\[
-(nA_n\vartheta+A_{n-1})'
-=
-nA_n\vartheta'+A'_{n-1}
-=
-nA_n\frac{f'}{f}+A'_{n-1}
-=
-0,
-\]
-d.h. $nA_n\vartheta+A_{n-1}=c$ wäre eine Konstante.
-Da alle Konstanten schon in $\mathscr{D}$ sind, müsste auch
-\[
-\vartheta = \frac{c-A_{n-1}}{nA_n} \in \mathscr{D}
-\]
-sein, wieder wäre $\vartheta$ kein Monom.
-\end{proof}
-
-Der nächste Satz gibt Auskunft über den führenden Term in
-$(\log P(\vartheta))' = P(\vartheta)'/P(\vartheta)$.
-
-\begin{satz}
-\label{buch:integrale:satz:log-polynom-ableitung-grad}
-Sei $P$ ein Polynom vom Grad $n$ wie in
-\label{buch:integrale:satz:log-polynom-ableitung}
-welches zusätzlich normiert ist, also $A_n=1$.
-\begin{enumerate}
-\item
-\label{buch:integrale:satz:log-polynom-ableitung-log}
-Ist $\vartheta=\log f$, dann ist
-$(\log P(\vartheta))' = P(\vartheta)'/P(\vartheta)$ und $P(\vartheta)'$
-hat Grad $n-1$.
-\item
-\label{buch:integrale:satz:log-polynom-ableitung-exp}
-Ist $\vartheta=\exp f$, dann gibt es ein Polynom $N(\vartheta)$ so, dass
-$(\log P(\vartheta))'
-=
-P(\vartheta)'/P(\vartheta)
-=
-N(\vartheta)/P(\vartheta)+nf'$
-ist.
-Falls $P(\vartheta)=\vartheta$ ist $N=0$, andernfalls ist $N(\vartheta)$
-ein Polynom vom Grad $<n$.
-\end{enumerate}
-\end{satz}
-
-\begin{proof}[Beweis]
-Die Gleichung $(\log P(\vartheta))'=P(\vartheta)'/P(\vartheta)$ ist die
-Definition eines Logarithmus, es geht also vor allem um die Frage
-des Grades von $P(\vartheta)'$.
-Da der Leitkoeffizient als $1$ und damit konstant vorausgesetzt wurde,
-folgt die Behauptung \ref{buch:integrale:satz:log-polynom-ableitung-log}
-aus
-Aussage \ref{buch:integrale:satz:polynom-ableitung-grad-log}
-von Satz~\ref{buch:integrale:satz:polynom-ableitung-grad}.
-
-Für Aussage \ref{buch:integrale:satz:log-polynom-ableitung-exp}
-beachten wir wieder die
-Ableitungsformel~\eqref{buch:integrale:ableitung:polynom}
-und berücksichtigen, dass $A_n=1$ eine Konstante ist.
-Da $A_n'=0$ ist, wird
-\begin{align*}
-P(\vartheta)'
-&=
-nA_n\vartheta^n f' + \text{Terme niedrigeren Grades in $\vartheta$}.
-\intertext{Das Polynom $nf'P(\vartheta)$ hat den gleichen Term vom
-Grad $n$, man kann also $P(\vartheta)'$ auch schreiben als}
-&=
-nf'
-P(\vartheta)
-+
-\underbrace{
-\text{Terme niedrigeren Grades in $\vartheta$}}_{\displaystyle=N(\vartheta)}.
-\end{align*}
-Division durch $P(\vartheta)$ ergibt die versprochene Formel.
-
-Im Fall $P(\vartheta)=\vartheta$ ist $n=1$ und
-$(\log P(\vartheta))'=P(\vartheta)'/P(\vartheta)
-=
-\vartheta f'/\vartheta
-=
-nf'$ und somit $N(\vartheta)=0$.
-\end{proof}
-
-\subsubsection{Partialbruchzerlegungen}
-Der vorangegangene Abschnitt hat gezeigt, dass sich Monome im Sinne
-der Definition~\ref{buch:integrale:def:monom} algebraisch wie eine
-unabhängige Variable verhalten.
-Für die Berechnung von Integralen rationaler Funktionen in einer
-Variablen $x$ verwendet
-man die Partialbruchzerlegung, um Brüche mit einfachen Nennern zu
-erhalten.
-Es liegt daher nahe, dieselbe Idee auch auf die
-Monome $\vartheta_i$ zu verwenden.
-Dazu muss man die Brüche besser verstehen, die in einer Partialbruchzerlegung
-vorkommen können.
-
-Eine Partialbruchzerlegung in der Variablen $X$ setzt sich zusammen
-aus Brüchen der Form
-\begin{equation}
-g(X)
-=
-\frac{P(X)}{Q(X)^r},
-\label{buch:integrale:eqn:partialbruch-quotient}
-\end{equation}
-wobei das Nennerpolynom $Q(X)$ ist ein normiertes irreduzibles Polynom
-vom Grad $q$ und $P(X)$ ein beliebiges Polynom vom Grad $p<q$.
-
-Ist der Grad von $P(X)$
-im Quotienten
-\eqref{buch:integrale:eqn:partialbruch-quotient}
-grösser als $q$, dann kann man $P(X)$ um Vielfache von Potenzen von
-$Q(X)$ reduzieren und eine Summe von Termen der Art
-\eqref{buch:integrale:eqn:partialbruch-quotient}
-erhalten, deren Nenner alle Grad $< q$ haben.
-Die Anzahl neu enstehender Terme ist dabei ums grösser, je grösser
-der Grad des Zählers ist.
-Dies ist der Inhalt des folgenden Satzes.
-
-\begin{satz}
-\label{buch:integrale:satz:partialbruch-reduktion}
-Sei $Q(X)$ ein irreduzibles Polynom vom Grad $q$ und $P(X)$ ein beliebiges
-Polynom vom Grad $p < (k+1)q$.
-Dann gibt es Polynome $P_i(X)$, $i=0,\dots,k$, vom Grad $<q$ derart,
-dass
-\begin{equation}
-\frac{P(X)}{Q(X)^r}
-=
-\sum_{i=0}^k \frac{P_i(X)}{Q(X)^{r-i}}.
-\label{buch:integrale:satz:partialbruch-aufgeloest}
-\end{equation}
-\end{satz}
-
-\begin{proof}[Beweis]
-Für $k=0$ ist $p<q$ und es muss nichts weiter gezeigt werden.
-
-Sei jetzt also $k>0$ das kleinste $k$ so, dass $p<(k+1)q$.
-Insbesondere ist dann $kq\le p$.
-Nach dem euklidischen Satz für die Division von $P(X)$ durch $Q(X)^k$
-gibt es ein Polynom $P_k(X)$ vom Grad $\le p-qk$ derart, dass
-\[
-P(X) = P_k(X)Q(X)^k + R_k(X)
-\]
-mit einem Rest $R_k(X)$ vom Grad $<kq$.
-Es folgt
-\[
-\frac{ P(X)}{Q(X)^r}
-=
-\frac{P_k(X)}{Q(X)^{r-k}}
-+
-\frac{R_k(X)}{Q(X)^r}.
-\]
-Der zweite Term ist wieder von der im Satz beschriebenen Art, allerdings
-mit einem Wert von $k$, der um $1$ kleiner ist.
-Durch rekursive Anwendung der gleichen Prozedur in $k$ weiteren Schritten
-erhält man die Form
-Das gleiche Argument kann jetzt auf das Polynom $R_k(X)$ anstelle
-von $P(X)$ angewendet werden, erhalt man den Ausdruck
-\eqref{buch:integrale:satz:partialbruch-aufgeloest}.
-\end{proof}
-
-In der differentiellen Algebra $\mathscr{D}(\vartheta)$ muss man jetzt
-auch Bescheid wissen über die Partialbruchzerlegung von Ableitungen solcher
-Terme.
-
-\begin{satz}
-\label{buch:integrale:satz:partialbruch-monom}
-Sei $\vartheta$ ein Monom über $\mathscr{D}$ und
-seien $P(\vartheta),Q(\vartheta)\in\mathscr{D}[\vartheta]$ Polynome,
-wobei $Q(\vartheta)$ ein irreduzibles normiertes Polynom vom Grad $q$
-ist und $P(\vartheta)$ ein beliebiges Polynom vom Grad $p<q$.
-Dann ist die Ableitung
-\begin{equation}
-g(\vartheta)'
-=
-\biggl(
-\frac{P(\vartheta)}{Q(\vartheta)^r}
-\biggr)'
-=
--r\frac{P(\vartheta)Q(\vartheta)'}{Q(\vartheta)^{r+1}}
-+
-\frac{P(\vartheta)'}{Q(\vartheta)^r}.
-\label{buch:integrale:eqn:partialbruch-ableitung}
-\end{equation}
-Falls $\vartheta=\exp f$ eine Exponentialfunktion ist und
-$Q(\vartheta)=\vartheta$, dann hat die Partialbruchzerlegung von $g(X)'$
-die Form
-\begin{equation}
-g(\vartheta)'
-=
-\frac{
-{P(\vartheta)'-rP(\vartheta)f}
-}{
-\vartheta^{r}
-}.
-\label{buch:integrale:eqn:partialbruch-ableitung-fall0}
-\end{equation}
-Für $Q(\vartheta)\ne \vartheta$ oder $\vartheta$ keine Exponentialfunktion
-hat die Partialbruchzerlegung von $g(X)'$ die Form
-\[
-g(\vartheta)'
-=
-\frac{R(\vartheta)}{Q(\vartheta)^{r+1}}+\frac{S(\vartheta)}{Q(\vartheta)^r}
-\qquad\text{mit $R(\vartheta)\ne 0$}.
-\]
-\end{satz}
-
-\begin{proof}[Beweis]
-Schreibt man den Quotienten $g(\vartheta)$ als
-$g(\vartheta)=P(\vartheta)Q(\vartheta)^{-r}$, dann folgt aus
-Produkt- und Potenzregel
-\[
-g(\vartheta)'
-=
-P(\vartheta)'Q(\vartheta)^{-r}
-+
-P(\vartheta)\bigl(Q(\vartheta)^{-r}\bigr)'
-=
-\frac{P(\vartheta)'}{Q(\vartheta)^{r}}
--r\frac{P(\vartheta)Q(\vartheta)'}{Q(\vartheta)^{r+1}},
-\]
-dies ist
-\eqref{buch:integrale:eqn:partialbruch-ableitung}.
-Auf die Ableitungen von $P(\vartheta)$ und $Q(\vartheta)$ können
-jetzt die Sätze
-\ref{buch:integrale:satz:polynom-ableitung-grad},
-\ref{buch:integrale:satz:log-polynom-ableitung-grad}
-und
-\ref{buch:integrale:satz:partialbruch-monom}
-angewendet werden.
-Es sind jweils zwei Dinge zu prüfen: es dürfen in der Partialbruchzerlegung
-im Nenner keine Potenzen $<r$ vorkommen und wegen $R\ne 0$ muss der Nenner
-$Q(\vartheta)^{r+1}$ vorkommen.
-
-Falls $\vartheta=\log f$ ist, ist $Q(\vartheta)'$ ein Polynom vom
-Grad $q-1$ nach Satz~\eqref{buch:integrale:satz:polynom-ableitung-grad}
-\ref{buch:integrale:satz:polynom-ableitung-grad-log}
-und $P(\vartheta)'$ ist ein Polynom vom Grad höchstens $p$.
-Der Zähler $P(\vartheta)Q(\vartheta)'$ im zweiten Term ist nicht
-durch $Q(\vartheta)$ teilbar, denn weil $Q(\vartheta)$ irreduzibel
-ist, müsste $Q(\vartheta)$ entweder $P(\vartheta)$ oder $Q(\vartheta)'$
-teilen, aber beide haben zu geringen Grad.
-
-Falls $\vartheta=\exp f$ ist, ist $Q(\vartheta)'$ ein Polynom vom
-Grad $q$ und $P(\vartheta)'$ ist eine Polynom vom Grad $p$.
-Der Grad von $P(\vartheta)Q(\vartheta)'$ ist $<2q$, daher
-werden nach
-Satz~\ref{buch:integrale:satz:partialbruch-reduktion}
-keine Nenner mit kleinerem Exponenten als $r$ auftreten.
-Es ist noch zu prüfen, ob $Q(\vartheta)$ den Nenner des zweiten Termes
-von~\eqref{buch:integrale:eqn:partialbruch-ableitung} teilt.
-Nehmen wir $Q(\vartheta)\mid P(\vartheta)Q(\vartheta)'$ an, dann muss
-$Q(\vartheta)\mid Q(\vartheta)'$ sein.
-Für
-\[
-Q(\vartheta) = \vartheta^q + q_{q-1}\vartheta^{q-1} + \dots
-\]
-ist die Ableitung
-\[
-Q(\vartheta)'
-=
-q\vartheta^q f'
-+
-\dots
-\]
-und damit
-\[
-\frac{Q(\vartheta)'}{Q(\vartheta)}
-=
-qf'.
-\]
-Andererseits ist in der
-Aussage~\label{buch:integrale:satz:log-polynom-ableitung-exp}
-von
-Satz~\ref{buch:integrale:satz:log-polynom-ableitung-grad}
-angewendet auf das Polynom $Q(\vartheta)$ das Polynom $N(\vartheta)=0$,
-und daher muss $Q(\vartheta)=\vartheta$ und $q=1$ sein.
-Dies ist der einzige Ausnahmefall, in die Partialbruchzerlegung die Form
-\eqref{buch:integrale:eqn:partialbruch-ableitung-fall0}
-annimmt.
-\end{proof}
-
-Der Satz besagt also, dass in fast allen Fällen die einzelnen Terme
-der Partialbruchzerlegung der Ableitungen wieder von der gleichen
-Form sind.
-
-\subsection{Der Satz von Liouville
-\label{buch:integrale:section:liouville}}
-Die Funktion
-\[
-f(z) = \frac{(z+1)^2}{(z-1)^3} \in \mathbb{C}(z) = \mathscr{D}
-\]
-kann mit Hilfe der Partialbruchzerlegung
-\[
-f(z)
-=
-\frac{1}{z-1}
-+
-\frac{4}{(z-1)^2}
-+
-\frac{4}{(z-1)^3}
-\]
-integriert werden.
-Die Integranden $(z-1)^{-k}$ mit $k>1$ können mit der Potenzregel
-integriert werden, aber für eine Stammfunktion $1/(z-1)$ muss
-der Logarithmus $\log(z-1)$ hinzugefügt werden.
-Die Stammfunktion
-\[
-\int f(z)\,dz
-=
-\int
-\frac{1}{z-1}
-\,dz
-+
-\int
-\frac{4}{(z-1)^2}
-\,dz
-+
-\int
-\frac{4}{(z-1)^3}
-\,dz
-=
-\log(z-1)
--
-\underbrace{\frac{4z-2}{(z-1)^2}}_{\displaystyle\in\mathscr{D}}
-\in \mathscr{D}(\log(z-1)) = \mathscr{F}
-\]
-hat eine sehr spezielle Form.
-Sie besteht aus einem Term in $\mathscr{D}$ und einem Logarithmus
-einer Funktion von $\mathscr{D}$, also einem Monom über $\mathscr{D}$.
-
-\subsubsection{Einfach elementare Stammfunktionen}
-Der in diesem Abschnitt zu beweisende Satz von Liouville zeigt,
-dass die im einführenden Beispiel konstruierte Form der Stammfunktion
-eine allgemeine Eigenschaft elementar integrierbarer
-Funktionen ist.
-Zunächst aber soll dieses Bespiel etwas verallgemeinert werden.
-
-\begin{satz}[Liouville-Vorstufe für Monome]
-\label{buch:integrale:satz:liouville-vorstufe-1}
-Sei $\vartheta$ ein Monom über $\mathscr{D}$ und $g\in\mathscr{D}(\vartheta)$
-mit $g'\in\mathscr{D}$.
-Dann hat $g$ die Form $v_0 + c_1\vartheta$ mit $v_0\in\mathscr{D}$ und
-$c_1\in\mathbb{C}$.
-\end{satz}
-
-\begin{proof}[Beweis]
-In Anlehnung an das einführende Beispiel nehmen wir an, dass die
-Stammfunktion $g\in\mathscr{D}[\vartheta]$ für ein Monom $\vartheta$
-über $\mathscr{D}$ ist.
-Dann hat $g$ die Partialbruchzerlegung
-\[
-g
-=
-H(\vartheta)
-+
-\sum_{j\le r(i)} \frac{P_{ij}(\vartheta)}{Q_i(\vartheta)^j}
-\]
-mit irreduziblen normierten Polynomen $Q_i(\vartheta)$ und
-Polynomen $P_{ij}(\vartheta)$ vom Grad kleiner als $\deg Q_i(\vartheta)$.
-Ausserdem ist $H(\vartheta)$ ein Polynom.
-Die Ableitung von $g$ muss jetzt aber wieder in $\mathscr{D}$ sein.
-Zu ihrer Berechnung können die Sätze
-\ref{buch:integrale:satz:polynom-ableitung-grad},
-\ref{buch:integrale:satz:log-polynom-ableitung-grad}
-und
-\ref{buch:integrale:satz:partialbruch-monom}
-verwendet werden.
-Diese besagen, dass in der Partialbruchzerlegung die Exponenten der
-Nenner die Quotienten in der Summe nicht kleiner werden.
-Die Ableitung $g'\in\mathscr{D}$ darf aber gar keine Nenner mit
-$\vartheta$ enthalten, also dürfen die Quotienten gar nicht erst
-vorkommen.
-$g=H(\vartheta)$ muss also ein Polynom in $\vartheta$ sein.
-Die Ableitung des Polynoms darf wegen $g'\in\mathscr{d}$ das Monom
-$\vartheta$ ebenfalls nicht mehr enthalten, daher kann es höchstens vom
-Grad $1$ sein.
-Nach Satz~\ref{buch:integrale:satz:log-polynom-ableitung-grad}
-muss ausserdem der Leitkoeffizient von $g$ eine Konstante sein,
-das Polynom hat also genau die behauptete Form.
-\end{proof}
-
-\begin{satz}[Liouville-Vorstufe für algebraische Elemente]
-\label{buch:integrale:satz:liouville-vorstufe-2}
-Sei $\vartheta$ algebraische über $\mathscr{D}$ und
-$g\in\mathscr{D}(\vartheta)$ mit $g'\in\mathscr{D}$.
-\end{satz}
-
-\subsubsection{Elementare Stammfunktionen}
-Nach den Vorbereitungen über einfach elementare Stammfunktionen
-in den Sätzen~\label{buch:integrale:satz:liouville-vorstufe-1}
-und
-\label{buch:integrale:satz:liouville-vorstufe-2} sind wir jetzt
-in der Lage, den allgemeinen Satz von Liouville zu formulieren
-und zu beweisen.
-
-\begin{satz}[Liouville]
-Sei $\mathscr{D}$ ein Differentialkörper, $\mathscr{F}$ einfach über
-$\mathscr{D}$ mit gleichem Konstantenkörper $\mathbb{C}$.
-Wenn $g\in \mathscr{F}$ eine Stammfunktion von $f\in\mathscr{D}$ ist,
-also $g'=f$, dann gibt es Zahlen $c_i\in\mathbb{C}$ und
-$v_0,v_i\in\mathscr{D}$ derart, dass
-\begin{equation}
-g = v_0 + \sum_{i=1}^k c_i \log v_i
-\qquad\Rightarrow\qquad
-g' = v_0' + \sum_{i=1}^k c_i \frac{v_i'}{v_i} = f
-\label{buch:integrale:satz:liouville-fform}
-\end{equation}
-gilt.
-\end{satz}
-
-Der Satz hat zur Folge, dass eine elementare Stammfunktion für $f$
-nur dann existieren kann, wenn sich $f$ in der speziellen Form
-\eqref{buch:integrale:satz:liouville-fform}
-schreiben lässt.
-Die Aufgabe~\ref{buch:integrale:aufgabe:existenz-stammfunktion-dalg}
-lässt sich damit jetzt lösen.
-
-
-\begin{proof}[Beweis]
-Wenn die Stammfunktion $g\in\mathscr{D}$ ist, dann hat $g$ die Form
-\eqref{buch:integrale:satz:liouville-fform} mit $v_0=g$, die Summe
-wird nicht benötigt.
-
-Wir verwenden Induktion nach der Anzahl der Elemente, die zu $\mathscr{D}$
-hinzugefügt werden müssen, um einen Differentialkörper
-$\mathscr{F}=\mathscr{D}(\vartheta_1,\dots,\vartheta_n)$ zu konstruieren,
-der $g$ enthält.
-Da $f\in\mathscr{D}\subset\mathscr{D}(\vartheta_1)$ ist, können wir die
-Induktionsannahme auf die Erweiterung
-\[
-\mathscr{D}(\vartheta_1)\subset\mathscr{D}(\vartheta_1,\vartheta_2)
-\subset\cdots\subset \mathscr{D}(\vartheta_1,\cdots,\vartheta_n)=\mathscr{F}
-\]
-anwenden, die durch Hinzufügen von nur $n-1$ Elemente
-$\vartheta_2,\dots,\vartheta_n$ aus $\mathscr{D}(\vartheta_1)$ den
-Differentialkörper $\mathscr{F}$ erreicht, der $g$ enthält.
-Sie besagt, dass sich $g$ schreiben lässt als
-\[
-g = w_0 + \sum_{i=1}^{k_1} c_i\log w_i
-\qquad\text{mit $c_i\in\mathbb{C}$ und $w_0,w_i\in\mathscr{D}(\vartheta_1)$.}
-\]
-Wir müssen jetzt zeigen, dass sich dieser Ausdruck umformen lässt
-in den Ausdruck der Form~\eqref{buch:integrale:satz:liouville-fform}.
-
-Der Term $w_0\in\mathscr{D}(\vartheta_1)$ hat eine Partialbruchzerlegung
-\[
-H(\vartheta_1)
-+
-\sum_{j\le r(l)} \frac{P_{lj}(\vartheta_1)}{Q_l(\vartheta_1)^j}
-\]
-in der Variablen $\vartheta_1$.
-
-Da $w_i\in\mathscr{D}(\vartheta_1)$ ist, kann man Zähler und Nenner
-von $w_i$ als Produkt irreduzibler normierter Polynome schreiben:
-\[
-w_i
-=
-\frac{h_i Z_{i1}(\vartheta_1)^{s_{i1}}\cdots Z_{im(i)}^{s_{im(i)}}
-}{
-N_{i1}(\vartheta_1)^{t_{i1}}\cdots N_{in(i)}(\vartheta_1)^{t_{in(i)}}
-}
-\]
-Der Logarithmus hat die Form
-\begin{align*}
-\log w_i
-&= \log h_i +
-s_{i1}
-\log Z_{i1}(\vartheta_1)
-+
-\cdots
-+
-s_{im(i)}
-\log Z_{im(i)}
--
-t_{i1}
-\log
-N_{i1}(\vartheta_1)
--
-\cdots
--
-t_{in(i)}
-\log
-N_{in(i)}(\vartheta_1).
-\end{align*}
-$g$ kann also geschrieben werden als eine Summe von Polynomen, Brüchen,
-wie sie in der Partialbruchzerlegung vorkommen, Logarithmen von irreduziblen
-normierten Polynomen und Logarithmen von Elementen von $\mathscr{D}$.
-
-Die Ableitung $g'$ muss jetzt aber wieder in $\mathscr{D}$ sein, beim
-Ableiten müssen also alle Terme verschwinden, die $\vartheta_1$ enthalten.
-Dabei spielt es eine Rolle, ob $\vartheta_1$ ein Monom oder algebraisch ist.
-\begin{enumerate}
-\item
-Wenn $\vartheta_1$ ein Monom ist, dann kann man wie im Beweis des
-Satzes~\ref{buch:integrale:satz:liouville-vorstufe-1} argumentieren,
-dass die Brüchterme gar nicht vorkommen und
-$H(\vartheta_1)=v_0+c_1\vartheta_1$ sein muss.
-Die Ableitung Termen der Form $\log Z(\vartheta_1)$ ist ein Bruchterm
-mit dem irreduziblen Nenner $Z(\vartheta_1)$, die ebenfalls verschwinden
-müssen.
-Ist $\vartheta_1$ eine Exponentialfunktion, dann ist
-$\vartheta_1' \in \mathscr{D}(\vartheta_1)\setminus\mathscr{D}$, also muss
-$c_1=0$ sein.
-Ist $\vartheta_1$ ein Logarithmus, also $\vartheta_1=\log v_1$, dann
-kommen nur noch Terme der in
-\eqref{buch:integrale:satz:liouville-fform}
-erlaubten Form vor.
-
-\item
-Wenn $\vartheta_1$ algebraisch vom Grad $m$ ist, dann ist
-\[
-g' = w_0' + \sum_{i=1}^{k_1} d_i\frac{w_i'}{w_i} = f.
-\]
-Weder $w_0$ noch $\log w_i$ sind in $\mathscr{D}(\vartheta_1)$.
-Aber wenn man $\vartheta_1$ durch die $m$ konjugierten Elemente
-ersetzt und alle summiert, dann ist
-\[
-mf
-=
-\operatorname{Tr}(w_0) + \sum_{i=1}^{k_1} d_i \log\operatorname{Norm}(w_i).
-\]
-Da die Spur und die Norm in $\mathscr{D}$ sind, folgt, dass
-\[
-f
-=
-\underbrace{\frac{1}{m}
-\operatorname{Tr}(w_0)}_{\displaystyle= v_0}
-+
-\sum_{i=1}^{k_1} \underbrace{\frac{d_i}{m}}_{\displaystyle=c_i}
-\log
-\underbrace{ \operatorname{Norm}(w_i)}_{\displaystyle=v_i}
-=
-v_0 + \sum_{i=1}^{k_1} c_i\log v_i
-\]
-die verlangte Form hat.
-\qedhere
-\end{enumerate}
-\end{proof}
-
-\subsection{Die Fehlerfunktion ist keine elementare Funktion
-\label{buch:integrale:section:fehlernichtelementar}}
-% \url{https://youtu.be/bIdPQTVF5n4}
-Mit Hilfe des Satzes von Liouville kann man jetzt beweisen, dass
-die Fehlerfunktion keine elementare Funktion ist.
-Dazu braucht man die folgende spezielle Form des Satzes.
-
-\begin{satz}
-\label{buch:integrale:satz:elementarestammfunktion}
-Wenn $f(x)$ und $g(x)$ rationale Funktionen von $x$ sind, dann
-ist die Stammfunktion von $f(x)e^{g(x)}$ genau dann eine
-elementare Funktion, wenn es eine rationale Funktion gibt, die
-Lösung der Differentialgleichung
-\[
-r'(x) + g'(x)r(x)=f(x)
-\]
-ist.
-\end{satz}
-
-\begin{satz}
-Die Funktion $x\mapsto e^{-x^2}$ hat keine elementare Stammfunktion.
-\label{buch:iintegrale:satz:expx2}
-\end{satz}
-
-\begin{proof}[Beweis]
-Unter Anwendung des Satzes~\ref{buch:integrale:satz:elementarestammfunktion}
-auf $f(x)=1$ und $g(x)=-x^2$ folgt, $e^{-x^2}$ genau dann eine rationale
-Stammfunktion hat, wenn es eine rationale Funktion $r(x)$ gibt, die
-Lösung der Differentialgleichung
-\begin{equation}
-r'(x) -2xr(x)=1
-\label{buch:integrale:expx2dgl}
-\end{equation}
-ist.
-
-Zunächst halten wir fest, dass $r(x)$ kein Polynom sein kann.
-Wäre nämlich
-\[
-r(x)
-=
-a_0 + a_1x + \dots + a_nx^n
-=
-\sum_{k=0}^n a_kx^k
-\quad\Rightarrow\quad
-r'(x)
-=
-a_1 + 2a_2x + \dots + na_nx^{n-1}
-=
-\sum_{k=1}^n
-ka_kx^{k-1}
-\]
-ein Polynom, dann ergäbe sich beim Einsetzen in die Differentialgleichung
-\begin{align*}
-1
-&=
-r'(x)-2xr(x)
-\\
-&=
-a_1 + 2a_2x + 3a_3x^2 + \dots + (n-1)a_{n-1}x^{n-2} + na_nx^{n-1}
-\\
-&\qquad
--
-2a_0x -2a_1x^2 -2a_2x^3 - \dots - 2a_{n-1}x^n - 2a_nx^{n+1}
-\\
-&
-\hspace{0.7pt}
-\renewcommand{\arraycolsep}{1.8pt}
-\begin{array}{crcrcrcrcrcrcrcr}
-=&a_1&+&2a_2x&+&3a_3x^2&+&\dots&+&(n-1)a_{n-1}x^{n-2}&+&na_{n }x^{n-1}& & & & \\
- & &-&2a_0x&-&2a_1x^2&-&\dots&-& 2a_{n-3}x^{n-2}&-&2a_{n-2}x^{n-1}&-&2a_{n-1}x^n&-&2a_nx^{n+1}
-\end{array}
-\\
-&=
-a_1
-+
-(2a_2-2a_0)x
-+
-(3a_3-2a_1)x^2
-%+
-%(4a_4-2a_2)x^3
-+
-\dots
-+
-(na_n-2a_{n-2})x^{n-1}
--
-2a_{n-1}x^n
--
-2a_nx^{n+1}.
-\end{align*}
-Koeffizientenvergleich zeigt, dass $a_1=1$ sein muss.
-Aus den letzten zwei Termen liest man ebenfalls mittels Koeffizientenvergleich
-ab, dass $a_n=0$ und $a_{n-1}=0$ sein müssen.
-Aus den Koeffizienten $(ka_k-2a_{k-2})=0$ folgt, dass
-$a_{k-2}=\frac{k}{2}a_k$ für alle $k>1$ sein muss, diese Koeffizienten
-verschwinden also auch, inklusive $a_1=0$.
-Dies ist allerdings im Widerspruch zu $a_1=1$.
-Es folgt, dass $r(x)$ kein Polynom sein kann.
-
-Der Nenner der rationalen Funktion $r(x)$ hat also mindestens eine Nullstelle
-$\alpha$, man kann daher $r(x)$ auch schreiben als
-\[
-r(x) = \frac{s(x)}{(x-\alpha)^n},
-\]
-wobei die rationale Funktion $s(x)$ keine Nullstellen und keine Pole hat.
-Einsetzen in die Differentialgleichung ergibt:
-\[
-1
-=
-r'(x) -2xr(x)
-=
-\frac{s'(x)}{(x-\alpha)^n}
--n
-\frac{s(x)}{(x-\alpha)^{n+1}}
--
-\frac{2xs(x)}{(x-\alpha)^n}.
-\]
-Multiplizieren mit $(x-\alpha)^{n+1}$ gibt
-\[
-(x-\alpha)^{n+1}
-=
-s'(x)(x-\alpha)
--
-ns(x)
--
-2xs(x)(x-\alpha)
-\]
-Setzt man $x=\alpha$ ein, verschwinden alle Terme ausser dem mittleren
-auf der rechten Seite, es bleibt
-\[
-ns(\alpha) = 0.
-\]
-Dies widerspricht aber der Wahl der rationalen Funktion $s(x)$, für die
-$\alpha$ keine Nullstelle ist.
-
-Somit kann es keine rationale Funktion $r(x)$ geben, die eine Lösung der
-Differentialgleichung~\eqref{buch:integrale:expx2dgl} ist und
-die Funktion $e^{-x^2}$ hat keine elementare Stammfunktion.
-\end{proof}
-
-Der Satz~\ref{buch:iintegrale:satz:expx2} rechtfertigt die Einführung
-der Fehlerfunktion $\operatorname{erf}(x)$ als neue spezielle Funktion,
-mit deren Hilfe die Funktion $e^{-x^2}$ integriert werden kann.
-
-
-
+\rhead{Differentialkörper}
+Die Einführung einer neuen Funktion $\operatorname{erf}(x)$ wurde
+durch die Behauptung gerechtfertigt, dass es für den Integranden
+$e^{-x^2}$ keine Stammfunktion in geschlossener Form gäbe.
+Die Fehlerfunktion ist bei weitem nicht die einzige mit dieser
+Eigenschaft.
+Doch woher weiss man, dass es keine solche Funktion gibt, und
+was heisst überhaupt ``Stammfunktion in geschlossener Form''?
+In diesem Abschnitt wird daher ein algebraischer Rahmen entwickelt,
+in dem diese Frage sinnvoll gestellt werden kann.
+Das ultimative Ziel, welches aber erst in
+Abschnitt~\ref{buch:integral:section:risch} in Angriff genommen
+wird, ist ein Computer-Algorithmus, der Integrale in geschlossener
+Form findet oder beweist, dass dies für einen gegebenen Integranden
+nicht möglich ist.
+
+\input{chapters/060-integral/rational.tex}
+\input{chapters/060-integral/erweiterungen.tex}
+\input{chapters/060-integral/diffke.tex}
+\input{chapters/060-integral/iproblem.tex}
+\input{chapters/060-integral/irat.tex}
+\input{chapters/060-integral/sqrat.tex}
diff --git a/buch/chapters/060-integral/differentialkoerper2.tex b/buch/chapters/060-integral/differentialkoerper2.tex
new file mode 100644
index 0000000..f41d3ba
--- /dev/null
+++ b/buch/chapters/060-integral/differentialkoerper2.tex
@@ -0,0 +1,1953 @@
+%
+% differentialalgebren.tex
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\section{Differentialkörper und der Satz von Liouville
+\label{buch:integrale:section:dkoerper}}
+\rhead{Differentialkörper und der Satz von Liouville}
+Das Problem der Darstellbarkeit eines Integrals in geschlossener
+Form verlangt zunächst einmal nach einer Definition dessen, was man
+als ``geschlossene Form'' akzeptieren will.
+Die sogenannten {\em elementaren Funktionen} von
+Abschnitt~\ref{buch:integrale:section:elementar}
+bilden dafür den theoretischen Rahmen.
+Das Problem ist dann die Frage zu beantworten, ob ein Integral eine
+Stammfunktion hat, die eine elementare Funktion ist.
+Der Satz von Liouville von Abschnitt~\ref{buch:integrale:section:liouville}
+löst das Problem.
+
+\subsection{Eine Analogie
+\label{buch:integrale:section:analogie}}
+% XXX Analogie: Formel für Polynom-Nullstellen
+% XXX Stammfunktion als elementare Funktion
+Das Analysis-Problem, eine Stammfunktion zu finden, ist analog zum
+wohlbekannten algebraischen Problem, Nullstellen von Polynomen zu finden.
+Wir entwickeln diese Analogie in etwas mehr Detail, um zu sehen, ob man
+aus dem algebraischen Problem etwas über das Problem der Analysis
+lernen kann.
+
+Für ein Polynom $p(X) = a_nX^n+a_{n-1}X^{n-1}+\dots+a_1X+a_0\in\mathbb{C}[X]$
+mit Koeffizienten $a_k\in\mathbb{C}$ ist es sehr einfach, für jede beliebige
+komplexe Zahl $z\in\mathbb{C}$ den Wert $p(z)$ des Polynoms auszurechnen.
+Ein paar wenige Rechenregeln genügen dazu, man kann leicht einem Kind
+beibringen, mit einem Taschenrechner so einen Wert auszurechnen.
+
+Ähnlich sieht es mit der Ableitungsoperation aus.
+Einige wenige Ableitungsregeln, die man in der Analysis~I lernt,
+erlauben, auf mehr oder weniger mechanische Art und Weise, jede
+beliebige Funktion abzuleiten.
+Man kann auch leicht einen Computer dazu programmieren, solche Ableitungen
+symbolisch zu berechnen.
+
+Aus dem Fundamentalsatz der Algebra, der von Gauss vollständig bewiesen
+wurde, ist bekannt, dass jedes Polynom mit Koeffizienten in $\mathbb{C}$
+genau so viele Lösungen in $\mathbb{C}$, wie der Grad des Polynoms angibt.
+Dies ist aber ein Existenzsatz, er sagt nichts darüber aus, wie man diese
+Lösungen finden kann.
+In Spezialfällen, wie zum Beispiel für quadratische Polynome, gibt
+es spezialsierte Lösungsverfahren, mit denen man Lösungen angeben kann.
+Natürlich existieren numerische Methoden wie zum Beispiel das
+Newton-Verfahren, mit dem man Nullstellen von Polynomen beliebig genau
+bestimmen kann.
+
+Der Fundamentalsatz der Integralrechnung besagt, dass jede stetige
+Funktion eine Stammfunktion hat, die bis auf eine Konstante eindeutig
+bestimmt ist.
+Auch dieser Existenzsatz gibt keinerlei Hinweise darauf, wie man die
+Stammfunktion finden kann.
+In der Analysis-Vorlesung lernt man viele Tricks, die in einer
+beindruckenden Zahl von Spezialfällen ermöglichen, ein passende
+Funktion anzugeben.
+Man lernt auch numerische Verfahren kennen, mit denen sich Werte der
+Stammfunktion, also bestimmte Integrale, mit beliebiger Genauigkeit
+finden kann.
+
+Die numerische Lösung des Nullstellenproblems ist insofern unbefriedigend,
+als sie nur schwer eine Diskussion der Abhängigkeit der Nullstellen von
+den Koeffizienten des Polynoms ermöglichen.
+Eine Formel wie die Lösungsformel für die quadratische Gleichung
+stellt genau für solche Fälle ein ideales Werkzeug bereit.
+Was man sich also wünscht ist nicht nur einfach eine Lösung, sondern eine
+einfache Formel zur Bestimmung aller Lösungen.
+Im Zusammenhang mit algebraischen Gleichungen erwartet man eine Formel,
+in der nur arithmetische Operationen und Wurzeln vorkommen.
+Für quadratische Gleichungen ist so eine Formel seit dem Altertum bekannt,
+Formeln für die kubische Gleichung und die Gleichung vierten Grades wurden
+im 16.~Jahrhundert von Cardano bzw.~Ferrari gefunden.
+Erst viel später haben Abel und Ruffini gezeigt, dass so eine allgemeine
+Formel für Polynome höheren Grades als 4 nicht existiert.
+Die Galois-Theorie, die auf den Ideen von Évariste Galois beruht,
+stellt eine vollständige Theorie unter anderem für die Lösbarkeit
+von Gleichungen durch Wurzelausdrücke dar.
+
+Numerische Integralwerte haben ebenfalls den Nachteil, dass damit
+Diskussionen wie die Abhängigkeit von Parametern eines Integranden
+nur schwer möglich sind.
+Was man sich daher wünscht ist eine Formel für die Stammfunktion,
+die Werte als Zusammensetzung gut bekannter Funktionen wie der Exponential-
+und Logarithmus-Funktionen oder der trigonometrischen Funktionen
+sowie Wurzeln, Potenzen und den arithmetischen Operationen.
+Man sagt, man möchte die Stammfunktion in ``geschlossener Form''
+dargestellt haben.
+Tatsächlich ist dieses Problem auch zu Beginn des 19.~Jahrhunderts
+von Joseph Liouville genauer untersucht worden.
+Er hat zunächst eine Klasse von ``elementaren Funktionen'' definiert,
+die als Darstellungen einer Stammfunktion in Frage kommen.
+Der Satz von Liouville besagt dann, dass nur Funktionen mit einer
+ganz speziellen Form eine elementare Stammfunktion haben.
+Damit wird es möglich, zu entscheiden, ob ein Integrand wie $e^{-x^2}$
+eine elementare Stammfunktion hat.
+Seit dieser Zeit weiss man zum Beispiel, dass die Fehlerfunktion nicht
+mit den bekannten Funktionen dargestellt werden kann.
+
+Mit dem Aufkommen der Computer und vor allem der Computer-Algebra-System (CAS)
+wurde die Frage nach der Bestimmung einer Stammfunktion erneut aktuell.
+Die ebenfalls weiter entwickelte abstrakte Algebra hat ermöglicht, die
+Ideen von Liouville in eine erweiterte, sogenannte differentielle
+Galois-Theorie zu verpacken, die eine vollständige Lösung des Problems
+darstellt.
+Robert Henry Risch hat in den Sechzigerjahren auf dieser Basis
+einen Algorithmus entwickelt, mit dem es möglich wird, zu entscheiden,
+ob eine Funktion eine elementare Stammfunktion hat und diese
+gegebenenfalls auch zu finden.
+Moderne CAS implementieren diesen Algorithmus
+in Teilen, besonders weit zu gehen scheint das quelloffene System
+Axiom.
+
+Der Risch-Algorithmus hat allerdings eine Achillesferse: er benötigt
+eine Method zu entscheiden, ob zwei Ausdrücke übereinstimmen.
+Dies ist jedoch ein im Allgemeinen nicht entscheidbares Problem.
+Moderne CAS treiben einigen Aufwand, um die
+Gleichheit von Ausdrücken zu entscheiden, sie können das Problem
+aber grundsätzlich nicht vollständig lösen.
+Damit kann der Risch-Algorithmus in praktischen Anwendungen das
+Stammfunktionsproblem ebenfalls nur mit Einschränkungen lösen,
+die durch die Fähigkeiten des Ausdrucksvergleichs in einem CAS
+gesetzt werden.
+
+Im Folgenden sollen elementare Funktionen definiert werden, es sollen
+die Grundideen der differentiellen Galois-Theorie zusammengetragen werden
+und der Satz von Liouvill vorgestellt werden.
+An Hand der Fehler-Funktion soll dann gezeigt werden, wie man jetzt
+einsehen kann, dass die Fehlerfunktion nicht elementar darstellbar ist.
+Im nächsten Abschnitt dann soll der Risch-Algorithmus skizziert werden.
+
+\subsection{Elementare Funktionen
+\label{buch:integrale:section:elementar}}
+Es soll die Frage beantwortet werden, welche Stammfunktionen sich
+in ``geschlossener Form'' oder durch ``wohlbekannte Funktionen''
+ausdrücken lassen.
+Welche Funktionen dabei als ``wohlbekannt'' gelten dürfen ist
+ziemlich willkürlich.
+Sicher möchte man Potenzen und Wurzeln, Logarithmus und Exponentialfunktion,
+aber auch die trigonometrischen Funktionen dazu zählen dürfen.
+Ausserdem will man beliebig mit den arithmetischen Operationen
+rechnen.
+So entsteht die Menge der Funktionen, die man ``elementar'' nennen
+will.
+
+In der Menge der elementaren Funktionen möchte man jetzt
+Stammfunktionen ausgewählter Funktionen suchen.
+Dazu muss man von jeder Funktion ihre Ableitung kennen.
+Die Ableitungsoperation macht aus der Funktionenmenge eine
+differentielle Algebra.
+Der Satz von Liouville (Satz~\ref{buch:integrale:satz:liouville1})
+liefert Bedingungen, die erfüllt sein müssen, wenn eine Funktion
+eine elementare Stammfunktion hat.
+Sind diese Bedingungen nicht erfüllbar, ist auch keine
+elementare Stammfunktion möglich.
+
+In den folgenden Abschnitten soll die differentielle Algebra
+der elementaren Funktionen konstruiert werden.
+
+\subsubsection{Körper}
+Die einfachsten Funktionen sind die die Konstanten, für die wir
+für die nachfolgenden Betrachtungen fast immer die komplexen Zahlen
+$\mathbb{C}$
+zu Grunde legen wollen.
+Dabei ist vor allem wichtig, dass sich darin alle arithmetischen
+Operationen durchführen lassen mit der einzigen Ausnahme, dass
+nicht durch $0$ dividiert werden darf.
+Man nennt $\mathbb{C}$ daher ein {\em Körper}.
+\index{Körper}%
+\label{buch:integrale:def:koerper}
+
+\subsubsection{Polynome und rationale Funktionen}
+Die Polynome einer Variablen beschreiben eine Menge von
+Funktionen, in der Addition, Subtraktion, Multiplikation
+von Funktionen und Multiplikation mit komplexen Zahlen
+uneingeschränkt möglich ist.
+Wir bezeichen wie früher die Menge der Polynome in $z$ mit
+$\mathbb{C}[z]$.
+
+Die Division ist erst möglich, wenn man beliebige Brüche
+zulässt, deren Zähler und Nenner Polynome sind.
+Die Menge
+\[
+\mathbb{C}(z)
+=
+\biggl\{
+\frac{p(z)}{q(z)}
+\;\bigg|\;
+p,q\in \mathbb{C}[z]
+\biggr\}
+\]
+heisst die Menge der {\em rationalen Funktionen}.
+\label{buch:integrale:def:rationalefunktion}
+\index{Funktion, rationale}%
+\index{rationale Funktion}%
+In ihr sind jetzt alle arithmetischen Operationen ausführbar
+ausser natürlich die Division durch die Nullfunktion.
+Die rationalen Funktionen bilden also wieder eine Körper.
+
+Die Tatsache, dass die rationalen Funktionen einen Körper
+bilden bedeutet auch, dass die Konstruktion erneut durchgeführt
+werden kann.
+Ausgehend von einem beliebigen Körper $K$ können wieder zunächst
+die Polynome $K[X]$ und anschliesen die rationalen Funktionen $K[X]$
+in der neuen Variablen, jetzt aber mit Koeffizienten in $K$
+gebildet werden.
+So entstehen Funktionen von mehreren Variablen und, indem
+wir für die neue Variable $X$ zum Beispiel die im übernächsten
+Abschnitt betrachtete Wurzel $X=\sqrt{z}$
+einsetzen, rationale Funktionen in $z$ und $\sqrt{z}$.
+
+Solche Funktionenkörper werden im folgenden mit geschweiften
+Buchstaben $\mathscr{D}$ bezeichnet.
+\index{Funktionenkörper}%
+
+\subsubsection{Ableitungsoperation}
+In allen Untersuchungen soll immer die Ableitungsoperation
+mit berücksichtigt werden.
+In unserer Betrachtungsweise spielt es keine Rolle, dass die
+Ableitung aus einem Grenzwert entsteht, es sind nur die algebraischen
+Eigenschaften wichtig.
+Diese sind in der folgenden Definition zusammengefasst.
+
+\begin{definition}
+\label{buch:integrale:def:derivation}
+Ein {\em Ableitungsoperator} oder eine {\em Derivation} einer Algebra
+$\mathscr{D}$ von Funktionen ist eine lineare Abbildung
+\[
+\frac{d}{dz}
+\colon \mathscr{D} \to \mathscr{D}
+:
+f \mapsto \frac{df}{dz} = f',
+\]
+die zusätzlich die Produktregel
+\begin{equation}
+\frac{d}{dz} (fg)
+=
+\frac{df}{dz} \cdot g + f \cdot \frac{dg}{dz}
+\qquad\Leftrightarrow\qquad
+(fg)' = f' g + fg'
+\label{buch:integrale:eqn:produktregel}
+\end{equation}
+\index{Produktregel}%
+erfüllt.
+Die Funktion $f'\in \mathscr{D}$ heisst auch die {\em Ableitung}
+von $f\in\mathscr{D}$.
+\index{Derivation}%
+\index{Ableitungsoperator}%
+\index{Ableitung}%
+\end{definition}
+
+Die Produktregel hat zum Beispiel auch die bekannten Quotientenregel
+zur Folge.
+Dazu betrachten wir das Produkt $f= (f/g)\cdot g$ und leiten es mit
+Hilfe der Produktregel ab:
+\[
+\frac{d}{dz}f
+=
+\frac{d}{dz}
+\biggl(
+\frac{f}{g}\cdot g
+\biggr)
+=
+{\color{darkred}
+\frac{d}{dz}
+\biggl(
+\frac{f}{g}
+\biggr)}
+\cdot g
++
+\frac{f}{g}\cdot \frac{d}{dz}g.
+\]
+Jetzt lösen wir nach der {\color{darkred}roten} Ableitung des Quotienten
+auf und erhalten
+\begin{equation}
+\biggl(\frac{f}{g}\biggr)'
+=
+\frac{d}{dz}\biggl(\frac{f}{g}\biggr)
+=
+\frac1g\biggl(
+\frac{d}{dz}f - \frac{f}{g}\cdot \frac{d}{dz}g
+\biggr)
+=
+\frac{1}{g}
+\biggl(
+f'-\frac{fg'}{g}
+\biggr)
+=
+\frac{f'g-fg'}{g^2}.
+\label{buch:integrale:eqn:quotientenregel}
+\end{equation}
+Dies ist die Quotientenregel.
+
+Aus der Produktregel folgt natürlich sofort auch die Potenzregel
+für die Ableitung der $n$ten Potenz einer Funktion $f\in\mathscr{D}$,
+sie lautet:
+\begin{equation}
+\frac{d}{dz} f^n
+=
+\underbrace{
+f'f^{n-1} + ff'f^{n-2} + f^2f'f^{n-3}+\dots f^{n-1}f'
+}_{\displaystyle \text{$n$ Terme}}
+=
+nf^{n-1}f'.
+\label{buch:integrale:eqn:potenzregel}
+\end{equation}
+In dieser Form versteckt sich natürlich auch die Kettenregel, die
+Potenzfunktion ist die äussere Funktion, $f$ die innere, $f'$ ist also
+die Ableitung er inneren Funktion, wie in der Kettenregel verlangt.
+Falls $f$ ein Element von $\mathscr{D}$ ist mit der Eigenschaft
+$df/dz=1$, dann entsteht die übliche Produktregel.
+
+\begin{definition}
+Eine Algebra $\mathscr{D}$ von Funktionen mit einem Ableitungsoperator
+$d/dz$ heisst eine {\em differentielle Algebra}.
+\index{differentielle Algebra}%
+\index{Algebra, differentielle}%
+In einer differentiellen Algebra gelten die üblichen
+Ableitungsregeln.
+\end{definition}
+
+Die Potenzregel war in der Form~\eqref{buch:integrale:eqn:potenzregel}
+geschrieben worden, nicht als die Ableitung von $z$.
+Der Grund dafür ist, dass wir gar nicht voraussetzen wollen, dass in
+unserer differentiellen Algebra eine Funktion existiert, die die
+Rolle von $z$ hat.
+Dies ist gar nicht nötig, wie das folgende Beispiel zeigt.
+
+\begin{beispiel}
+Als Funktionenmenge $\mathscr{D}$ nehmen wir rationale Funktionen
+in zwei Variablen, die wir $\cos x $ und $\sin x$ nennen.
+Diese Menge bezeichnen wir mit
+$\mathscr{D}=\mathbb{Q}(\cos x,\sin x)$
+Der Ableitungsoperator ist
+\begin{align*}
+\frac{d}{dx} \cos x &= -\sin x
+\\
+\frac{d}{dx} \sin x &= \phantom{-}\cos x.
+\end{align*}
+Die Funktionen von $\mathbb{Q}(\cos x,\sin x)$ sind also Brüche,
+deren Zähler und Nenner Polynome in $\cos x$ und $\sin x$ sind.
+Aus den Produkt- und Quotientenregeln und den Ableitungsregeln für
+$\cos x$ und $\sin x$ folgt, dass die Ableitung einer Funktion in
+$\mathscr{D}$ wieder in $\mathscr{D}$ ist, $\mathscr{D}$ ist eine
+differentielle Algebra.
+\end{beispiel}
+
+Die konstanten Funktionen spielen eine besondere Rolle.
+Da wir bei der Ableitung nicht von der Vorstellung einer
+Funktion mit einem variablen Argument ausgehen wollten und
+die Ableitung nicht als Grenzwert definieren wollten, müssen
+wir auch bei der Definition der ``Konstanten'' einen neuen
+Weg gehen.
+In der Analysis sind die Konstanten genau die Funktionen,
+deren Ableitung $0$ ist.
+
+\begin{definition}
+\label{buch:integrale:def:konstante}
+Ein Element $f\in \mathscr{D}$ mit $df/dz=f'=0$ heissen
+{\em Konstante} in $\mathscr{D}$.
+\index{Konstante}%
+\end{definition}
+
+Die in der Potenzregel~\eqref{buch:integrale:eqn:potenzregel}
+vermisste Funktion $z$ kann man ähnlich zu den Konstanten
+zu definieren versuchen.
+$z$ müsste ein Element von $\mathscr{D}$ mit $z' = 1$ sein.
+Allerdings gibt es viele solche Elemente, ist $c$ eine Konstanten
+und $z'=1$, dann ist auch $(z+c)'=1$, $(z+c)$ hat also für
+die Zwecke unserer Untersuchung die gleichen Eigenschaften wie
+$z$.
+Dies deckt sich natürlich auch mit der Erwartung, dass Stammfunktionen
+nur bis auf eine Konstante bestimmt sind.
+Eine differentielle Algebra muss allerdings kein Element $z$ mit der
+Eigenschaft $z'=1$ enthalten.
+
+\begin{beispiel}
+In $\mathscr{D}=\mathbb{Q}(\cos x,\sin x)$ gibt es kein Element $x$.
+Ein solches wäre von der Form
+\[
+x = \frac{p(\cos x,\sin x)}{q(\cos x,\sin x)}.
+\]
+Eine solche goniometrische Beziehung würde für $x=\frac{\pi}4$ bedeuten,
+dass
+\[
+\frac{\pi}4
+=
+\frac{p(\sqrt{2}/2,\sqrt{2}/2)}{q(\sqrt{2}/2,\sqrt{2}/2)}.
+\]
+Auf der rechten Seite steht ein Quotient von Polynome, in dessen
+Argument nur rationale Zahlen und $\sqrt{2}$ steht.
+So ein Ausdruck kann immer in die Form
+\[
+\pi
+=
+4\frac{a\sqrt{2}+b}{c\sqrt{2}+d}
+=
+\frac{4(a\sqrt{2}+b)(c\sqrt{2}-d)}{2c^2+d^2}
+=
+r\sqrt{2}+s
+\]
+gebracht werden.
+Die Zahl auf der rechten Seite ist zwar irrational, aber sie ist Nullstelle
+des quadratischen Polynoms
+\[
+p(x)
+=
+(x-r\sqrt{2}-s)(x+r\sqrt{2}-s)
+=
+x^2
+-2sx
+-2r^2+s^2
+\]
+mit rationalen Koeffizienten, wie man mit der Lösungsformel für die
+quadratische Gleichung nachprüfen kann.
+Es ist bekannt, dass $\pi$ als transzendente Zahl nicht Nullstelle
+eines Polynoms mit rationalen Koeffizienten ist.
+Dieser Widerspruch zeigt, dass $x$ nicht in $\mathbb{Q}(\cos x, \sin x)$
+vorkommen kann.
+\end{beispiel}
+
+In einer differentiellen Algebra kann jetzt die Frage nach der
+Existenz einer Stammfunktion gestellt werden.
+
+\begin{aufgabe}
+\label{buch:integrale:aufgabe:existenz-stammfunktion}
+Gegeben eine differentielle Algebra $\mathscr{D}$ und ein Element
+$f\in\mathscr{D}$, entscheide, ob es ein Element $F\in\mathscr{D}$
+gibt mit der Eigenschaft $F'=f$.
+Ein solches $F\in\mathscr{D}$ heisst {\em Stammfunktion} von $f$.
+\end{aufgabe}
+
+\begin{satz}
+In einer differentiellen Algebra $\mathscr{D}$ mit $z\in\mathscr{D}$
+hat die Potenzfunktion $f=z^n$ für $n\in\mathbb{N}\setminus\{-1\}$
+ein Stammfunktion, nämlich
+\[
+F = \frac{1}{n+1} z^{n+1}.
+\]
+\label{buch:integrale:satz:potenzstammfunktion}
+\end{satz}
+
+\begin{proof}[Beweis]
+Tatsächlich kann man dies sofort nachrechnen, muss allerdings die
+Fälle $n+1 >0$ und $n+1<0$ unterscheiden, da die Potenzregel
+\eqref{buch:integrale:eqn:potenzregel} nur für natürliche Exponenten
+gilt.
+Man erhält
+\begin{align*}
+n+1&>0\colon
+&
+\frac{d}{dz}\frac{1}{n+1}z^{n+1}
+&=
+\frac{1}{n+1}(n+1)z^{n+1-1}
+=
+z^n,
+\\
+n+1&<0\colon
+&
+\frac{d}{dz}\frac{1}{n+1}\frac{1}{z^{-(n+1)}}
+&=
+\frac{1}{n+1}\frac{1'z^{-(n+1)}-1(-(n+1))z^{-n-1-1}}{z^{-2n-2}}
+\\
+&&
+&=
+\frac{1}{n+1}
+\frac{(n+1)z^n{-n-2}}{z^{-2n-2}}
+\\
+&&
+&=
+\frac{1}{z^{-n}}=z^n.
+\end{align*}
+Man beachte, dass in dieser Rechnung nichts anderes als die
+algebraischen Eigenschaften der Produkt- und Quotientenregel
+verwendet wurden.
+\end{proof}
+
+\subsubsection{Wurzeln}
+Die Wurzelfunktionen sollen natürlich als elementare Funktionen
+erlaubt sein.
+Es ist bekannt, dass $\sqrt{z}\not\in \mathscr{D}=\mathbb{C}(z)$
+ist, ein solches Element müsste also erst noch hinzugefügt werden.
+Dabei muss auch seine Ableitung definiert werden.
+Auch dabei dürfen wir nicht auf eine Grenzwertüberlegung zurückgreifen,
+vielmehr müssen wir die Ableitung auf vollständig algebraische
+Weise bestimmen.
+
+Wir schreiben $f=\sqrt{z}$ und leiten die Gleichung $f^2=z$ nach $z$ ab.
+Dabei ergibt sich nach der Potenzregel
+\[
+\frac{d}{dz}f^2 = 2f'f = \frac{d}{dz}z=1
+\qquad\Rightarrow\qquad f' = \frac{1}{2f}.
+\]
+Diese Rechnung lässt sich auch auf $n$-Wurzeln $g=\root{n}\of{z}$ mit
+der Gleichung $g^n = z$ verallgemeinern.
+Die Ableitung der $n$-ten Wurzel ist
+\begin{equation}
+\frac{d}{dz}g^n
+=
+ng^{n-1} = \frac{d}{dz}z=1
+\qquad\Rightarrow\qquad
+\frac{d}{dz}g = \frac{1}{ng^{n-1}}.
+\end{equation}
+Es ist also möglich, eine differentielle Algebra $\mathscr{D}$ mit einer
+$n$-ten Wurzel $g$ zu einer grösseren differentiellen Algebra $\mathscr{D}(g)$
+zu erweitern, in der wieder alle Regeln für das Rechnen mit Ableitungen
+erfüllt sind.
+
+\subsubsection{Algebraische Elemente}
+Die Charakterisierung der Wurzelfunktionen passt zwar zum verlangten
+algebraischen Vorgehen, ist aber zu spezielle und nicht gut für die
+nachfolgenden Untersuchengen geeignet.
+Etwas allgemeiner ist der Begriff der algebraischen Elemente.
+
+\begin{definition}
+\label{buch:integrale:def:algebraisches-element}
+Seien $K\subset L$ zwei Körper.
+Ein Element $\alpha \in L$ heisst {\em algebraisch} über $K$,
+wenn $\alpha$ Nullstelle eines Polynoms $p\in K[X]$ mit Koeffizienten
+in $K$ ist.
+\index{algebraisch}%
+\end{definition}
+
+Jedes Element $\alpha\in K$ ist algebraisch, da $\alpha$ Nullstelle
+von $X-\alpha\in K[X]$ ist.
+Die $n$tem Wurzeln eines Elemente $\alpha\in K$ sind ebenfalls algebraisch,
+da sie Nullstellen des Polynoms $p(X) = X^n - \alpha$ sind.
+Allerdings ist nicht klar, dass diese Wurzeln überhaupt existieren.
+Nach dem Satz von Abel~\ref{buch:potenzen:satz:abel} gibt es aber
+Nullstellen von Polynomen, die sich nicht als Wurzelausdrücke schreiben
+lassen.
+Der Begriff der algebraischen Elemente ist also allgemeiner als der
+Begriff der Wurzel.
+
+\begin{definition}
+\label{buch:integrale:def:algebraisch-abgeschlossen}
+Ein Körper $K$ heisst {\em algebraisch abgeschlossen}, wenn jedes Polynom mit
+Koeffizienten in $K$ eine Nullstelle in $K$ hat.
+\end{definition}
+
+Der Körper $\mathbb{C}$ ist nach dem
+Fundamentalsatz~\label{buch:potenzen:satz:fundamentalsatz}
+der Algebra algebraisch abgeschlossen.
+Da wir aber mit Funktionen arbeiten, müssen wir auch Wurzeln
+von Funktionen finden können.
+Dies ist nicht selbstverständlich, wie das folgende Beispiel zeigt.
+
+\begin{beispiel}
+Es gibt keine stetige Funktion $f\colon \mathbb{C}\to\mathbb{C}$, die
+die Gleichung $f(z)^2 = z$ und $f(1)=1$ erfüllt.
+Für die Argumente $z(t)= e^{it}$ folgt, dass $f(z(t)) = e^{it/2}$ sein
+muss.
+Setzt man aber $t=\pm \pi$ ein, ergeben sich die Werte
+$f(z(\pm\pi))=e^{\pm i\pi/2}=\pm 1$, die beiden Grenzwerte
+für $t\to\pm\pi$ sind also verschieden.
+\end{beispiel}
+
+Die Mathematik hat verschiedene ``Tricks'' entwickelt, wie mit diesem
+Problem umgegangen werden kann: Funktionskeime, Garben, Riemannsche
+Flächen.
+Sie sind alle gleichermassen gut geeignet, das Problem zu lösen.
+Für die vorliegende Aufgabe genügt es aber, dass es tatsächlich
+immer ein wie auch immer geartetes Element gibt, welches Nullstelle
+des Polynoms ist.
+
+Ist $f$ eine Nullstelle des Polynoms $p(X)$ mit Koeffizienten in
+$\mathscr{D}$, dann kann man die Ableitung wie folgt berechnen.
+Zunächst leitet man $p(f)$ ab:
+\begin{align}
+0&=
+\frac{d}{dz}(a_nf^n + a_{n-1}f^{n-1}+\ldots+a_1f+a_0)
+\notag
+\\
+&=
+a_n'f^n + a_{n-1}'f^{n-1}+\ldots+a_1'f+a_0'
++
+na_nf^{n-1}f'
++
+(n-1)a_nf^{n-2}f'
++
+\ldots
++
+a_2ff'
++
+a_1f'
+\notag
+\\
+&=
+a_n'f^n + a_{n-1}'f^{n-1}+\ldots+a_1'f+a_0'
++
+(
+na_nf^{n-1}
++
+(n-1)a_nf^{n-2}
++
+\ldots
++
+a_2f
++
+a_1
+)f'
+\notag
+\\
+\Rightarrow
+\qquad
+f'&=\frac{
+a_n'f^n + a_{n-1}'f^{n-1}+\dots+a_1'f+a_0'
+}{
+na_nf^{n-1}
++
+(n-1)a_nf^{n-2}
++
+\dots
++
+a_1
+}.
+\label{buch:integrale:eqn:algabl}
+\end{align}
+Das einzige, was dabei schief gehen könnte ist, dass der Nenner ebenfalls
+verschwindet.
+Dieses Problem kann man dadurch lösen, dass man als Polynom das
+sogenannte Minimalpolynom verwendet.
+
+\begin{definition}
+Das {\em Minimalpolynome} $m(X)$ eines algebraischen Elementes $\alpha$ ist
+das Polynom kleinsten Grades, welches $m(\alpha)=0$ erfüllt.
+\end{definition}
+
+Da das Minimalpolynom den kleinstmöglichen Grad hat, kann der Nenner
+von~\eqref{buch:integrale:eqn:algabl},
+der noch kleineren Grad hat, unmöglich verschwinden.
+Das Minimalpolynom ist auch im wesentlichen eindeutig.
+Gäbe es nämlich zwei verschiedene Minimalpolynome $m_1$ und $m_2$,
+dann müsste $\alpha$ auch eine Nullstelle des grössten gemeinsamen
+Teilers $m_3=\operatorname{ggT}(m_1,m_2)$ sein.
+Wären die beiden Polynome wesentlich verschieden, dann hätte $m_3$
+kleineren Grad, im Widerspruch zur Definition des Minimalpolynoms.
+Also unterscheiden sich die beiden Polynome $m_1$ und $m_2$ nur um
+einen skalaren Faktor.
+
+\subsubsection{Konjugation, Spur und Norm}
+% Konjugation, Spur und Norm
+Das Minimalpolynom eines algebraischen Elementes ist nicht
+eindeutig bestimmt.
+Zum Beispiel ist $\sqrt{2}$ algebraisch über $\mathbb{Q}$, das
+Minimalpolynom ist $m(X)=X^2-2\in\mathbb{Q}[X]$.
+Es hat aber noch eine zweite Nullstelle $-\sqrt{2}$.
+Mit rein algebraischen Mitteln sind die beiden Nullstellen $\pm\sqrt{2}$
+nicht zu unterscheiden, erst die Verwendung der Vergleichsrelation
+ermöglicht, sie zu unterscheiden.
+
+Dasselbe gilt für die imaginäre Einheit $i$, die das Minimalpolynom
+$m(X)=X^2+1\in\mathbb{R}[X]$ hat.
+Hier gibt es nicht einmal mehr eine Vergleichsrelation, mit der man
+die beiden Nullstellen unterscheiden könnte.
+In der Tat ändert sich aus algebraischer Sicht nichts, wenn man in
+allen Formeln $i$ durch $-i$ ersetzt.
+
+Etwas komplizierter wird es bei $\root{3}\of{2}$.
+Das Polynom $m=x^3-2\in\mathbb{Q}[X]$ hat $\root{3}\of{2}$ als
+Nullstelle und dies ist auch tatsächlich das Minimalpolynom.
+Das Polynom hat noch zwei weitere Nullstellen
+\[
+\alpha_+ = \frac{-1+i\sqrt{3}}{2}\root{3}\of{2}
+\qquad\text{und}\qquad
+\alpha_- = \frac{-1-i\sqrt{3}}{2}\root{3}\of{2}.
+\]
+Die beiden Lösungen gehen durch die Vertauschung von $i$ und $-i$
+auseinander hervor.
+Betrachtet man dasselbe Polynom aber als Polynom in $\mathbb{R}[X]$,
+dann ist es nicht mehr das Minimalpolynom von $\root{3}\of{2}$, da
+$X-\root{3}\of{2}\in\mathbb{R}[X]$ kleineren Grad und $\root{3}\of{2}$
+als Nullstelle hat.
+Indem man
+\[
+m(X)/(X-\root{3}\of{2})=X^2+\root{3}\of{2}X+\root{3}\of{2}^2=m_2(X)
+\]
+rechnet, bekommt man das Minimalpolynom der beiden Nullstellen $\alpha_+$
+und $\alpha_-$.
+Wir lernen aus diesen Beispielen, dass das Minimalpolynom vom Grundkörper
+abhängig ist (Die Faktorisierung $(X-\root{3}\of{2})\cdot m_2(X)$ von
+$m(X)$ ist in $\mathbb{Q}[X]$ nicht möglich) und dass wir keine
+algebraische Möglichkeit haben, die verschiedenen Nullstellen des
+Minimalpolynoms zu unterscheiden.
+
+Die beiden Nullstellen $\alpha_+$ und $\alpha_-$ des Polynoms $m_2(X)$
+erlauben, $m_2(X)=(X-\alpha_+)(X-\alpha_-)$ zu faktorisieren.
+Durch Ausmultiplizieren
+\[
+(X-\alpha_+)(X-\alpha_-)
+=
+X^2 -(\alpha_++\alpha_-)X+\alpha_+\alpha_-
+\]
+und Koeffizientenvergleich mit $m_2(X)$ findet man die symmetrischen
+Formeln
+\[
+\alpha_+ + \alpha_- = \root{3}\of{2}
+\qquad\text{und}\qquad
+\alpha_+ \alpha_ = \root{3}\of{2}.
+\]
+Diese Ausdrücke sind nicht mehr abhängig von einer speziellen Wahl
+der Nullstellen.
+
+Das Problem verschärft sich nocheinmal, wenn wir Funktionen betrachten.
+Das Polynom $m(X)=X^3-z$ ist das Minimalpolynom der Funktion $\root{3}\of{z}$.
+Die komplexe Zahl $z=re^{i\varphi}$ hat aber drei die algebraisch nicht
+unterscheidbaren Nullstellen
+\[
+\alpha_0(z)=\root{3}\of{r}e^{i\varphi/3},
+\quad
+\alpha_1(z)=\root{3}\of{r}e^{i\varphi/3+2\pi/3}
+\qquad\text{und}\qquad
+\alpha_2(z)=\root{3}\of{r}e^{i\varphi/3+4\pi/3}.
+\]
+Aus der Faktorisierung $ (X-\alpha_0(z)) (X-\alpha_1(z)) (X-\alpha_2(z))$
+und dem Koeffizientenvergleich mit dem Minimalpolynom kann man wieder
+schliessen, dass die Relationen
+\[
+\alpha_0(z) + \alpha_1(z) + \alpha_2(z)=0
+\qquad\text{und}\qquad
+\alpha_0(z) \alpha_1(z) \alpha_2(z) = z
+\]
+gelten.
+
+Wir können also oft keine Aussagen über individuelle Nullstellen
+eines Minimalpolynoms machen, sondern nur über deren Summe oder
+Produkt.
+
+\begin{definition}
+\index{buch:integrale:def:spur-und-norm}
+Sie $m(X)\in K[X]$ das Minimalpolynom eines über $K$ algebraischen
+Elements und
+\[
+m(X) = a_nX^n + a_{n-1}X^{n-1} + \ldots + a_1X + a_0.
+\]
+Dann heissen
+\[
+\operatorname{Tr}(\alpha) = -a_{n-1}
+\qquad\text{und}\qquad
+\operatorname{Norm}(\alpha) = (-1)^n a_0
+\]
+die {\em Spur} und die {\em Norm} des Elementes $\alpha$.
+\index{Spur eines algebraischen Elementes}%
+\index{Norm eines algebraischen Elementes}%
+\end{definition}
+
+Die Spur und die Norm können als Spur und Determinante einer Matrix
+verstanden werden, diese allgemeineren Definitionen, die man in der
+Fachliteratur, z.~B.~in~\cite{buch:lang} nachlesen kann, führen aber
+für unsere Zwecke zu weit.
+
+\begin{hilfssatz}
+Die Ableitungen von Spur und Norm sind
+\[
+\operatorname{Tr}(\alpha)'
+=
+\operatorname{Tr}(\alpha')
+\qquad\text{und}\qquad
+\operatorname{Norm}(\alpha)'
+=
+\operatorname{Tr}(\alpha)'
+\]
+XXX Wirklich?
+\end{hilfssatz}
+
+\subsubsection{Logarithmen und Exponentialfunktionen}
+Die Funktion $z^{-1}$ musste im
+Satz~\ref{buch:integrale:satz:potenzstammfunktion}
+ausgeschlossen werden, sie hat keine Stammfunktion in $\mathbb{C}(z)$.
+Aus der Analysis ist bekannt, dass die Logarithmusfunktion $\log z$
+eine Stammfunktion ist.
+Der Logarithmus von $z$ aber auch der Logarithmus $\log f(z)$
+einer beliebigen Funktion $f(z)$ oder die Exponentialfunktion $e^{f(z)}$
+sollen ebenfalls elementare Funktionen sein.
+Da wir aber auch hier nicht auf die analytischen Eigenschaften zurückgreifen
+wollen, brauchen wir ein rein algebraische Definition.
+
+\begin{definition}
+\label{buch:integrale:def:logexp}
+Sei $\mathscr{D}$ ein differentielle Algebra und $f\in\mathscr{D}$.
+Ein Element $\vartheta\in\mathscr{D}$ heisst ein {\em Logarithmus}
+von $f$, geschrieben $\vartheta = \log f$, wenn $f\vartheta' = f'$ gilt.
+$\vartheta$ heisst eine Exponentialfunktion von $f$ wenn
+$\vartheta'=\vartheta f'$ gilt.
+\end{definition}
+
+Die Formel für die Exponentialfunktion ist etwas vertrauter, sie ist
+die bekannte Kettenregel
+\begin{equation}
+\vartheta'
+=
+\frac{d}{dz} e^f
+=
+e^f \cdot \frac{d}{dz} f
+=
+\vartheta \cdot f'.
+\label{buch:integrale:eqn:exponentialableitung}
+\end{equation}
+Da wir uns vorstellen, dass Logarithmen Umkehrfunktionen von
+Exponentialfunktionen sein sollen,
+muss die definierende Gleichung genau wie
+\eqref{buch:integrale:eqn:exponentialableitung}
+aussehen, allerdings mit vertauschten Plätzen von $f$ und $\vartheta$,
+also
+\begin{equation}
+\vartheta' = \vartheta\cdot f'
+\qquad
+\rightarrow
+\qquad
+f' = f\cdot \vartheta'
+\;\Leftrightarrow\;
+\vartheta' = (\log f)' = \frac{f'}{f}.
+\label{buch:integrale:eqn:logarithmischeableitung}
+\end{equation}
+Dies ist die aus der Analysis bekannte Formel für die logarithmische
+Ableitung.
+
+Der Logarithmus von $f$ und die Exponentialfunktion von $f$ sollen
+also ebenfalls als elementare Funktionen betrachtet werden.
+
+\subsubsection{Die trigonometrischen Funktionen}
+Die bekannten trigonometrischen Funktionen und ihre Umkehrfunktionen
+sollten natürlich auch elementare Funktionen sein.
+Dabei kommt uns zur Hilfe, dass sie sich mit Hilfe der Exponentialfunktion
+als
+\[
+\cos f = \frac{e^{if}+e^{-if}}2
+\qquad\text{und}\qquad
+\sin f = \frac{e^{if}-e^{-if}}{2i}
+\]
+schreiben lassen.
+Eine differentielle Algebra, die die Exponentialfunktionen von $if$ und
+$-if$ enthält, enthält also automatisch auch die trigonometrischen
+Funktionen.
+Im Folgenden ist es daher nicht mehr nötig, die trigonometrischen
+Funktionen speziell zu untersuchen.
+
+\subsubsection{Elementare Funktionen}
+Damit sind wir nun in der Lage, den Begriff der elementaren Funktion
+genau zu fassen.
+
+\begin{definition}
+\label{buch:integrale:def:einfache-elementare-funktion}
+Sie $\mathscr{D}$ eine differentielle Algebra über $\mathbb{C}$ und
+$\mathscr{D}(\vartheta)$ eine Erweiterung von $\mathscr{D}$ um eine
+neue Funktion $\vartheta$, dann heissen $\vartheta$ und die Elemente
+von $\mathscr{D}(\vartheta)$ einfach elementar, wenn eine der folgenden
+Bedingungen erfüllt ist:
+\begin{enumerate}
+\item $\vartheta$ ist algebraisch über $\mathscr{D}$, d.~h.~$\vartheta$
+ist eine ``Wurzel''.
+\item $\vartheta$ ist ein Logarithmus einer Funktion in $\mathscr{D}$,
+d.~h.~es gibt $f\in \mathscr{D}$ mit $f'=f\vartheta'$
+(Definition~\ref{buch:integrale:def:logexp}).
+\item $\vartheta$ ist eine Exponentialfunktion einer Funktion in $\mathscr{D}$,
+d.~h.~es bit $f\in\mathscr{D}$ mit $\vartheta'=\vartheta f'$
+(Definition~\ref{buch:integrale:def:logexp}).
+\end{enumerate}
+\end{definition}
+
+Einfache elementare Funktionen entstehen also ausgehend von einer
+differentiellen Algebra, indem man genau einmal eine Wurzel, einen
+Logarithmus oder eine Exponentialfunktion hinzufügt.
+So etwas wie die zusammengesetzte Funktion $e^{\sqrt{z}}$ ist
+damit noch nicht möglich.
+Daher erlauben wir, dass man die gesuchten Funktionen in mehreren
+Schritten aufbauen kann.
+
+\begin{definition}
+Sei $\mathscr{F}$ eine differentielle Algebra, die die differentielle
+Algebra $\mathscr{D}$ enthält, also $\mathscr{D}\subset\mathscr{F}$.
+$\mathscr{F}$ und die Elemente von $\mathscr{F}$ heissen einfach,
+wenn es endlich viele Elemente $\vartheta_1,\dots,\vartheta_n$ gibt
+derart, dass
+\[
+\renewcommand{\arraycolsep}{2pt}
+\begin{array}{ccccccccccccc}
+\mathscr{D}
+&\subset&
+\mathscr{D}(\vartheta_1)
+&\subset&
+\mathscr{D}(\vartheta_1,\vartheta_2)
+&\subset&
+\;
+\cdots
+\;
+&\subset&
+\mathscr{D}(\vartheta_1,\vartheta_2,\dots,\vartheta_{n-1})
+&\subset&
+\mathscr{D}(\vartheta_1,\vartheta_2,\dots,\vartheta_{n-1},\vartheta_n)
+&=&
+\mathscr{F}
+\\
+\|
+&&
+\|
+&&
+\|
+&&
+&&
+\|
+&&
+\|
+&&
+\\
+\mathscr{F}_0
+&\subset&
+\mathscr{F}_1
+&\subset&
+\mathscr{F}_2
+&\subset&
+\cdots
+&\subset&
+\mathscr{F}_{n-1}
+&\subset&
+\mathscr{F}_{n\mathstrut}
+&&
+\end{array}
+\]
+gilt so, dass jedes $\vartheta_{i+1}$ einfach ist über
+$\mathscr{F}_i=\mathscr{D}(\vartheta_1,\dots,\vartheta_i)$.
+\end{definition}
+
+In Worten bedeutet dies, dass man den Funktionen von $\mathscr{D}$
+nacheinander Wurzeln, Logarithmen oder Exponentialfunktionen einzelner
+Funktionen hinzufügt.
+Die Aufgabe~\ref{buch:integrale:aufgabe:existenz-stammfunktion} kann
+jetzt so formuliert werden.
+
+\begin{aufgabe}
+\label{buch:integrale:aufgabe:existenz-stammfunktion-dalg}
+Gegeben ist eine Differentielle Algebra $\mathscr{D}$ und eine
+Funktion $f\in \mathscr{D}$.
+Gibt es eine Folge $\vartheta_1,\dots,\vartheta_n$ und eine Funktion
+$F\in\mathscr{D}(\vartheta_1,\dots,\vartheta_n)$ derart, dass
+$F'=f$.
+\end{aufgabe}
+
+Das folgende Beispiel zeigt, wie man möglicherweise mehrere
+Erweiterungsschritte vornehmen muss, um zu einer Stammfunktion
+zu kommen.
+Es illustriert auch die zentrale Rolle, die der Partialbruchzerlegung
+in der weiteren Entwicklung zukommen wird.
+
+\begin{beispiel}
+\label{buch:integrale:beispiel:nichteinfacheelementarefunktion}
+Es soll eine Stammfunktion der Funktion
+\[
+f(z)
+=
+\frac{z}{(az+b)(cz+d)}
+\in
+\mathbb{C}(z)
+\]
+gefunden werden.
+In der Analysis lernt man, dass solche Integrale mit der
+Partialbruchzerlegung
+\[
+\frac{z}{(az+b)(cz+d)}
+=
+\frac{A_1}{az+b}+\frac{A_2}{cz+d}
+=
+\frac{A_1cz+A_1d+A_2az+A_2b}{(az+b)(cz+d)}
+\quad\Rightarrow\quad
+\left\{
+\renewcommand{\arraycolsep}{2pt}
+\begin{array}{rcrcr}
+cA_1&+&aA_2&=&1\\
+dA_1&+&bA_2&=&0
+\end{array}
+\right.
+\]
+bestimmt werden.
+Die Lösung des Gleichungssystems ergibt
+$A_1=b/(bc-ad)$ und $A_2=d/(ad-bc)$.
+Die Stammfunktion kann dann aus
+\begin{align*}
+\int f(z)\,dz
+&=
+\int\frac{A_1}{az+b}\,dz
++
+\int\frac{A_2}{cz+d}\,dz
+=
+\frac{A_1}{a}\int\frac{a}{az+b}\,dz
++
+\frac{A_2}{c}\int\frac{c}{cz+d}\,dz
+\end{align*}
+bestimmt werden.
+In den Integralen auf der rechten Seite ist der Zähler jeweils die
+Ableitung des Nenners, der Integrand hat also die Form $g'/g$.
+Genau diese Form tritt in der Definition eines Logarithmus auf.
+Die Stammfunktion ist jetzt
+\[
+F(z)
+=
+\int f(z)\,dz
+=
+\frac{A_1}{a}\log(az+b)
++
+\frac{A_2}{c}\log(cz+d)
+=
+\frac{b\log(az+b)}{a(bc-ad)}
++
+\frac{d\log(cz+d)}{c(ad-bc)}.
+\]
+Die beiden Logarithmen kann man nicht durch rein rationale Operationen
+ineinander überführen.
+Sie müssen daher beide der Algebra $\mathscr{D}$ hinzugefügt werden.
+\[
+\left.
+\begin{aligned}
+\vartheta_1&=\log(az+b)\\
+\vartheta_2&=\log(cz+d)
+\end{aligned}
+\quad
+\right\}
+\qquad\Rightarrow\qquad
+F(z) \in \mathscr{F}=\mathscr{D}(\vartheta_1,\vartheta_2).
+\]
+Die Stammfunktion $F(z)$ ist also keine einfache elementare Funktion,
+aber $F$ ist immer noch eine elementare Funktion.
+\end{beispiel}
+
+\subsection{Partialbruchzerlegung
+\label{buch:integrale:section:partialbruchzerlegung}}
+Die Konstruktionen des letzten Abschnitts haben gezeigt,
+wie man die Funktionen, die man als Stammfunktionen einer Funktion
+zulassen möchte, schrittweise konstruieren kann.
+Die Aufgabe~\ref{buch:integrale:aufgabe:existenz-stammfunktion-dalg}
+ist eine rein algebraische Formulierung der ursprünglichen
+Aufgabe~\ref{buch:integrale:aufgabe:existenz-stammfunktion}.
+Schliesslich hat das Beispiel auf
+Seite~\pageref{buch:integrale:beispiel:nichteinfacheelementarefunktion}
+gezeigt, dass es im allgemeinen mehrere Schritte braucht, um zu einer
+elementaren Stammfunktion zu gelangen.
+Die Lösung setzt sich aus den Termen der Partialbruchzerlegung.
+In diesem Abschnitt soll diese genauer studiert werden.
+
+In diesem Abschnitt gehen wir immer von einer differentiellen
+Algebra über den komplexen Zahlen aus und verlangen, dass die
+Konstanten in allen betrachteten differentiellen Algebren
+$\mathbb{C}$ sind.
+
+\subsubsection{Monome}
+Die beiden Funktionen $\vartheta-1=\log(az+b)$ und $\vartheta_2=(cz+d)$,
+die im Beispiel hinzugefügt werden mussten, verhalten sich ich algebraischer
+Hinsicht wie ein Monom: man kann es nicht faktorisieren oder bereits
+bekannte Summanden aufspalten.
+Solchen Funktionen kommt eine besondere Bedeutung zu.
+
+\begin{definition}
+\label{buch:integrale:def:monom}
+Die Funktion $\vartheta$ heisst ein Monom, wenn $\vartheta$ nicht
+algebraisch ist über $\mathscr{D}$ und $\mathscr{D}(\vartheta)$ die
+gleichen Konstanten enthält wie $\mathscr{D}$.
+\end{definition}
+
+\begin{beispiel}
+Als Beispiel beginnen wir mit den komplexen Zahlen $\mathbb{C}$
+und fügen die Funktion $\vartheta_1=z$ hinzu und erhalten
+$\mathscr{D}=\mathbb{C}(z)$.
+Die Funktionen $z^k$ sind für alle $k$ linear unabhängig, d.~h.~es
+gibt keinen Ausdruck
+\[
+a_nz^n + a_{n-1}z^{n-1}+\cdots+a_1z+a_0=0.
+\]
+Dies ist gleichbedeutend damit, dass $z$ nicht algebraisch ist.
+Das Monom $z$ ist also auch ein Monom im Sinne der
+Definition~\ref{buch:integrale:def:monom}.
+\end{beispiel}
+
+\begin{beispiel}
+Wir beginnen wieder mit $\mathbb{C}$ und fügen die Funktion
+$e^z$ hinzu.
+Gäbe es eine Beziehung
+\[
+b_m(e^z)^m + b_{m-1}(e^z)^{m-1}+\dots+b_1e^z + b_0=0
+\]
+mit komplexen Koeffizienten $b_i\in\mathbb{C}$,
+dann würde daraus durch Einsetzen von $z=1$ die Relation
+\[
+b_me^m + b_{m-1}e^{m-1} + \dots + b_1e + b_0=0,
+\]
+die zeigen würde, dass $e$ eine algebraische Zahl ist.
+Es ist aber bekannt, dass $e$ transzendent ist.
+Dieser Widersprich zeigt, dass $e^z$ ein Monom ist.
+\end{beispiel}
+
+\begin{beispiel}
+Jetzt fügen wir die Exponentialfunktion $\vartheta_2=e^z$
+der differentiellen Algebra $\mathscr{D}=\mathbb{C}(z)$ hinzu
+und erhalten $\mathscr{F}_1=\mathscr{D}(e^z) = \mathbb{C}(z,e^z)$.
+Gäbe es das Minimalpolynom
+\begin{equation}
+b_m(z)(e^z)^m + b_{m-1}(z)(e^z)^{m-1}+\dots+b_1(z)e^z + b_0(z)=0
+\label{buch:integrale:beweis:exp-analytisch}
+\end{equation}
+mit Koeffizienten $b_i\in\mathbb{C}(z)$, dann könnte man mit dem
+gemeinsamen Nenner der Koeffizienten durchmultiplizieren und erhielte
+eine Relation~\eqref{buch:integrale:beweis:exp-analytisch} mit
+Koeffizienten in $\mathbb{C}[z]$.
+Dividiert man durch $e^{mz}$ erhält man
+\[
+b_m(z) + b_{m-1}(z)\frac{1}{e^z} + \dots + b_1(z)\frac{1}{(e^z)^{m-1}} + b_0(z)\frac{1}{(e^z)^m}=0.
+\]
+Aus der Analysis weiss man, dass die Exponentialfunktion schneller
+anwächst als jedes Polynom, alle Terme auf der rechten Seite
+konvergieren daher gegen 0 für $z\to\infty$.
+Das bedeutet, dass $b_m(z)\to0$ für $z\to \infty$.
+Das Polynom~\eqref{buch:integrale:beweis:exp-analytisch} wäre also gar
+nicht das Minimalpolynom.
+Dieser Widerspruch zeigt, dass $e^z$ nicht algebraisch ist über
+$\mathbb{C}(z)$ und damit ein Monom ist\footnote{Etwas unbefriedigend
+an diesem Argument ist, dass man hier wieder rein analytische statt
+algebraische Eigenschaften von $e^z$ verwendet.
+Gäbe es aber eine minimale Relation wie
+\eqref{buch:integrale:beweis:exp-analytisch}
+mit Polynomkoeffizienten, dann wäre sie von der Form
+\[
+P(z,e^z)=p(z)(e^z)^m + q(z,e^z)=0,
+\]
+wobei Grad von $e^z$ in $q$ höchstens $m-1$ ist.
+Die Ableitung wäre dann
+\[
+Q(z,e^z)
+=
+mp(z)(e^z)^m + p'(z)(e^z)^m + r(z,e^z)
+=
+(mp(z) + p'(z))(e^z)^m + r(z,e^z)
+=0,
+\]
+wobei der Grad von $e^z$ in $r$ wieder höchstens $m-1$ ist.
+Bildet man $mP(z,e^z) - Q(z,e^z) = 0$ ensteht eine Relation,
+in der der Grad des Koeffizienten von $(e^z)^m$ um eins abgenommen hat.
+Wiederholt man dies $m$ mal, verschwindet der Term $(e^z)^m$, die
+Relation~\eqref{buch:integrale:beweis:exp-analytisch}
+war also gar nicht minimal.
+Dieser Widerspruch zeigt wieder, dass $e^z$ nicht algebraisch ist,
+verwendet aber nur die algebraischen Eigenschaften der differentiellen
+Algebra.
+}.
+\end{beispiel}
+
+\begin{beispiel}
+Wir hätten auch in $\mathbb{Q}$ arbeiten können und $\mathbb{Q}$
+erst die Exponentialfunktion $e^z$ und dann den Logarithmus $z$ von $e^z$
+hinzufügen können.
+Es gibt aber noch weitere Logarithmen von $e^z$ zum Beispiel $z+2\pi i$.
+Offenbar ist $\psi=z+2\pi i\not\in \mathbb{Q}(z,e^z)$, wir könnten also
+auch noch $\psi$ hinzufügen.
+Zwar ist $\psi$ auch nicht algebraisch, aber wenn wir $\psi$ hinzufügen,
+dann wird aber die Menge der Konstanten grösser, sie umfasst jetzt
+$\mathbb{Q}(2\pi i)$.
+Die Bedingung in der Definition~\ref{buch:integrale:def:monom},
+dass die Menge der Konstanten nicht grösser werden darf, ist also
+verletzt.
+
+Hätte man mit $\mathbb{Q}(e^z, z+2\pi i)$ begonnen, wäre $z$ aus
+dem gleichen Grund kein Monom, aber $z+2\pi i$ wäre eines im Sinne
+der Definition~\ref{buch:integrale:def:monom}.
+In allen Rechnungen könnte man $\psi=z+2\pi i$ nicht weiter aufteilen,
+da $\pi$ oder seine Potenzen keine Elemente von $\mathbb{Q}(e^z)$ sind.
+\end{beispiel}
+
+Da wir im Folgenden davon ausgehen, dass die Konstanten unserer
+differentiellen Körper immer $\mathbb{C}$ sind, wird es jeweils
+genügen zu untersuchen, ob eine neu hinzuzufügende Funktion algebraisch
+ist oder nicht.
+
+\subsubsection{Ableitungen von Polynomen und rationalen Funktionen von Monomen}
+Fügt man einer differentiellen Algebra ein Monom hinzu, dann lässt
+sich etwas mehr über Ableitungen von Polynomen oder Brüchen in diesen
+Monomen sagen.
+Diese Eigenschaften werden später bei der Auflösung der Partialbruchzerlegung
+nützlich sein.
+
+\begin{satz}
+\label{buch:integrale:satz:polynom-ableitung-grad}
+Sei
+\[
+P
+=
+A_nX^n + A_{n-1}X^{n-1} + \dots A_1X+A_0
+\in\mathscr{D}[X]
+\]
+ein Polynom mit Koeffizienten in einer differentiellen Algebra $\mathscr{D}$
+und $\vartheta$ ein Monom über $\mathscr{D}$.
+Dann gilt
+\begin{enumerate}
+\item
+\label{buch:integrale:satz:polynom-ableitung-grad-log}
+Falls $\vartheta=\log f$ ist, ist $P(\vartheta)'$ ein
+Polynom vom Grad $n$ in $\vartheta$, wenn der Leitkoeffizient $A_n$
+nicht konstant ist, andernfalls ein Polynom vom Grad $n-1$.
+\item
+\label{buch:integrale:satz:polynom-ableitung-grad-exp}
+Falls $\vartheta = \exp f$ ist, dann ist $P(\vartheta)'$ ein Polynom
+in $\vartheta$ vom Grad $n$.
+\end{enumerate}
+\end{satz}
+
+Der Satz macht also genaue Aussagen darüber, wie sich der Grad eines
+Polynoms in $\vartheta$ beim Ableiten ändert.
+
+\begin{proof}[Beweis]
+Für Exponentialfunktion ist $\vartheta'=\vartheta f'$, die Ableitung
+fügt also einfach einen Faktor $f'$ hinzu.
+Terme der Form $A_k\vartheta^k$ haben die Ableitung
+\[
+(A_k\vartheta^k)
+=
+A'_k\vartheta^k + A_kk\vartheta^{k-1}\vartheta'
+=
+A'_k\vartheta^k + A_kk\vartheta^{k-1}\vartheta f'
+=
+(A'_k + kA_k f)\vartheta^k.
+\]
+Damit wird die Ableitung des Polynoms
+\begin{equation}
+P(\vartheta)'
+=
+\underbrace{(A'_n+nA_nf')\vartheta^n}_{\displaystyle=(A_n\vartheta^n)'}
++
+(A'_{n-1}+(n-1)A_{n-1}f')\vartheta^{n-1}
++ \dots +
+(A'_1+A_1f')\vartheta + A_0'.
+\label{buch:integrale:ableitung:polynom}
+\end{equation}
+Der Grad der Ableitung kann sich also nur ändern, wenn $A_n'+nA_nf'=0$ ist.
+Dies bedeutet aber wegen
+\(
+(A_n\vartheta^n)'
+=
+0
+\), dass $A_n\vartheta^n=c$ eine Konstante ist.
+Da alle Konstanten bereits in $\mathscr{D}$ sind, folgt, dass
+\[
+\vartheta^n=\frac{c}{A_n}
+\qquad\Rightarrow\qquad
+\vartheta^n - \frac{c}{A_n}=0,
+\]
+also wäre $\vartheta$ algebraisch über $\mathscr{D}$, also auch kein Monom.
+Dieser Widerspruch zeigt, dass der Leitkoeffizient nicht verschwinden kann.
+
+Für die erste Aussage ist die Ableitung der einzelnen Terme des Polynoms
+\[
+(A_k\vartheta^k)'
+=
+A_k'\vartheta^k + A_kk\vartheta^{k-1}\vartheta'
+=
+A_k'\vartheta^k + A_kk\vartheta^{k-1}\frac{f'}{f}
+=
+\biggl(A_k'\vartheta + kA_k\frac{f'}{f}\biggr)\vartheta^{k-1}.
+\]
+Die Ableitung des Polynoms ist daher
+\[
+P(\vartheta)'
+=
+A_n'\vartheta^n + \biggl(nA_n\frac{f'}{f}+ A'_{n-1}\biggr)\vartheta^{n-1}+\dots
+\]
+Wenn $A_n$ keine Konstante ist, ist $A_n'\ne 0$ und der Grad von
+$P(\vartheta)'$ ist $n$.
+Wenn $A_n$ eine Konstante ist, müssen wir noch zeigen, dass der nächste
+Koeffizient nicht verschwinden kann.
+Wäre der zweite Koeffizient $=0$, dann wäre die Ableitung
+\[
+(nA_n\vartheta+A_{n-1})'
+=
+nA_n\vartheta'+A'_{n-1}
+=
+nA_n\frac{f'}{f}+A'_{n-1}
+=
+0,
+\]
+d.h. $nA_n\vartheta+A_{n-1}=c$ wäre eine Konstante.
+Da alle Konstanten schon in $\mathscr{D}$ sind, müsste auch
+\[
+\vartheta = \frac{c-A_{n-1}}{nA_n} \in \mathscr{D}
+\]
+sein, wieder wäre $\vartheta$ kein Monom.
+\end{proof}
+
+Der nächste Satz gibt Auskunft über den führenden Term in
+$(\log P(\vartheta))' = P(\vartheta)'/P(\vartheta)$.
+
+\begin{satz}
+\label{buch:integrale:satz:log-polynom-ableitung-grad}
+Sei $P$ ein Polynom vom Grad $n$ wie in
+\label{buch:integrale:satz:log-polynom-ableitung}
+welches zusätzlich normiert ist, also $A_n=1$.
+\begin{enumerate}
+\item
+\label{buch:integrale:satz:log-polynom-ableitung-log}
+Ist $\vartheta=\log f$, dann ist
+$(\log P(\vartheta))' = P(\vartheta)'/P(\vartheta)$ und $P(\vartheta)'$
+hat Grad $n-1$.
+\item
+\label{buch:integrale:satz:log-polynom-ableitung-exp}
+Ist $\vartheta=\exp f$, dann gibt es ein Polynom $N(\vartheta)$ so, dass
+$(\log P(\vartheta))'
+=
+P(\vartheta)'/P(\vartheta)
+=
+N(\vartheta)/P(\vartheta)+nf'$
+ist.
+Falls $P(\vartheta)=\vartheta$ ist $N=0$, andernfalls ist $N(\vartheta)$
+ein Polynom vom Grad $<n$.
+\end{enumerate}
+\end{satz}
+
+\begin{proof}[Beweis]
+Die Gleichung $(\log P(\vartheta))'=P(\vartheta)'/P(\vartheta)$ ist die
+Definition eines Logarithmus, es geht also vor allem um die Frage
+des Grades von $P(\vartheta)'$.
+Da der Leitkoeffizient als $1$ und damit konstant vorausgesetzt wurde,
+folgt die Behauptung \ref{buch:integrale:satz:log-polynom-ableitung-log}
+aus
+Aussage \ref{buch:integrale:satz:polynom-ableitung-grad-log}
+von Satz~\ref{buch:integrale:satz:polynom-ableitung-grad}.
+
+Für Aussage \ref{buch:integrale:satz:log-polynom-ableitung-exp}
+beachten wir wieder die
+Ableitungsformel~\eqref{buch:integrale:ableitung:polynom}
+und berücksichtigen, dass $A_n=1$ eine Konstante ist.
+Da $A_n'=0$ ist, wird
+\begin{align*}
+P(\vartheta)'
+&=
+nA_n\vartheta^n f' + \text{Terme niedrigeren Grades in $\vartheta$}.
+\intertext{Das Polynom $nf'P(\vartheta)$ hat den gleichen Term vom
+Grad $n$, man kann also $P(\vartheta)'$ auch schreiben als}
+&=
+nf'
+P(\vartheta)
++
+\underbrace{
+\text{Terme niedrigeren Grades in $\vartheta$}}_{\displaystyle=N(\vartheta)}.
+\end{align*}
+Division durch $P(\vartheta)$ ergibt die versprochene Formel.
+
+Im Fall $P(\vartheta)=\vartheta$ ist $n=1$ und
+$(\log P(\vartheta))'=P(\vartheta)'/P(\vartheta)
+=
+\vartheta f'/\vartheta
+=
+nf'$ und somit $N(\vartheta)=0$.
+\end{proof}
+
+\subsubsection{Partialbruchzerlegungen}
+Der vorangegangene Abschnitt hat gezeigt, dass sich Monome im Sinne
+der Definition~\ref{buch:integrale:def:monom} algebraisch wie eine
+unabhängige Variable verhalten.
+Für die Berechnung von Integralen rationaler Funktionen in einer
+Variablen $x$ verwendet
+man die Partialbruchzerlegung, um Brüche mit einfachen Nennern zu
+erhalten.
+Es liegt daher nahe, dieselbe Idee auch auf die
+Monome $\vartheta_i$ zu verwenden.
+Dazu muss man die Brüche besser verstehen, die in einer Partialbruchzerlegung
+vorkommen können.
+
+Eine Partialbruchzerlegung in der Variablen $X$ setzt sich zusammen
+aus Brüchen der Form
+\begin{equation}
+g(X)
+=
+\frac{P(X)}{Q(X)^r},
+\label{buch:integrale:eqn:partialbruch-quotient}
+\end{equation}
+wobei das Nennerpolynom $Q(X)$ ist ein normiertes irreduzibles Polynom
+vom Grad $q$ und $P(X)$ ein beliebiges Polynom vom Grad $p<q$.
+
+Ist der Grad von $P(X)$
+im Quotienten
+\eqref{buch:integrale:eqn:partialbruch-quotient}
+grösser als $q$, dann kann man $P(X)$ um Vielfache von Potenzen von
+$Q(X)$ reduzieren und eine Summe von Termen der Art
+\eqref{buch:integrale:eqn:partialbruch-quotient}
+erhalten, deren Nenner alle Grad $< q$ haben.
+Die Anzahl neu enstehender Terme ist dabei ums grösser, je grösser
+der Grad des Zählers ist.
+Dies ist der Inhalt des folgenden Satzes.
+
+\begin{satz}
+\label{buch:integrale:satz:partialbruch-reduktion}
+Sei $Q(X)$ ein irreduzibles Polynom vom Grad $q$ und $P(X)$ ein beliebiges
+Polynom vom Grad $p < (k+1)q$.
+Dann gibt es Polynome $P_i(X)$, $i=0,\dots,k$, vom Grad $<q$ derart,
+dass
+\begin{equation}
+\frac{P(X)}{Q(X)^r}
+=
+\sum_{i=0}^k \frac{P_i(X)}{Q(X)^{r-i}}.
+\label{buch:integrale:satz:partialbruch-aufgeloest}
+\end{equation}
+\end{satz}
+
+\begin{proof}[Beweis]
+Für $k=0$ ist $p<q$ und es muss nichts weiter gezeigt werden.
+
+Sei jetzt also $k>0$ das kleinste $k$ so, dass $p<(k+1)q$.
+Insbesondere ist dann $kq\le p$.
+Nach dem euklidischen Satz für die Division von $P(X)$ durch $Q(X)^k$
+gibt es ein Polynom $P_k(X)$ vom Grad $\le p-qk$ derart, dass
+\[
+P(X) = P_k(X)Q(X)^k + R_k(X)
+\]
+mit einem Rest $R_k(X)$ vom Grad $<kq$.
+Es folgt
+\[
+\frac{ P(X)}{Q(X)^r}
+=
+\frac{P_k(X)}{Q(X)^{r-k}}
++
+\frac{R_k(X)}{Q(X)^r}.
+\]
+Der zweite Term ist wieder von der im Satz beschriebenen Art, allerdings
+mit einem Wert von $k$, der um $1$ kleiner ist.
+Durch rekursive Anwendung der gleichen Prozedur in $k$ weiteren Schritten
+erhält man die Form
+Das gleiche Argument kann jetzt auf das Polynom $R_k(X)$ anstelle
+von $P(X)$ angewendet werden, erhalt man den Ausdruck
+\eqref{buch:integrale:satz:partialbruch-aufgeloest}.
+\end{proof}
+
+In der differentiellen Algebra $\mathscr{D}(\vartheta)$ muss man jetzt
+auch Bescheid wissen über die Partialbruchzerlegung von Ableitungen solcher
+Terme.
+
+\begin{satz}
+\label{buch:integrale:satz:partialbruch-monom}
+Sei $\vartheta$ ein Monom über $\mathscr{D}$ und
+seien $P(\vartheta),Q(\vartheta)\in\mathscr{D}[\vartheta]$ Polynome,
+wobei $Q(\vartheta)$ ein irreduzibles normiertes Polynom vom Grad $q$
+ist und $P(\vartheta)$ ein beliebiges Polynom vom Grad $p<q$.
+Dann ist die Ableitung
+\begin{equation}
+g(\vartheta)'
+=
+\biggl(
+\frac{P(\vartheta)}{Q(\vartheta)^r}
+\biggr)'
+=
+-r\frac{P(\vartheta)Q(\vartheta)'}{Q(\vartheta)^{r+1}}
++
+\frac{P(\vartheta)'}{Q(\vartheta)^r}.
+\label{buch:integrale:eqn:partialbruch-ableitung}
+\end{equation}
+Falls $\vartheta=\exp f$ eine Exponentialfunktion ist und
+$Q(\vartheta)=\vartheta$, dann hat die Partialbruchzerlegung von $g(X)'$
+die Form
+\begin{equation}
+g(\vartheta)'
+=
+\frac{
+{P(\vartheta)'-rP(\vartheta)f}
+}{
+\vartheta^{r}
+}.
+\label{buch:integrale:eqn:partialbruch-ableitung-fall0}
+\end{equation}
+Für $Q(\vartheta)\ne \vartheta$ oder $\vartheta$ keine Exponentialfunktion
+hat die Partialbruchzerlegung von $g(X)'$ die Form
+\[
+g(\vartheta)'
+=
+\frac{R(\vartheta)}{Q(\vartheta)^{r+1}}+\frac{S(\vartheta)}{Q(\vartheta)^r}
+\qquad\text{mit $R(\vartheta)\ne 0$}.
+\]
+\end{satz}
+
+\begin{proof}[Beweis]
+Schreibt man den Quotienten $g(\vartheta)$ als
+$g(\vartheta)=P(\vartheta)Q(\vartheta)^{-r}$, dann folgt aus
+Produkt- und Potenzregel
+\[
+g(\vartheta)'
+=
+P(\vartheta)'Q(\vartheta)^{-r}
++
+P(\vartheta)\bigl(Q(\vartheta)^{-r}\bigr)'
+=
+\frac{P(\vartheta)'}{Q(\vartheta)^{r}}
+-r\frac{P(\vartheta)Q(\vartheta)'}{Q(\vartheta)^{r+1}},
+\]
+dies ist
+\eqref{buch:integrale:eqn:partialbruch-ableitung}.
+Auf die Ableitungen von $P(\vartheta)$ und $Q(\vartheta)$ können
+jetzt die Sätze
+\ref{buch:integrale:satz:polynom-ableitung-grad},
+\ref{buch:integrale:satz:log-polynom-ableitung-grad}
+und
+\ref{buch:integrale:satz:partialbruch-monom}
+angewendet werden.
+Es sind jweils zwei Dinge zu prüfen: es dürfen in der Partialbruchzerlegung
+im Nenner keine Potenzen $<r$ vorkommen und wegen $R\ne 0$ muss der Nenner
+$Q(\vartheta)^{r+1}$ vorkommen.
+
+Falls $\vartheta=\log f$ ist, ist $Q(\vartheta)'$ ein Polynom vom
+Grad $q-1$ nach Satz~\eqref{buch:integrale:satz:polynom-ableitung-grad}
+\ref{buch:integrale:satz:polynom-ableitung-grad-log}
+und $P(\vartheta)'$ ist ein Polynom vom Grad höchstens $p$.
+Der Zähler $P(\vartheta)Q(\vartheta)'$ im zweiten Term ist nicht
+durch $Q(\vartheta)$ teilbar, denn weil $Q(\vartheta)$ irreduzibel
+ist, müsste $Q(\vartheta)$ entweder $P(\vartheta)$ oder $Q(\vartheta)'$
+teilen, aber beide haben zu geringen Grad.
+
+Falls $\vartheta=\exp f$ ist, ist $Q(\vartheta)'$ ein Polynom vom
+Grad $q$ und $P(\vartheta)'$ ist eine Polynom vom Grad $p$.
+Der Grad von $P(\vartheta)Q(\vartheta)'$ ist $<2q$, daher
+werden nach
+Satz~\ref{buch:integrale:satz:partialbruch-reduktion}
+keine Nenner mit kleinerem Exponenten als $r$ auftreten.
+Es ist noch zu prüfen, ob $Q(\vartheta)$ den Nenner des zweiten Termes
+von~\eqref{buch:integrale:eqn:partialbruch-ableitung} teilt.
+Nehmen wir $Q(\vartheta)\mid P(\vartheta)Q(\vartheta)'$ an, dann muss
+$Q(\vartheta)\mid Q(\vartheta)'$ sein.
+Für
+\[
+Q(\vartheta) = \vartheta^q + q_{q-1}\vartheta^{q-1} + \dots
+\]
+ist die Ableitung
+\[
+Q(\vartheta)'
+=
+q\vartheta^q f'
++
+\dots
+\]
+und damit
+\[
+\frac{Q(\vartheta)'}{Q(\vartheta)}
+=
+qf'.
+\]
+Andererseits ist in der
+Aussage~\label{buch:integrale:satz:log-polynom-ableitung-exp}
+von
+Satz~\ref{buch:integrale:satz:log-polynom-ableitung-grad}
+angewendet auf das Polynom $Q(\vartheta)$ das Polynom $N(\vartheta)=0$,
+und daher muss $Q(\vartheta)=\vartheta$ und $q=1$ sein.
+Dies ist der einzige Ausnahmefall, in die Partialbruchzerlegung die Form
+\eqref{buch:integrale:eqn:partialbruch-ableitung-fall0}
+annimmt.
+\end{proof}
+
+Der Satz besagt also, dass in fast allen Fällen die einzelnen Terme
+der Partialbruchzerlegung der Ableitungen wieder von der gleichen
+Form sind.
+
+\subsection{Der Satz von Liouville
+\label{buch:integrale:section:liouville}}
+Die Funktion
+\[
+f(z) = \frac{(z+1)^2}{(z-1)^3} \in \mathbb{C}(z) = \mathscr{D}
+\]
+kann mit Hilfe der Partialbruchzerlegung
+\[
+f(z)
+=
+\frac{1}{z-1}
++
+\frac{4}{(z-1)^2}
++
+\frac{4}{(z-1)^3}
+\]
+integriert werden.
+Die Integranden $(z-1)^{-k}$ mit $k>1$ können mit der Potenzregel
+integriert werden, aber für eine Stammfunktion $1/(z-1)$ muss
+der Logarithmus $\log(z-1)$ hinzugefügt werden.
+Die Stammfunktion
+\[
+\int f(z)\,dz
+=
+\int
+\frac{1}{z-1}
+\,dz
++
+\int
+\frac{4}{(z-1)^2}
+\,dz
++
+\int
+\frac{4}{(z-1)^3}
+\,dz
+=
+\log(z-1)
+-
+\underbrace{\frac{4z-2}{(z-1)^2}}_{\displaystyle\in\mathscr{D}}
+\in \mathscr{D}(\log(z-1)) = \mathscr{F}
+\]
+hat eine sehr spezielle Form.
+Sie besteht aus einem Term in $\mathscr{D}$ und einem Logarithmus
+einer Funktion von $\mathscr{D}$, also einem Monom über $\mathscr{D}$.
+
+\subsubsection{Einfach elementare Stammfunktionen}
+Der in diesem Abschnitt zu beweisende Satz von Liouville zeigt,
+dass die im einführenden Beispiel konstruierte Form der Stammfunktion
+eine allgemeine Eigenschaft elementar integrierbarer
+Funktionen ist.
+Zunächst aber soll dieses Bespiel etwas verallgemeinert werden.
+
+\begin{satz}[Liouville-Vorstufe für Monome]
+\label{buch:integrale:satz:liouville-vorstufe-1}
+Sei $\vartheta$ ein Monom über $\mathscr{D}$ und $g\in\mathscr{D}(\vartheta)$
+mit $g'\in\mathscr{D}$.
+Dann hat $g$ die Form $v_0 + c_1\vartheta$ mit $v_0\in\mathscr{D}$ und
+$c_1\in\mathbb{C}$.
+\end{satz}
+
+\begin{proof}[Beweis]
+In Anlehnung an das einführende Beispiel nehmen wir an, dass die
+Stammfunktion $g\in\mathscr{D}[\vartheta]$ für ein Monom $\vartheta$
+über $\mathscr{D}$ ist.
+Dann hat $g$ die Partialbruchzerlegung
+\[
+g
+=
+H(\vartheta)
++
+\sum_{j\le r(i)} \frac{P_{ij}(\vartheta)}{Q_i(\vartheta)^j}
+\]
+mit irreduziblen normierten Polynomen $Q_i(\vartheta)$ und
+Polynomen $P_{ij}(\vartheta)$ vom Grad kleiner als $\deg Q_i(\vartheta)$.
+Ausserdem ist $H(\vartheta)$ ein Polynom.
+Die Ableitung von $g$ muss jetzt aber wieder in $\mathscr{D}$ sein.
+Zu ihrer Berechnung können die Sätze
+\ref{buch:integrale:satz:polynom-ableitung-grad},
+\ref{buch:integrale:satz:log-polynom-ableitung-grad}
+und
+\ref{buch:integrale:satz:partialbruch-monom}
+verwendet werden.
+Diese besagen, dass in der Partialbruchzerlegung die Exponenten der
+Nenner die Quotienten in der Summe nicht kleiner werden.
+Die Ableitung $g'\in\mathscr{D}$ darf aber gar keine Nenner mit
+$\vartheta$ enthalten, also dürfen die Quotienten gar nicht erst
+vorkommen.
+$g=H(\vartheta)$ muss also ein Polynom in $\vartheta$ sein.
+Die Ableitung des Polynoms darf wegen $g'\in\mathscr{d}$ das Monom
+$\vartheta$ ebenfalls nicht mehr enthalten, daher kann es höchstens vom
+Grad $1$ sein.
+Nach Satz~\ref{buch:integrale:satz:log-polynom-ableitung-grad}
+muss ausserdem der Leitkoeffizient von $g$ eine Konstante sein,
+das Polynom hat also genau die behauptete Form.
+\end{proof}
+
+\begin{satz}[Liouville-Vorstufe für algebraische Elemente]
+\label{buch:integrale:satz:liouville-vorstufe-2}
+Sei $\vartheta$ algebraische über $\mathscr{D}$ und
+$g\in\mathscr{D}(\vartheta)$ mit $g'\in\mathscr{D}$.
+\end{satz}
+
+\subsubsection{Elementare Stammfunktionen}
+Nach den Vorbereitungen über einfach elementare Stammfunktionen
+in den Sätzen~\label{buch:integrale:satz:liouville-vorstufe-1}
+und
+\label{buch:integrale:satz:liouville-vorstufe-2} sind wir jetzt
+in der Lage, den allgemeinen Satz von Liouville zu formulieren
+und zu beweisen.
+
+\begin{satz}[Liouville]
+Sei $\mathscr{D}$ ein Differentialkörper, $\mathscr{F}$ einfach über
+$\mathscr{D}$ mit gleichem Konstantenkörper $\mathbb{C}$.
+Wenn $g\in \mathscr{F}$ eine Stammfunktion von $f\in\mathscr{D}$ ist,
+also $g'=f$, dann gibt es Zahlen $c_i\in\mathbb{C}$ und
+$v_0,v_i\in\mathscr{D}$ derart, dass
+\begin{equation}
+g = v_0 + \sum_{i=1}^k c_i \log v_i
+\qquad\Rightarrow\qquad
+g' = v_0' + \sum_{i=1}^k c_i \frac{v_i'}{v_i} = f
+\label{buch:integrale:satz:liouville-fform}
+\end{equation}
+gilt.
+\end{satz}
+
+Der Satz hat zur Folge, dass eine elementare Stammfunktion für $f$
+nur dann existieren kann, wenn sich $f$ in der speziellen Form
+\eqref{buch:integrale:satz:liouville-fform}
+schreiben lässt.
+Die Aufgabe~\ref{buch:integrale:aufgabe:existenz-stammfunktion-dalg}
+lässt sich damit jetzt lösen.
+
+
+\begin{proof}[Beweis]
+Wenn die Stammfunktion $g\in\mathscr{D}$ ist, dann hat $g$ die Form
+\eqref{buch:integrale:satz:liouville-fform} mit $v_0=g$, die Summe
+wird nicht benötigt.
+
+Wir verwenden Induktion nach der Anzahl der Elemente, die zu $\mathscr{D}$
+hinzugefügt werden müssen, um einen Differentialkörper
+$\mathscr{F}=\mathscr{D}(\vartheta_1,\dots,\vartheta_n)$ zu konstruieren,
+der $g$ enthält.
+Da $f\in\mathscr{D}\subset\mathscr{D}(\vartheta_1)$ ist, können wir die
+Induktionsannahme auf die Erweiterung
+\[
+\mathscr{D}(\vartheta_1)\subset\mathscr{D}(\vartheta_1,\vartheta_2)
+\subset\cdots\subset \mathscr{D}(\vartheta_1,\cdots,\vartheta_n)=\mathscr{F}
+\]
+anwenden, die durch Hinzufügen von nur $n-1$ Elemente
+$\vartheta_2,\dots,\vartheta_n$ aus $\mathscr{D}(\vartheta_1)$ den
+Differentialkörper $\mathscr{F}$ erreicht, der $g$ enthält.
+Sie besagt, dass sich $g$ schreiben lässt als
+\[
+g = w_0 + \sum_{i=1}^{k_1} c_i\log w_i
+\qquad\text{mit $c_i\in\mathbb{C}$ und $w_0,w_i\in\mathscr{D}(\vartheta_1)$.}
+\]
+Wir müssen jetzt zeigen, dass sich dieser Ausdruck umformen lässt
+in den Ausdruck der Form~\eqref{buch:integrale:satz:liouville-fform}.
+
+Der Term $w_0\in\mathscr{D}(\vartheta_1)$ hat eine Partialbruchzerlegung
+\[
+H(\vartheta_1)
++
+\sum_{j\le r(l)} \frac{P_{lj}(\vartheta_1)}{Q_l(\vartheta_1)^j}
+\]
+in der Variablen $\vartheta_1$.
+
+Da $w_i\in\mathscr{D}(\vartheta_1)$ ist, kann man Zähler und Nenner
+von $w_i$ als Produkt irreduzibler normierter Polynome schreiben:
+\[
+w_i
+=
+\frac{h_i Z_{i1}(\vartheta_1)^{s_{i1}}\cdots Z_{im(i)}^{s_{im(i)}}
+}{
+N_{i1}(\vartheta_1)^{t_{i1}}\cdots N_{in(i)}(\vartheta_1)^{t_{in(i)}}
+}
+\]
+Der Logarithmus hat die Form
+\begin{align*}
+\log w_i
+&= \log h_i +
+s_{i1}
+\log Z_{i1}(\vartheta_1)
++
+\cdots
++
+s_{im(i)}
+\log Z_{im(i)}
+-
+t_{i1}
+\log
+N_{i1}(\vartheta_1)
+-
+\cdots
+-
+t_{in(i)}
+\log
+N_{in(i)}(\vartheta_1).
+\end{align*}
+$g$ kann also geschrieben werden als eine Summe von Polynomen, Brüchen,
+wie sie in der Partialbruchzerlegung vorkommen, Logarithmen von irreduziblen
+normierten Polynomen und Logarithmen von Elementen von $\mathscr{D}$.
+
+Die Ableitung $g'$ muss jetzt aber wieder in $\mathscr{D}$ sein, beim
+Ableiten müssen also alle Terme verschwinden, die $\vartheta_1$ enthalten.
+Dabei spielt es eine Rolle, ob $\vartheta_1$ ein Monom oder algebraisch ist.
+\begin{enumerate}
+\item
+Wenn $\vartheta_1$ ein Monom ist, dann kann man wie im Beweis des
+Satzes~\ref{buch:integrale:satz:liouville-vorstufe-1} argumentieren,
+dass die Brüchterme gar nicht vorkommen und
+$H(\vartheta_1)=v_0+c_1\vartheta_1$ sein muss.
+Die Ableitung Termen der Form $\log Z(\vartheta_1)$ ist ein Bruchterm
+mit dem irreduziblen Nenner $Z(\vartheta_1)$, die ebenfalls verschwinden
+müssen.
+Ist $\vartheta_1$ eine Exponentialfunktion, dann ist
+$\vartheta_1' \in \mathscr{D}(\vartheta_1)\setminus\mathscr{D}$, also muss
+$c_1=0$ sein.
+Ist $\vartheta_1$ ein Logarithmus, also $\vartheta_1=\log v_1$, dann
+kommen nur noch Terme der in
+\eqref{buch:integrale:satz:liouville-fform}
+erlaubten Form vor.
+
+\item
+Wenn $\vartheta_1$ algebraisch vom Grad $m$ ist, dann ist
+\[
+g' = w_0' + \sum_{i=1}^{k_1} d_i\frac{w_i'}{w_i} = f.
+\]
+Weder $w_0$ noch $\log w_i$ sind in $\mathscr{D}(\vartheta_1)$.
+Aber wenn man $\vartheta_1$ durch die $m$ konjugierten Elemente
+ersetzt und alle summiert, dann ist
+\[
+mf
+=
+\operatorname{Tr}(w_0) + \sum_{i=1}^{k_1} d_i \log\operatorname{Norm}(w_i).
+\]
+Da die Spur und die Norm in $\mathscr{D}$ sind, folgt, dass
+\[
+f
+=
+\underbrace{\frac{1}{m}
+\operatorname{Tr}(w_0)}_{\displaystyle= v_0}
++
+\sum_{i=1}^{k_1} \underbrace{\frac{d_i}{m}}_{\displaystyle=c_i}
+\log
+\underbrace{ \operatorname{Norm}(w_i)}_{\displaystyle=v_i}
+=
+v_0 + \sum_{i=1}^{k_1} c_i\log v_i
+\]
+die verlangte Form hat.
+\qedhere
+\end{enumerate}
+\end{proof}
+
+\subsection{Die Fehlerfunktion ist keine elementare Funktion
+\label{buch:integrale:section:fehlernichtelementar}}
+% \url{https://youtu.be/bIdPQTVF5n4}
+Mit Hilfe des Satzes von Liouville kann man jetzt beweisen, dass
+die Fehlerfunktion keine elementare Funktion ist.
+Dazu braucht man die folgende spezielle Form des Satzes.
+
+\begin{satz}
+\label{buch:integrale:satz:elementarestammfunktion}
+Wenn $f(x)$ und $g(x)$ rationale Funktionen von $x$ sind, dann
+ist die Stammfunktion von $f(x)e^{g(x)}$ genau dann eine
+elementare Funktion, wenn es eine rationale Funktion gibt, die
+Lösung der Differentialgleichung
+\[
+r'(x) + g'(x)r(x)=f(x)
+\]
+ist.
+\end{satz}
+
+\begin{satz}
+Die Funktion $x\mapsto e^{-x^2}$ hat keine elementare Stammfunktion.
+\label{buch:iintegrale:satz:expx2}
+\end{satz}
+
+\begin{proof}[Beweis]
+Unter Anwendung des Satzes~\ref{buch:integrale:satz:elementarestammfunktion}
+auf $f(x)=1$ und $g(x)=-x^2$ folgt, $e^{-x^2}$ genau dann eine rationale
+Stammfunktion hat, wenn es eine rationale Funktion $r(x)$ gibt, die
+Lösung der Differentialgleichung
+\begin{equation}
+r'(x) -2xr(x)=1
+\label{buch:integrale:expx2dgl}
+\end{equation}
+ist.
+
+Zunächst halten wir fest, dass $r(x)$ kein Polynom sein kann.
+Wäre nämlich
+\[
+r(x)
+=
+a_0 + a_1x + \dots + a_nx^n
+=
+\sum_{k=0}^n a_kx^k
+\quad\Rightarrow\quad
+r'(x)
+=
+a_1 + 2a_2x + \dots + na_nx^{n-1}
+=
+\sum_{k=1}^n
+ka_kx^{k-1}
+\]
+ein Polynom, dann ergäbe sich beim Einsetzen in die Differentialgleichung
+\begin{align*}
+1
+&=
+r'(x)-2xr(x)
+\\
+&=
+a_1 + 2a_2x + 3a_3x^2 + \dots + (n-1)a_{n-1}x^{n-2} + na_nx^{n-1}
+\\
+&\qquad
+-
+2a_0x -2a_1x^2 -2a_2x^3 - \dots - 2a_{n-1}x^n - 2a_nx^{n+1}
+\\
+&
+\hspace{0.7pt}
+\renewcommand{\arraycolsep}{1.8pt}
+\begin{array}{crcrcrcrcrcrcrcr}
+=&a_1&+&2a_2x&+&3a_3x^2&+&\dots&+&(n-1)a_{n-1}x^{n-2}&+&na_{n }x^{n-1}& & & & \\
+ & &-&2a_0x&-&2a_1x^2&-&\dots&-& 2a_{n-3}x^{n-2}&-&2a_{n-2}x^{n-1}&-&2a_{n-1}x^n&-&2a_nx^{n+1}
+\end{array}
+\\
+&=
+a_1
++
+(2a_2-2a_0)x
++
+(3a_3-2a_1)x^2
+%+
+%(4a_4-2a_2)x^3
++
+\dots
++
+(na_n-2a_{n-2})x^{n-1}
+-
+2a_{n-1}x^n
+-
+2a_nx^{n+1}.
+\end{align*}
+Koeffizientenvergleich zeigt, dass $a_1=1$ sein muss.
+Aus den letzten zwei Termen liest man ebenfalls mittels Koeffizientenvergleich
+ab, dass $a_n=0$ und $a_{n-1}=0$ sein müssen.
+Aus den Koeffizienten $(ka_k-2a_{k-2})=0$ folgt, dass
+$a_{k-2}=\frac{k}{2}a_k$ für alle $k>1$ sein muss, diese Koeffizienten
+verschwinden also auch, inklusive $a_1=0$.
+Dies ist allerdings im Widerspruch zu $a_1=1$.
+Es folgt, dass $r(x)$ kein Polynom sein kann.
+
+Der Nenner der rationalen Funktion $r(x)$ hat also mindestens eine Nullstelle
+$\alpha$, man kann daher $r(x)$ auch schreiben als
+\[
+r(x) = \frac{s(x)}{(x-\alpha)^n},
+\]
+wobei die rationale Funktion $s(x)$ keine Nullstellen und keine Pole hat.
+Einsetzen in die Differentialgleichung ergibt:
+\[
+1
+=
+r'(x) -2xr(x)
+=
+\frac{s'(x)}{(x-\alpha)^n}
+-n
+\frac{s(x)}{(x-\alpha)^{n+1}}
+-
+\frac{2xs(x)}{(x-\alpha)^n}.
+\]
+Multiplizieren mit $(x-\alpha)^{n+1}$ gibt
+\[
+(x-\alpha)^{n+1}
+=
+s'(x)(x-\alpha)
+-
+ns(x)
+-
+2xs(x)(x-\alpha)
+\]
+Setzt man $x=\alpha$ ein, verschwinden alle Terme ausser dem mittleren
+auf der rechten Seite, es bleibt
+\[
+ns(\alpha) = 0.
+\]
+Dies widerspricht aber der Wahl der rationalen Funktion $s(x)$, für die
+$\alpha$ keine Nullstelle ist.
+
+Somit kann es keine rationale Funktion $r(x)$ geben, die eine Lösung der
+Differentialgleichung~\eqref{buch:integrale:expx2dgl} ist und
+die Funktion $e^{-x^2}$ hat keine elementare Stammfunktion.
+\end{proof}
+
+Der Satz~\ref{buch:iintegrale:satz:expx2} rechtfertigt die Einführung
+der Fehlerfunktion $\operatorname{erf}(x)$ als neue spezielle Funktion,
+mit deren Hilfe die Funktion $e^{-x^2}$ integriert werden kann.
+
+
+
diff --git a/buch/chapters/060-integral/diffke.tex b/buch/chapters/060-integral/diffke.tex
new file mode 100644
index 0000000..61badc8
--- /dev/null
+++ b/buch/chapters/060-integral/diffke.tex
@@ -0,0 +1,237 @@
+%
+% diffke.tex
+%
+% (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschlue
+%
+\subsection{Differentialkörper und ihre Erweiterungen
+\label{buch:integral:subsection:diffke}}
+Die Ableitung wird in den Grundvorlesungen der Analysis jeweils
+als ein Grenzprozess eingeführt.
+Die praktische Berechnung von Ableitungen verwendet aber praktisch
+nie diese Definition, sondern fast ausschliesslich die rein algebraischen
+Ableitungsregeln.
+So wie die Wurzelfunktionen im letzten Abschnitt als algebraische
+Körpererweiterungen erkannt wurden, muss jetzt auch für die Ableitung
+eine rein algebraische Definition gefunden werden.
+Die entstehende Struktur ist der Differentialkörper, der in diesem
+Abschnitt definiert werden soll.
+
+%
+% Derivation
+%
+\subsubsection{Derivation}
+Für die praktische Berechnung der Ableitung einer Funktion verwendet
+man in erster Linie die bekannten Rechenregeln.
+Dazu gehören für zwei Funktionen $f$ und $g$
+\begin{itemize}
+\item Linearität: $(\alpha f+\beta g)' = \alpha f' + \beta g'$ für
+Konstanten $\alpha$, $\beta$.
+\item Produktregel: $(fg)'=f'g+fg'$.
+\index{Produktregel}%
+\item Quotientenregel: $(f/g)' = (f'g-fg')/g^2$.
+\index{Quotientenregel}%
+\end{itemize}
+Die ebenfalls häufig verwendete Kettenregel $(f\circ g)' = (f'\circ g) g'$
+\index{Kettenregel}%
+für zusammengesetzte Funktionen wird später kaum benötigt, da wir
+Verkettungen durch Körpererweiterungen ersetzen wollen.
+Die Ableitung hat somit die rein algebraischen Eigenschaften
+einer Derivation gemäss folgender Definition.
+
+\begin{definition}
+Sei $\mathscr{F}$ ein Körper.
+Eine {\em Derivation} ist eine lineare Abbildung
+\index{Derivation}%
+$D\colon \mathscr{F}\to\mathscr{F}$
+mit der Eigenschaft
+\[
+D(fg) = (Df)g+f(Dg).
+\]
+Ein {\em Differentialkörper} ist ein Körper mit einer Derivation.
+\index{Differentialkoerper@Differentialkörper}%
+\end{definition}
+
+Die Ableitung in einem Funktionenkörper ist eine Derivation,
+die sich zusätzlich dadurch auszeichnet, dass $Dx=x'=1$.
+Sie wird weiterhin mit dem Strich bezeichnet.
+
+%
+% Ableitungsregeln
+%
+\subsubsection{Ableitungsregeln}
+Die Definition einer Derivation macht keine Aussagen über Quotienten,
+diese kann man aber aus den Eigenschaften einer Derivation sofort
+ableiten.
+Wir schreiben $q=f/g$ für $f,g\in\mathscr{F}$, dann ist $f=qg$.
+Nach der Kettenregel gilt
+\(
+f'=q'g+qg'
+\).
+Substituiert man darin $q=f/g$ und löst nach $q'$ auf, erhält man
+\[
+f'=q'g+\frac{fg'}{g}
+\qquad\Rightarrow\qquad
+q'=\frac1{g}\biggl(f'-\frac{fg'}{g}\biggr)
+=
+\frac{f'g-fg'}{g^2}.
+\]
+
+
+%
+% Konstantenkörper
+%
+\subsubsection{Konstantenkörper}
+Die Ableitung einer Konstanten verschwindet.
+Beim Hinzufügen von Funktionen zu einem Funktionenkörper können weitere
+Konstanten hinzukommen, ohne dass dies auf den ersten Blick sichtbar wird.
+Zum Beispiel enthält $\mathbb{Q}(x,\!\sqrt{x+\pi})$ wegen
+$(\!\sqrt{x+\pi})^2-x=\pi$ auch die Konstante $\pi$.
+Eine Derivation ermöglicht dank des nachfolgenden Satzes auch,
+solche Konstanten zu erkennen.
+
+\begin{satz}
+Sei $\mathscr{F}$ ein Körper und $D$ eine Derivation in $\mathscr{F}$.
+Dann ist die Menge $C=\{a\in\mathscr{F}\;|\;Da=0\}$ ein Körper.
+\end{satz}
+
+\begin{proof}[Beweis]
+Es muss gezeigt werden, dass Summe und Produkt von Element von $C$
+wieder in $C$ liegen.
+Wenn $Da=Db=0$, dann ist $D(a+b)=Da+Db=0$, also ist $a+b\in C$.
+Für das Produkt gilt $D(ab)=(Da)b+a(Db)=0b+a0=0$, also ist auch
+$ab\in C$.
+\end{proof}
+
+Die Menge $C$ heisst der {\em Konstantenkörper} von $\mathscr{F}$.
+\index{Konstantenkörper}%
+
+%
+% Ableitung algebraischer Elemente
+%
+\subsubsection{Ableitung und algebraische Körpererweiterungen}
+Die Rechenregeln in einem Differentialkörper $\mathscr{F}$ legen auch die
+Ableitung eines algebraischen Elements fest.
+Sei $m(z)=m_0+m_1z+\ldots+m_{n-1}z^{n-1}+z^n$ das Minimalpolynom eines
+über $\mathscr{F}$ algebraischen Elements $f$.
+Aus $m(f)=0$ folgt durch Ableiten
+\[
+0
+=
+m(f)'
+=
+m_0'
++
+(m_1'f+m_1f')
++
+(m_2'f + m_12f'f)
++
+\ldots
++
+(m_{n-1}'f^{n-1} + m_{n-1} (n-1)f'f^{n-2})
++
+nf'f^{n-1}.
+\]
+Zusammenfassen der Ableitung $f'$ auf der linken Seite liefert die
+Gleichung
+\[
+f'(
+m_1+2m_2f+\ldots+(n-1)m_{n-1}f^{n-2}+nf^{n-1}
+)
+=
+m_0' + m_1'f + m_2'f^2 + \ldots + m_{n-1}'f^{n-1} + f^n,
+\]
+aus der
+\[
+f'
+=
+\frac{
+m_0' + m_1'f + m_2'f^2 + \ldots + m_{n-1}'f^{n-1} + f^n
+}{
+m_1+2m_2f+\ldots+(n-1)m_{n-1}f^{n-2}+nf^{n-1}
+}
+\]
+als Element von $\mathscr{F}(g)$ berechnet werden kann.
+Die Ableitungsoperation lässt sich somit auf die Körpererweiterung
+$\mathscr{F}(f)$ fortsetzen.
+
+\begin{beispiel}
+Das über $\mathbb{Q}(x)$ algebraische Element $y=\sqrt{ax^2+bx+c}$
+hat das Minimalpolynom
+\[
+m(z)
+=
+z^2 - [ax^2+bx+c]
+\in
+\mathbb{Q}(x)[z]
+\]
+mit Koeffizienten $m_0 = ax^2+bx+c,$ $m_1=0$ und $m_2=1$.
+Es hat die Ableitung
+\[
+y'
+=
+\frac{m_0'}{2m_2y}
+=
+\frac{
+2ax+b
+}{
+2y
+}
+\in
+\mathbb{Q}(x,y)
+\]
+wegen $m_0'=2ax+b$.
+\end{beispiel}
+
+\begin{definition}
+Eine differentielle Körpererweiterung ist eine Körpererweiterung
+$\mathscr{K}\subset\mathscr{F}$ von Differentialkörpern derart, dass
+die Ableitungen $D_{\mathscr{K}}$ in $\mathscr{K}$
+und $D_{\mathscr{F}}$ in $\mathscr{F}$ übereinstimmen:
+\(
+D_{\mathscr{K}}g= D_{\mathscr{F}} g
+\)
+für alle $g\in\mathscr{K}$.
+\end{definition}
+
+%
+% Logarithmus und Exponantialfunktion
+%
+\subsubsection{Logarithmus und Exponentialfunktion}
+Die Exponentialfunktion und der Logarithmus sind nicht algebraisch
+über $\mathbb{Q}(x)$, sie lassen sich nicht durch eine algebraische
+Gleichung charakterisieren.
+Sie zeichnen sich aber durch besondere Ableitungseigenschaften aus.
+Die Theorie der gewöhnlichen Differentialgleichungen garantiert,
+dass eine Funktion durch eine Differentialgleichung und Anfangsbedingungen
+festgelegt ist.
+\label{buch:integral:expundlog}
+Für die Exponentialfunktion und der Logarithmus haben die
+Ableitungseigenschaften
+\[
+\exp'(x) = \exp(x)
+\qquad\text{und}\qquad
+x \log'(x) = 1.
+\]
+\index{Exponentialfunktion}%
+\index{Logarithmus}%
+In der algebraischen Beschreibung eines Funktionenkörpers gibt es
+das Konzept des Wertes einer Funktion an einer bestimmten Stelle nicht.
+Somit können keine Anfangsbedingungen vorgegeben werden.
+Da die Gleichung für $\exp$ linear sind, sind Vielfache einer Lösung wieder
+Lösungen,
+insbesondere ist mit $\exp(x)$ auch $a\exp(x)$ eine Lösung.
+Die Gleichung für $\log$ ist nicht linear, aber es ist
+$\log'(x) = 1/x$, $\log$ ist eine Stammfunktion von $1/x$, die
+nur bis auf eine Konstante bestimmt ist.
+Tatsächlich gilt
+\[
+x(\log(x)+a)'
+=
+x\log(x) + xa' = x\log(x)=1,
+\]
+die Funktion $\log(x)+a$ ist also auch eine Lösung für den Logarithmus.
+
+Die Eigenschaft, dass die Exponentialfunktion die Umkehrfunktion
+des Logarithmus ist, lässt sich mit den Mitteln eines Differentialkörpers
+nicht ausdrücken.
+
diff --git a/buch/chapters/060-integral/elementar.tex b/buch/chapters/060-integral/elementar.tex
new file mode 100644
index 0000000..fd5f051
--- /dev/null
+++ b/buch/chapters/060-integral/elementar.tex
@@ -0,0 +1,214 @@
+%
+% elementar.tex
+%
+% (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschlue
+%
+\subsection{Elementare Funktionen
+\label{buch:integral:subsection:elementar}}
+Etwas allgemeiner kann man sagen, dass in den
+Beispielen~\eqref{buch:integration:risch:eqn:integralbeispiel2}
+algebraische Erweiterungen von $\mathbb{Q}(x)$ und Erweiterungen
+um Logarithmen oder Exponentialfunktionen vorgekommen sind.
+Die Stammfunktionen verwenden dieselben Funktionen oder höchstens
+Erweiterungen um Logarithmen von Funktionen, die man schon im
+Integranden gesehen hat.
+
+%
+% Exponentielle und logarithmische Funktione
+%
+\subsubsection{Exponentielle und logarithmische Funktionen}
+In Abschnitt~\ref{buch:integral:subsection:diffke} haben wir
+bereits die Exponentialfunktion $e^x$ und die Logarithmusfunktion
+$\log x$ charakterisiert als eine Körpererweiterung durch
+Elemente, die der Differentialgleichung
+\[
+\exp' = \exp
+\qquad\text{und}\qquad
+\log' = \frac{1}{x}
+\]
+genügen.
+Für die Stammfunktionen, die in
+Abschnitt~\ref{buch:integral:subsection:logexp}
+gefunden wurden, sind aber Logarithmusfunktionen nicht von
+$x$ sondern von beliebigen über $\mathbb{Q}$ algebraischen Elementen
+nötig.
+Um zu verstehen, wie wir diese Funktion als Körpererweiterung erhalten
+könnten, betrachten wir die Ableitung einer Exponentialfunktion
+$\vartheta(x) = \exp(f(x))$ und eines
+Logarithmus
+$\psi(x) = \log(f(x))$, wie man sie mit der Kettenregel
+berechnet hätte:
+\begin{align*}
+\vartheta'(x)
+&=\exp(f(x)) \cdot f'(x)
+&
+\psi'(x)
+&=
+\frac{f'(x)}{f(x)}
+\quad\Leftrightarrow\quad
+f(x)\psi'(x)
+=
+f'(x).
+\end{align*}
+Dies motiviert die folgende Definition
+
+\begin{definition}
+\label{buch:integral:def:explog}
+Sei $\mathscr{F}$ ein Differentialklörper und $f\in\mathscr{F}$.
+Ein Exponentialfunktion von $f$ ist ein $\vartheta\in \mathscr{F}$mit
+$\vartheta' = \vartheta f'$.
+Ein Logarithmus von $f$ ist ein $\vartheta\in\mathscr{F}$ mit
+$f\vartheta'=f'$.
+\end{definition}
+
+Für $f=x$ mit $f'=1$ reduziert sich die
+Definition~\ref{buch:integral:def:explog}
+auf die Definition der Exponentialfunktion $\exp(x)$ und
+Logarithmusfunktion $\log(x)$ auf Seite~\pageref{buch:integral:expundlog}.
+
+
+%
+%
+%
+\subsubsection{Transzendente Körpererweiterungen}
+Die Wurzelfunktionen haben wir früher als algebraische Erweiterungen
+eines Differentialkörpers erkannt.
+Die logarithmischen und exponentiellen Elemente gemäss
+Definition~\ref{buch:integral:def:explog} sind nicht algebraisch.
+
+\begin{definition}
+\label{buch:integral:def:transzendent}
+Sei $\mathscr{F}\subset\mathscr{G}$ eine Körpererweiterung und
+$\vartheta\in\mathscr{G}$.
+$\vartheta$ heisst {\em transzendent}, wenn $\vartheta$ nicht
+algebraisch ist.
+\end{definition}
+
+\begin{beispiel}
+Die Funktion $f = e^x + e^{2x} + e^{x/2}$ ist sicher transzendent,
+in diesem Beispiel zeigen wir, dass es mindestens drei verschiedene
+Möglichkeiten gibt, eine Körpererweiterung von $\mathbb{Q}(x)$ zu
+konstruieren, die $f$ enthält.
+
+Erste Möglichkeit: $f=\vartheta_1 + \vartheta_2 + \vartheta_3$ mit
+$\vartheta_1=e^x$,
+$\vartheta_2=e^{2x}$
+und
+$\vartheta_3=e^{x/2}$.
+Jedes der Elemente $\vartheta_i$ ist exponentiell über $\mathbb{Q}(x)$ und
+$f$ ist in
+\[
+\mathbb{Q}(x)
+\subset
+\mathbb{Q}(x,\vartheta_1)
+\subset
+\mathbb{Q}(x,\vartheta_1,\vartheta_2)
+\subset
+\mathbb{Q}(x,\vartheta_1,\vartheta_2,\vartheta_3)
+\ni
+f.
+\]
+Jede dieser Körpererweiterungen ist transzendent.
+
+Zweite Möglichkeit: $\vartheta_1=e^x$ ist exponentiell über
+$\mathbb{Q}(x)$ und $\mathbb{Q}(x,\vartheta_1)$ enthält wegen
+\[
+(\vartheta_1^2)'
+=
+2\vartheta_1\vartheta_1'
+=
+2\vartheta_1^2,
+\]
+somit ist $\vartheta_1^2=\vartheta_2$ eine Exponentialfunktion von $2x$
+über $\mathbb{Q}(x)$.
+Das Element $\vartheta_3=e^{x/2}$ ist zwar auch exponentiell über
+$\mathbb{Q}(x)$, es ist aber auch eine Nullstelle des Polynoms
+$m(z)=z^2-[\vartheta_1]$.
+Die Erweiterung
+$\mathbb{Q}(x,\vartheta_1)\subset\mathbb{Q}(x,\vartheta_1,\vartheta_3)$
+ist eine algebraische Erweiterung, die
+$f=\vartheta_1 + \vartheta_1^2+\vartheta_3$ enthält.
+
+Dritte Möglichkeit: $\vartheta_3=e^{x/2}$ ist exponentiell über
+$\mathbb{Q}(x)$.
+Die transzendente Körpererweiterung
+\[
+\mathbb{Q}(x) \subset \mathbb{Q}(x,\vartheta_3)
+\]
+enthält das Element
+$f=\vartheta_3^4+\vartheta_3^2 + \vartheta_3 $.
+\end{beispiel}
+
+Das Beispiel zeigt, dass man nicht sagen kann, dass eine Funktion
+ausschliesslich in einer algebraischen oder transzendenten Körpererweiterung
+zu finden ist.
+Vielmehr gibt es für die gleiche Funktion möglicherweise verschiedene
+Körpererweiterungen, die alle die Funktion enthalten können.
+
+%
+% Elementare Funktionen
+%
+\subsubsection{Elementare Funktionen}
+Die Stammfunktionen~\eqref{buch:integration:risch:eqn:integralbeispiel2}
+können aufgebaut werden, indem man dem Körper $\mathbb{Q}(x)$ schrittweise
+sowohl algebraische wie auch transzendente Elemente hinzufügt,
+wie in der folgenden Definition, die dies für abstrakte
+Differentialkörpererweiterungen formuliert.
+
+\begin{definition}
+Eine Körpererweiterung $\mathscr{F}\subset\mathscr{G}$ heisst
+{\em transzendente elementare Erweiterung}, wenn
+$\mathscr{G} = \mathscr{F}(\vartheta_1,\dots,\vartheta_n)$ und
+jedes der Element $\vartheta_i$ transzendent und logarithmisch oder
+exponentiell ist über
+$\mathscr{F}_{i-1}=\mathscr{F}(\vartheta_1,\dots,\vartheta_{i-1})$.
+Die Körpererweiterung $\mathscr{F}\subset\mathscr{G}$ heisst
+{\em elementare Erweiterung}, wenn
+$\mathscr{G} = \mathscr{F}(\vartheta_1,\dots,\vartheta_n)$ und
+jedes Element $\vartheta_i$ ist entweder logarithmisch, exponentiell
+oder algebraisch über $\mathscr{F}_{i-1}$.
+\end{definition}
+
+Die Funktionen, die als akzeptable Stammfunktionen für das Integrationsproblem
+in Betracht kommen, sind also jene, die in einer geeigneten elementaren
+Erweiterung des von $\mathbb{Q}(x)$ liegen.
+Ausserdem können auch noch weitere Konstanten nötig sein, sowohl
+algebraische Zahlen wie auch Konstanten wie $\pi$ oder $e$.
+
+\begin{definition}
+Sei $\mathscr{K}(x)$ der Differentialklörper der rationalen Funktionen
+über dem Konstantenkörper $\mathscr{K}\supset\mathbb{Q}$, der in $\mathbb{C}$
+enthalten ist.
+Ist $\mathscr{F}\supset \mathscr{K}(x)$ eine transzendente elementare
+Erweiterung von $\mathscr{K}(x)$, dann heisst $\mathscr{F}$
+ein Körper von {\em transzendenten elementaren Funktionen}.
+Ist $\mathscr{F}$ eine elementare Erweiterung von $\mathscr{K}(x)$, dann
+heisst $\mathscr{F}$ ein Körper von {\em elementaren Funktionen}.
+\end{definition}
+
+\subsubsection{Das Integrationsproblem}
+Die elementaren Funktionen enthalten alle Funktionen, die sich mit
+arithmetischen Operationen, Wurzeln, Exponentialfunktionen, Logarithmen und
+damit auch mit trigonometrischen und hyperbolischen Funktionen und ihren
+Umkehrfunktionen aus den rationalen Zahlen, der unabhängigen Variablen $x$
+und möglicherweise einigen zusätzlichen Konstanten aufbauen lassen.
+Sei also $f$ eine Funktion in einem Körper von elementaren
+Funktionen
+\[
+\mathscr(F)
+=
+\mathbb{Q}(\alpha_1,\dots,\alpha_l)(x,\vartheta_1,\dots,\vartheta_n).
+\]
+Eine elementare Stammfunktion ist eine Funktion $F=\int f$ in einer
+elementaren Körpererweiterung
+\[
+\mathscr{G}
+=
+\mathbb{Q}(\alpha_1,\dots,\alpha_l,\dots,\alpha_{l+k})
+(x,\vartheta_1,\dots,\vartheta_n,\dots,\vartheta_{n+m})
+\]
+mit $F'=f$.
+Das Ziel ist, $F$ mit Hilfe eines Algorithmus zu bestimmen.
+
+
+
diff --git a/buch/chapters/060-integral/erweiterungen.tex b/buch/chapters/060-integral/erweiterungen.tex
new file mode 100644
index 0000000..9138f3e
--- /dev/null
+++ b/buch/chapters/060-integral/erweiterungen.tex
@@ -0,0 +1,343 @@
+%
+% erweiterungen.tex
+%
+% (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschlue
+%
+\subsection{Körpererweiterungen
+\label{buch:integral:subsection:koerpererweiterungen}}
+Das Beispiel des Körpers $\mathbb{Q}(\!\sqrt{2})$ auf Seite
+\pageref{buch:integral:beispiel:Qsqrt2} illustriert eine Möglichkeit,
+einen kleinen Körper zu vergrössern.
+Das Prinzip ist verallgemeinerungsfähig und soll in diesem Abschnitt
+erarbeitet werden.
+
+%
+% algebraische Zahl-Erweiterungen
+\subsubsection{Algebraische Erweiterungen}
+Der Körper $\mathbb{Q}(\!\sqrt{2})$ entsteht aus dem Körper $\mathbb{Q}$
+dadurch, dass man die Zahl $\sqrt{2}$ hinzufügt und alle erlaubten
+arithmetischen Operationen zulässt.
+Die Darstellung von Elementen von $\mathbb{Q}(\!\sqrt{2})$ als
+$a+b\sqrt{2}$ ist möglich, weil die Zahl $\alpha=\sqrt{2}$ die
+algebraische Relation
+\[
+\alpha^2-2 = \sqrt{2}^2 -2 = 0
+\]
+erfüllt.
+Voraussetzung für diese Aussage ist, dass es die Zahl $\sqrt{2}$ in einem
+geeigneten grösseren Körper gibt.
+Die reellen oder komplexen Zahlen bilden einen solchen Körper.
+Wir verallgemeinern diese Situation wie folgt.
+
+\begin{definition}
+Ist $K$ ein Körper, dann heisst ein Körper $L$ mit $K\subset L$ ein
+{\em Erweiterungskörper} von $K$.
+\index{Erweiterungskoerper@Erweiterungskörper}
+\end{definition}
+
+\begin{definition}
+\label{buch:integral:definition:algebraisch}
+Sei $K\subset L$ eine Körpererweiterung.
+Das Element $\alpha\in L$ heisst {\em algebraisch} über $K$, wenn es
+ein Polynom $p(x)\in K[x]$ gibt derart, dass $\alpha$ eine Nullstelle
+von $p(x)$ ist, also gibt mit $p(\alpha)=0$.
+Das normierte Polynom $m(x)$ geringsten Grades, welches $m(\alpha)=0$
+erfüllt, heisst das {\em Minimalpolynom} von $\alpha$.
+\index{Minimalpolynom}%
+\end{definition}
+
+Man sagt auch $\alpha$ ist algebraisch vom Grad $n$, wenn das Minimalpolynom
+den Grad $n$ hat.
+Wenn $\alpha\ne 0$ algebraisch ist, dann ist auch $1/\alpha$ algebraisch,
+wie das folgende Argument zeigt.
+Für das Minimalpolynom $m(x)$ von $\alpha$, ist $m(\alpha)=0$.
+Teilt man diese Gleichung durch $\alpha^n$ teilt, erhält man
+\[
+m_0\frac{1}{\alpha^n}
++
+m_1\frac{1}{\alpha^{n-1}}
++
+\ldots
++
+m_{n-1}\frac{1}{\alpha}
++
+1
+=
+0,
+\]
+das Polynom
+\[
+\hat{m}(x)
+=
+m_0x^n + m_1x^{n-1} + \ldots m_{n-1} x + 1
+\in
+K[x]
+\]
+hat also $\alpha^{-1}$ als Nullstelle.
+Das Polynom $\hat{m}(x)$ beweist daher, dass $\alpha^{-1}$ algebraisch ist.
+
+Die Zahl $\sqrt{2}\in\mathbb{R}$ ist also algebraisch über $\mathbb{Q}$
+und jede andere Quadratwurzel von Elementen von $\mathbb{Q}$ ist
+ebenfalls algebraisch über $\mathbb{Q}$.
+Auch der Körper $\mathbb{Q}(\alpha)$ kann für jede andere Quadratwurzel
+auf die genau gleiche Art wie für $\sqrt{2}$ konstruiert werden.
+
+\begin{definition}
+\label{buch:integral:definition:algebraischeerweiterung}
+Sei $K\subset L$ eine Körpererweiterung und $\alpha\in L$ ein algebraisches
+Element mit Minimalpolynom $m(x)\in K[x]$.
+Dann heisst die Menge
+\begin{equation}
+K(\alpha)
+=
+\{
+a_0 + a_1\alpha + \ldots +a_n\alpha^n
+\;|\;
+a_i\in K
+\}
+\label{buch:integral:eqn:algelement}
+\end{equation}
+mit $n=\deg m(x) - 1$ der durch {\em Adjunktion} oder Hinzufügen
+von $\alpha$ erhaltene Erweiterungsköper.
+\end{definition}
+
+Wieder muss nur überprüft werden, dass jedes Produkt oder jeder
+Quotient von Ausdrücken der Form~\eqref{buch:integral:eqn:algelement}
+wieder in diese Form gebracht werden kann.
+Dazu sei
+\[
+m(x)
+=
+m_0+m_1x + m_2x^2
++\ldots +m_{n-1}x^{n-1} + x^n
+\]
+das Minimalpolynom von $\alpha$.
+Die Gleichung $m(\alpha)=0$ kann nach $\alpha^n$ aufgelöst werden und
+liefert
+\[
+\alpha^n = -m_0 - m_1\alpha - m_2\alpha^2 -\ldots -m_{n-1}\alpha^{n-1}.
+\]
+Damit kann jede Potenz von $\alpha$ mit einem Exponenten grösser als $n$
+in eine Linearkombination von Potenzen mit kleineren Exponenten
+reduziert werden.
+Ein Polynom in $\alpha$ kann also immer auf die
+Form~\eqref{buch:integral:eqn:algelement}
+gebracht werden.
+
+Es muss aber noch gezeigt werden, dass auch der Kehrwert eines Elements
+der Form~\eqref{buch:integral:eqn:algelement} in dieser Form geschrieben
+werden kann.
+Sei also $a(\alpha)$ so ein Element, dann sind die beiden Polynome
+$a(x)$ und $m(x)$ teilerfremd, der grösste gemeinsame Teiler ist $1$.
+Mit dem erweiterten euklidischen Algorithmus kann man zwei Polynome
+$s(x)$ und $t(x)$ finden derart, dass $s(x)a(x)+t(x)m(x)=1$.
+Setzt man $\alpha$ für $x$ ein, verschwindet das Minimalpolynom und
+es bleibt
+\[
+s(\alpha)a(\alpha) = 1
+\qquad\Rightarrow\qquad
+s(\alpha) = \frac{1}{a(\alpha)}.
+\]
+Damit ist $s(\alpha)$ eine Darstellung von $1/a(\alpha)$ in der
+Form~\eqref{buch:integral:eqn:algelement}.
+
+%
+% Komplexe Zahlen
+%
+\subsubsection{Komplexe Zahlen}
+Die imaginäre Einheit $i$ hat die Eigenschaft, dass $i^2=-1$, insbesondere
+ist sie Nullstelle des Polynoms $m(x)=x^2+1\in\mathbb{Q}[x]$.
+Die Menge $\mathbb{Q}(i)$ ist daher eine algebraische Körpererweiterung
+von $\mathbb{Q}$ bestehend aus den komplexen Zahlen mit rationalem
+Real- und Imaginärteil.
+
+%
+% Transzendente Körpererweiterungen
+%
+\subsubsection{Transzendente Erweiterungen}
+Nicht alle Zahlen in $\mathbb{R}$ sind algebraisch.
+Lindemann bewies 1882 einen allgemeinen Satz, aus dem folgt,
+dass $\pi$ und $e$ nicht algebraisch sind, es gibt also
+kein Polynom mit rationalen Koeffizienten, welches $\pi$
+oder $e$ als Nullstelle hat.
+
+\begin{definition}
+Eine Zahl $\alpha\in L$ in einer Körpererweiterung $K\subset L$
+heisst {\em transzendent}, wenn $\alpha$ nicht algebraisch ist,
+wenn es also kein Polynom in $K[x]$ gibt, welches $\alpha$ als
+Nullstelle hat.
+\end{definition}
+
+Die Zahlen $\pi$ und $e$ sind also transzendent.
+Eine andere Art, diese Eigenschaft zu beschreiben ist zu sagen,
+dass die Potenzen
+\[
+1=\pi^0, \pi, \pi^2,\pi^3,\dots
+\]
+linear unabhängig sind.
+Gäbe es nämlich eine lineare Abhängigkeit, dann gäbe es Koeffizienten
+$l_i$ derart, dass
+\[
+l_0 + l_1\pi^1 + l_2\pi^2 + \ldots + l_{n-1}\pi^{n-1} + l_{n}\pi^n = l(\pi)=0,
+\]
+und damit wäre dann ein Polynom gefunden, welches $\pi$ als Nullstelle hat.
+
+Selbstverstländlich kann man zu einem transzendenten Element $\alpha$
+immer noch einen Körper konstruieren, der alle Zahlen enthält, welche man
+mit den arithmetischen Operationen aus $\alpha$ bilden kann.
+Man kann ihn schreiben als
+\[
+K(\alpha)
+=
+\biggl\{
+\frac{p(\alpha)}{q(\alpha)}
+\;\bigg|\;
+p(x),q(x)\in K[x] \wedge p(x)\ne 0
+\biggr\},
+\]
+aber die Vereinfachungen zur
+Form~\eqref{buch:integral:eqn:algelement}, die bei einem algebraischen
+Element $\alpha$ möglich waren, können jetzt nicht mehr durchgeführt
+werden.
+$K\subset K(\alpha)$ ist zwar immer noch eine Körpererweiterung, aber
+$K(\alpha)$ ist nicht mehr ein endlichdimensionaler Vektorraum.
+Die Körpererweiterung $K\subset K(\alpha)$ heisst {\em transzendent}.
+
+%
+% rationale Funktionen als Körpererweiterungen
+%
+\subsubsection{Rationale Funktionen als Körpererweiterung}
+Die unabhängige Variable wird bei Rechnen so behandelt, dass die
+Potenzen alle linear unabhängig sind.
+Dies ist die Grundlage für den Koeffizientenvergleich.
+Der Körper der rationalen Funktion $K(x)$
+ist also eine transzendente Körpererweiterung von $K$.
+
+%
+% Erweiterungen mit algebraischen Funktionen
+%
+\subsubsection{Algebraische Funktionen}
+Für das Integrationsproblem möchten wir nicht nur rationale Funktionen
+verwenden können, sondern auch Wurzelfunktionen.
+Wir möchten also zum Beispiel auch mit der Funktion $\sqrt{ax^2+bx+c}$
+und allem, was man mit arithmetischen Operationen daraus machen kann,
+arbeiten können.
+Eine Körpererweiterung, die $\sqrt{ax^2+bx+c}$ enthält, enthält auch
+alles, was man daraus bilden kann.
+Doch wie bekommen wir die Funktion $\sqrt{ax^2+bx+c}$ in den Körper?
+
+Die Art und Weise, wie man Wurzeln in der Schule kennenlernt ist als
+eine neue Operation, die zu einer Zahl die Quadratwurzel liefert.
+Diese Idee, den Körper mit einer weiteren Funktion anzureichern,
+führt über nicht auf eine nützliche neue algebraische Struktur.
+Wir dürfen daher $\sqrt{ax^2+bx+c}$ nicht als die Zusammensetzung
+einer einzelnen neuen Funktion $\sqrt{\phantom{A}}$ mit
+einem Polynom betrachten.
+
+Die Wurzel $\sqrt{ax^2+bx+c}$ ist aber auch die Nullstelle des Polynoms
+\[
+p(z)
+=
+z^2 - [ax^2+bx+c]
+\in
+K(x)[z]
+\]
+mit Koeffizienten in $K(x)$.
+Die eckigen Klammern sollen helfen, die Koeffizienten in $K(x)$
+zu erkennen.
+Die Funktion $\sqrt{ax^2+bx+c}$ ist also algebraisch über $K(x)$.
+Einen Funktionenkörper, der die Funktion enthält, kann man also erhalten,
+indem man den Körper $K(x)$ um das über $K(x)$ algebraische Element
+$y=\sqrt{ax^2+bx+c}$ zu $K(x,y)=K(x,\sqrt{ax^2+bx+c}$ erweitert.
+Wurzelfunktion werden daher nicht als Zusammensetzungen, sondern als
+algebraische Erweiterungen eines Funktionenkörpers betrachtet.
+
+%
+% Konjugation
+%
+\subsubsection{Konjugation}
+Die komplexen Zahlen sind die algebraische Erweiterung der reellen Zahlen
+um die Nullstelle $i$ des Polynoms $m(x)=x^2+1$.
+Die Zahl $-i$ ist aber auch eine Nullstelle von $m(x)$, die mit algebraischen
+Mitteln nicht von $i$ unterscheidbar ist.
+Die komplexe Konjugation $a+bi\mapsto a-bi$ vertauscht die beiden
+\index{Konjugation, komplexe}%
+\index{komplexe Konjugation}%
+Nullstellen des Minimalpolynoms.
+
+Ähnliches gilt für die Körpererweiterung $\mathbb{Q}(\!\sqrt{2})$.
+$\sqrt{2}$ und $\sqrt{2}$ sind beide Nullstellen des Minimalpolynoms
+$m(x)=x^2-2$, die mit algebraischen Mitteln nicht unterschiedbar sind.
+Sie haben zwar verschiedene Vorzeichen, doch ohne eine Ordnungsrelation
+können diese nicht unterschieden werden.
+\index{Ordnungsrelation}%
+Eine Ordnungsrelation zwischen rationalen Zahlen lässt sich zwar
+definieren, aber die Zahl $\sqrt{2}$ ist nicht rational, es braucht
+also eine zusätzliche Annahme, zum Beispiel die Identifikation von
+$\sqrt{2}$ mit einer reellen Zahl in $\mathbb{R}$, wo der Vergleich
+möglich ist.
+
+Auch in $\mathbb{Q}(\!\sqrt{2})$ ist die Konjugation
+$a+b\sqrt{2}\mapsto a-b\sqrt{2}$ eine Selbstabbildung, die
+die Körperoperationen respektiert.
+
+Das Polynom $m(x)=x^2-x-1$ hat die Nullstellen
+\[
+\frac12 \pm\sqrt{\biggl(\frac12\biggr)^2+1}
+=
+\frac{1\pm\sqrt{5}}{2}
+=
+\left\{
+\bgroup
+\renewcommand{\arraystretch}{2.20}
+\renewcommand{\arraycolsep}{2pt}
+\begin{array}{lcl}
+\displaystyle
+\frac{1+\sqrt{5}}{2} &=& \phantom{-}\varphi \\
+\displaystyle
+\frac{1-\sqrt{5}}{2} &=& \displaystyle-\frac{1}{\varphi}.
+\end{array}
+\egroup
+\right.
+\]
+Sie erfüllen die gleiche algebraische Relation $x^2=x+1$.
+Sie sind sowohl im Vorzeichen wie auch im absoluten Betrag
+verschieden, beides verlangt jedoch eine Ordnungsrelation als
+Voraussetzung, die uns fehlt.
+Aus beiden kann man mit rationalen Operationen $\sqrt{5}$ gewinnen,
+denn
+\[
+\sqrt{5}
+=
+4\varphi-1
+=
+-4\biggl(-\frac{1}{\varphi}\biggr)^2-1
+\qquad\Rightarrow\qquad
+\mathbb{Q}(\!\sqrt{5})
+=
+\mathbb{Q}(\varphi)
+=
+\mathbb{Q}(-1/\varphi).
+\]
+Die Abbildung $a+b\varphi\mapsto a-b/\varphi$ ist eine Selbstabbildung
+des Körpers $\mathbb{Q}(\!\sqrt{5})$, welche die beiden Nullstellen
+vertauscht.
+
+Dieses Phänomen gilt für jede algebraische Erweiterung.
+Die Nullstellen des Minimalpolynoms, welches die Erweiterung
+definiert, sind grundsätzlich nicht unterscheidbar.
+Mit der Adjunktion einer Nullstelle enthält der Erweiterungskörper
+auch alle anderen.
+Sind $\alpha_1$ und $\alpha_2$ zwei Nullstellen des Minimalpolynoms,
+dann definiert die Abbildung $\alpha_1\mapsto\alpha_2$ eine Selbstabbildung,
+die die Nullstellen permutiert.
+
+Die algebraische Körpererweiterung
+$\mathbb{Q}(x)\subset \mathbb{Q}(x,\sqrt{ax^2+bx+c})$
+ist nicht unterscheidbar von
+$\mathbb{Q}(x)\subset \mathbb{Q}(x,-\!\sqrt{ax^2+bx+c})$.
+Für das Integrationsproblem bedeutet dies, dass alle Methoden so
+formuliert werden müssen, dass die Wahl der Nullstellen auf die
+Lösung keinen Einfluss haben.
+
+
diff --git a/buch/chapters/060-integral/eulertransformation.tex b/buch/chapters/060-integral/eulertransformation.tex
index a597892..65d48b2 100644
--- a/buch/chapters/060-integral/eulertransformation.tex
+++ b/buch/chapters/060-integral/eulertransformation.tex
@@ -93,6 +93,7 @@ Durch Auflösung nach der hypergeometrischen Funktion bekommt man
die folgende Integraldarstellung.
\begin{satz}[Euler]
+\index{Satz!Eulertransformation}%
\label{buch:integrale:eulertransformation:satz}
Die hypergeometrische Funktion $\mathstrut_2F_1$ kann durch das
Integral
@@ -219,6 +220,7 @@ Funktionen $\mathstrut_{p+1}F_{q+1}$ durch ein Integral, dessen
Integrand $\mathstrut_pF_q$ enthält, ausdrücken lässt.
\begin{satz}
+\index{Satz!Euler-Transformationformel}%
Es gilt die sogennannte Euler-Transformationsformel
\index{Euler-Transformation}%
\[
diff --git a/buch/chapters/060-integral/experiments/rxy.maxima b/buch/chapters/060-integral/experiments/rxy.maxima
new file mode 100644
index 0000000..0d5a56d
--- /dev/null
+++ b/buch/chapters/060-integral/experiments/rxy.maxima
@@ -0,0 +1,9 @@
+y: sqrt(a*x^2+b*x+c);
+
+F: log(x + b/(2 * a) + y/sqrt(a))/sqrt(a);
+
+f: diff(F, x);
+
+ratsimp(f);
+
+ratsimp(y*f);
diff --git a/buch/chapters/060-integral/fehlerfunktion.tex b/buch/chapters/060-integral/fehlerfunktion.tex
index 581e56a..6b87044 100644
--- a/buch/chapters/060-integral/fehlerfunktion.tex
+++ b/buch/chapters/060-integral/fehlerfunktion.tex
@@ -622,7 +622,9 @@ Resultat für die Laplace-Transformierte von $f(t)$, sie ist
\frac1s\biggl(1-\frac12e^{-a\sqrt{s}} \biggr).
\]
-\begin{satz} Die Laplace-Transformierte der Fehlerfunktion mit Argument
+\begin{satz}
+\index{Satz!Laplace-Transformierte der Fehlerfunktion}%
+Die Laplace-Transformierte der Fehlerfunktion mit Argument
$a/2\sqrt{t}$ ist
\begin{equation}
f(t) = \operatorname{erf}\biggl(\frac{a}{2\sqrt{t}}\biggr)
diff --git a/buch/chapters/060-integral/iproblem.tex b/buch/chapters/060-integral/iproblem.tex
new file mode 100644
index 0000000..85db464
--- /dev/null
+++ b/buch/chapters/060-integral/iproblem.tex
@@ -0,0 +1,93 @@
+%
+% iproblem.tex
+%
+% (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschlue
+%
+\subsection{Das Integrationsproblem
+\label{buch:integral:subsection:integrationsproblem}}
+\index{Integrationsproblem}%
+Die Ableitung ist ein einem Differentialkörper mit Hilfe der Ableitungsregeln
+immer ausführbar, ganz ähnlich wie die Berechnung von Potenzen in einem Körper
+immer ausführbar ist.
+Die Umkehrung, also eine sogenannte Stammfunktion zu finden, ist dagegen
+deutlich schwieriger.
+
+\begin{definition}
+\index{Stammfunktion}
+Eine {\em Stammfunktion} einer Funktion $f\in\mathscr{K}$ im Funktionenkörper
+$\mathscr{K}$ ist eine Funktion $F\in\mathscr{K}$ derart, dass $F'=f$.
+Wir schreiben auch $F=\int f$.
+\end{definition}
+
+Zwei Stammfunktionen $F_1$ und $F_2$ einer Funktion $f\in\mathscr{K}$
+haben die Eigenschaft
+\[
+\left.\begin{aligned}
+F_1' &= f \\
+F_2' &= f
+\end{aligned}\quad\right\}
+\qquad
+\Rightarrow
+\qquad
+(F_1-F_2)' = 0
+\qquad\Rightarrow\qquad
+F_1-F_2\in\mathscr{C},
+\]
+die beiden Stammfunktionen unterscheiden sich daher nur durch eine
+Konstante.
+
+\subsubsection{Stammfunktion von Polynomen}
+Für Polynome ist das Problem leicht lösbar.
+Aus der Ableitungsregel
+\[
+\frac{d}{dx} x^n = nx^{n-1}
+\]
+folgt, dass
+\[
+\int x^n = \frac{1}{n+1} x^{n+1}
+\]
+eine Stammfunktion von $x^n$ ist.
+Da $\int$ linear ist, ergibt sich damit auch eine Stammfunktion für
+ein beliebiges Polynom
+\[
+g(x)
+=
+g_0 + g_1x + g_2x^2 + \dots g_nx^n
+=
+\sum_{k=0}^n g_kx^k
+\in\mathbb{Q}(x)
+\]
+angeben:
+\begin{equation}
+\int g(x)
+=
+g_0x + \frac12g_1x^2 + \frac13g_2x^3 + \dots \frac{1}{n+1}g_nx^{n+1}
+=
+\sum_{k=0}^n
+\frac{g_k}{k+1}x^{k+1}.
+\label{buch:integral:iproblem:eqn:polyintegral}
+\end{equation}
+
+\subsubsection{Körpererweiterungen}
+Obwohl die Ableitung in einem Differentialkörper immer ausgeführt werden
+kann, gibt es keine Garantie, dass es eine Stammfunktion im gleichen
+Körper gibt.
+Im kleinsten denkbaren Funktionenkörper $\mathbb{Q}(x)$
+haben die negativen Potenzen linearer Funktionen die Stammfunktionen
+\[
+\int
+\frac{1}{(x-\alpha)^k}
+=
+\frac{1}{(-k+1)(x-\alpha)^{k-1}}
+\]
+für $k\ne 1$, sind also wieder in $\mathbb{Q}(x)$.
+Für $k=1$ ist aber
+\[
+\int \frac{1}{x-\alpha}
+=
+\log(x-\alpha),
+\]
+es braucht also eine Körpererweiterung um $\log(x-\alpha)$, damit
+$(x-\alpha)^{-1}$ eine Stammfunktion in $\mathbb{Q}(x,\log(x-\alpha))$
+hat.
+
diff --git a/buch/chapters/060-integral/irat.tex b/buch/chapters/060-integral/irat.tex
new file mode 100644
index 0000000..4c472ea
--- /dev/null
+++ b/buch/chapters/060-integral/irat.tex
@@ -0,0 +1,140 @@
+%
+% irat.tex
+%
+% (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschlue
+%
+\subsection{Integration rationaler Funktionen
+\label{buch:integral:subsection:rationalefunktionen}}
+Für die Integration der rationalen Funktionen lernt man in einem
+Analysis-Kurs üblicherweise ein Lösungsverfahren.
+Dies zeigt zunächst, dass rationale Funktionen immer eine Stammfunktion
+in einem geeigneten Erweiterungskörper haben.
+Es deutet aber auch an, dass Stammfunktionen eine ziemlich spezielle
+Form haben, die später als
+Satz von Liouville~\ref{buch:integral:satz:liouville}
+ein besondere Rolle spielen wird.
+
+%
+% Aufgabenstellung
+%
+\subsubsection{Aufgabenstellung}
+In diesem Abschnitt ist eine rationale Funktion $f(x)\in\mathbb{Q}(x)$
+gegeben, deren Stammfunktion bestimmt werden soll.
+Als rationale Funktion kann sie als Bruch
+\begin{equation}
+f(x) = \frac{p(x)}{q(x)}
+\label{buch:integral:irat:eqn:quotient}
+\end{equation}
+mit Polynomen $p(x),q(x)\in\mathbb{Q}[x]$ geschrieben werden.
+Gesucht ist ein Erweiterungskörper $\mathscr{K}\supset \mathbb{Q}(x)$
+derart und eine Stammfunktion $F\in\mathscr{K}$ von $f$, also $F'=f$.
+
+%
+% Polynomdivision
+%
+\subsubsection{Polynomdivision}
+Der Quotient~\eqref{buch:integral:irat:eqn:quotient} kann durch Polynomdivision
+mit Rest vereinfacht werden in einen polynomialen Teil und einen echten
+Bruch:
+\begin{equation}
+f(x)
+=
+g(x)
++
+\frac{a(x)}{b(x)}
+\label{buch:integral:irat:eqn:polydiv}
+\end{equation}
+mit Polynomen $g(x),a(x),b(x)\in\mathbb[Q](x)$ und $\deg a(x) < \deg b(x)$.
+Für den ersten Summanden liefert
+\eqref{buch:integral:iproblem:eqn:polyintegral} eine Stammfunktion.
+Im Folgenden bleibt also nur noch der zweite Term zu behandeln.
+
+%
+% Partialbruchzerlegung
+%
+\subsubsection{Partialbruchzerlegung}
+Zur Berechnung des Integral des Bruchs
+in~\eqref{buch:integral:irat:eqn:polydiv} wird die Partialbruchzerlegung
+benötigt.
+Der Einfachheit halber nehmen wir an, dass wir den Körper $\mathbb{Q}(x)$
+mit alle Nullstellen $\beta_i$ des Nenner-Polynoms $b(x)$ zu einem Körper
+$\mathscr{K}$ erweitert haben, in dem Nenner in Linearfaktoren zerfällt.
+Unter diesen Voraussetzungen hat die Partialbruchzerlegung die Form
+\begin{equation}
+\frac{a(x)}{b(x)}
+=
+\sum_{i=1}^m
+\sum_{k=1}^{k_i}
+\frac{A_{ik}}{(x-\beta_i)^k},
+\label{buch:integral:irat:eqn:partialbruch}
+\end{equation}
+wobei $k_i$ die Vielfachheit der Nullstelle $\beta_i$ ist.
+Die Koeffizienten $A_{ik}$ können zum Beispiel mit Hilfe eines linearen
+Gleichungssystems bestimmt werden.
+
+Um eine Stammfunktion zu finden, muss man also Stammfunktionen für
+jeden einzelnen Summanden bestimmen.
+Für Exponenten $k>1$ im Nenner eines Terms der
+Partialbruchzerlegung~\eqref{buch:integral:irat:eqn:partialbruch}
+kann dazu die Regel
+\[
+\int \frac{A_{ik}}{(x-\beta_i)^k}
+=
+\frac{A_{ik}}{(-k+1)(x-\beta_i)^{k-1}}
+\]
+verwendet werden.
+Diese Stammfunktion liegt wieder in $\mathscr{K}(x)$ liegt.
+
+%
+% Körpererweiterungen
+%
+\subsubsection{Körpererweiterung}
+Für $k=1$ ist eine logarithmische Erweiterung um die Funktion
+\begin{equation}
+\int \frac{A_{i1}}{x-\alpha_i}
+=
+A_{i1}
+\log(x-\alpha_i)
+\label{buch:integral:irat:eqn:logs}
+\end{equation}
+nötig.
+Es gibt also eine Stammfunktion in einem Erweiterungskörper, sofern
+er zusätzlich alle logarithmischen Funktionen
+in~\ref{buch:integral:irat:eqn:logs} enthält.
+Sie hat die Form
+\[
+\sum_{i=1}^m A_{i1} \log(x-\beta_i),
+\]
+wobei $A_{i1}\in\mathscr{K}$ ist.
+
+Setzt man alle vorher schon gefundenen Teile der Stammfunktion zusammen,
+kann man sehen, dass die Stammfunktion die Form
+\begin{equation}
+F(x) = v_0(x) + \sum_{i=1}^m c_i \log v_i(x)
+\label{buch:integral:irat:eqn:liouvillstammfunktion}
+\end{equation}
+haben muss.
+Dabei ist $v_0(x)\in\mathscr{K}(x)$ und besteht aus der Stammfunktion
+des polynomiellen Teils und den Stammfunktionen der Terme der Partialbruchzerlegung mit Exponenten $k>1$.
+Die logarithmischen Terme bestehen aus den Konstanten $c_i=A_{i1}$
+und den Logarithmusfunktionen $v_i(x)=x-\beta_i\in\mathscr{K}(x)$.
+Die Funktion $f(x)$ muss daher die Form
+\[
+f(x)
+=
+v_0'(x)
++
+\sum_{i=1}^m c_i\frac{v'_i(x)}{v_i(x)}
+\]
+gehabt haben.
+Die Form~\eqref{buch:integral:irat:eqn:liouvillstammfunktion}
+der Stammfunktion ist nicht eine Spezialität der rationalen Funktionen.
+Sie wird auch bei grösseren Funktionenkörpern immer wieder auftreten
+und ist als Satz von Liouville bekannt.
+
+%
+% Minimale algebraische Erweiterung
+%
+\subsubsection{Minimale algebraische Erweiterung}
+XXX Rothstein-Trager
+
diff --git a/buch/chapters/060-integral/logexp.tex b/buch/chapters/060-integral/logexp.tex
new file mode 100644
index 0000000..e0efab2
--- /dev/null
+++ b/buch/chapters/060-integral/logexp.tex
@@ -0,0 +1,146 @@
+%
+% logexp.tex
+%
+% (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschlue
+%
+\subsection{Log-Exp-Notation für trigonometrische und hyperbolische Funktionen
+\label{buch:integral:subsection:logexp}}
+Die Integration rationaler Funktionen hat bereits gezeigt, dass
+eine Stammfunktion nicht immer im Körper der rationalen Funktionen
+existiert.
+Es kann notwendig sein, dem Körper logarithmische Erweiterungen der Form
+$\log(x-\alpha)$ hinzuzufügen.
+
+Es können jedoch noch ganz andere neue Funktionen auftreten, wie die
+folgende Zusammenstellung einiger Stammfunktionen zeigt:
+\begin{equation}
+\begin{aligned}
+\int\frac{dx}{1+x^2}
+&=
+\arctan x,
+\\
+\int \cos x\,dx
+&=
+\sin x,
+\\
+\int\frac{dx}{\sqrt{1-x^2}}
+&=
+\arcsin x,
+\\
+\int
+\operatorname{arcosh} x\,dx
+&=
+x \operatorname{arcosh} x - \sqrt{x^2-1}.
+\end{aligned}
+\label{buch:integration:risch:allgform}
+\end{equation}
+In der Stammfunktion treten Funktionen auf, die auf den ersten
+Blick nichts mit den Funktionen im Integranden zu tun haben.
+
+\subsubsection{Trigonometrische und hyperbolische Funktionen}
+Die trigonometrischen und hyperbolichen Funktionen
+in~\eqref{buch:integration:risch:allgform}
+lassen sich alle durch Exponentialfunktionen ausdrücken.
+So gilt
+\begin{equation}
+\begin{aligned}
+\sin x &= \frac{1}{2i}\bigl( e^{ix} - e^{-ix}\bigr),
+&
+&\qquad&
+\cos x &= \frac{1}{2}\bigl( e^{ix} + e^{-ix}\bigr),
+\\
+\sinh x &= \frac12\bigl( e^x - e^{-x} \bigr),
+&
+&\qquad&
+\cosh x &= \frac12\bigl( e^x + e^{-x} \bigr).
+\end{aligned}
+\label{buch:integral:risch:trighyp}
+\end{equation}
+Nach Multiplikation mit $e^{ix}$ bzw.~$e^{x}$ entsteht eine
+quadratische Gleichung in $e^{ix}$ bzw.~$e^{x}$.
+Die Lösungsformel für quadratische Gleichungen erlaubt daher, $e^{ix}$
+bzw.~$e^{x}$ zu finden und damit auch die Umkehrfunktionen.
+Die Rechnung ergibt
+\begin{equation}
+\begin{aligned}
+\arcsin y
+&=
+\frac{1}{i}\log\bigl(
+iy\pm\sqrt{1-y^2}
+\bigr),
+&
+&\qquad&
+\arccos y
+&=
+\log\bigl(
+y\pm \sqrt{y^2-1}
+\bigr),
+\\
+\operatorname{arsinh}y
+&=
+\log\bigl(
+y \pm \sqrt{1+y^2}
+\bigr),
+&
+&\qquad&
+\operatorname{arcosh} y
+&=
+\log\bigl(
+y\pm \sqrt{y^2-1}
+\bigr).
+\end{aligned}
+\label{buch:integral:risch:trighypinv}
+\end{equation}
+Alle Funktionen, die man aus dem elementaren Analysisunterricht
+kennt, können also mit Hilfe von Exponentialfunktionen und Logarithmen
+geschrieben werden.
+Man nennt dies die $\log$-$\exp$-Notation der trigonometrischen
+und hyperbolischen Funktionen.
+\index{logexpnotation@$\log$-$\exp$-Notation}%
+
+\subsubsection{$\log$-$\exp$-Notation}
+Wendet man die Substitutionen
+\eqref{buch:integral:risch:trighyp}
+und
+\eqref{buch:integral:risch:trighypinv}
+auf die Integrale
+\eqref{buch:integration:risch:allgform}
+an, entstehen die Beziehungen
+\begin{equation}
+\begin{aligned}
+\int\frac{1}{1+x^2}
+&=
+\frac12i\bigl(
+\log(1-ix) - \log(1+ix)
+\bigr),
+\\
+\int\bigl(
+{\textstyle\frac12}
+e^{ix}
++
+{\textstyle\frac12}
+e^{-ix}
+\bigr)
+&=
+-{\textstyle\frac12}ie^{ix}
++{\textstyle\frac12}ie^{-ix},
+\\
+\int
+\frac{1}{\sqrt{1-x^2}}
+&=
+-i\log\bigl(ix+\sqrt{1-x^2}),
+\\
+\int \log\bigl(x+\sqrt{x^2-1}\bigr)
+&=
+x\log\bigl(x+\sqrt{x^2-1}\bigr) - \sqrt{x^2-1}.
+\end{aligned}
+\label{buch:integration:risch:eqn:integralbeispiel2}
+\end{equation}
+Die in den Stammfuntionen auftretenden Funktionen treten entweder
+schon im Integranden auf oder sind Logarithmen von solchen
+Funktionen.
+Zum Beispiel hat der Nenner im ersten Integral die Faktorisierung
+$1+x^2=(1+ix)(1-ix)$, in der Stammfunktion findet man die Logarithmen
+der Faktoren.
+
+
diff --git a/buch/chapters/060-integral/rational.tex b/buch/chapters/060-integral/rational.tex
new file mode 100644
index 0000000..0ca164d
--- /dev/null
+++ b/buch/chapters/060-integral/rational.tex
@@ -0,0 +1,203 @@
+%
+% rational.tex
+%
+% (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschlue
+%
+\subsection{Rationale Funktionen und Funktionenkörper
+\label{buch:integral:subsection:rational}}
+Welche Funktionen sollen als Antwort auf die Frage nach einer Stammfunktion
+akzeptiert werden?
+Polynome in der unabhängigen Variablen $x$ sollten sicher dazu gehören,
+also alles, was man mit Hilfe der Multiplikation, Addition und Subtraktion
+aus Koeffizienten zum Beispiel in den rationalen Zahlen $\mathbb{Q}$ und
+der unabhängigen Variablen aufbauen kann.
+Doch welche weiteren Operationen sollen zugelassen werden und was lässt
+sich über die entstehende Funktionenmenge aussagen?
+
+\subsubsection{Körper}
+Die kleinste Zahlenmenge, in der alle arithmetischen Operationen soweit
+sinnvoll durchgeführt werden können, ist die Menge $\mathbb{Q}$ der
+rationalen Zahlen.
+Etwas formaler ist eine solche Menge, in der die Arithmetik uneingeschränkt
+ausgeführt werden kann, ein Körper gemäss der folgenden Definition.
+\index{Korper@Körper}%
+
+\begin{definition}
+\label{buch:integral:definition:koerper}
+Eine {\em Körper} ist eine Menge $K$ mit zwei Verknüpfungen $+$, die Addition,
+und $\cdot$, die Multiplikation,
+welche die folgenden Eigenschaften haben.
+\begin{center}
+\renewcommand{\tabcolsep}{0pt}
+\begin{tabular}{p{68mm}p{4mm}p{68mm}}
+%Eigenschaften der
+Addition:
+\begin{enumerate}[{\bf A}.1)]
+\item assoziativ: $(a+b)+c=a+(b+c)$
+für alle $a,b,c\in K$
+\item kommutativ: $a+b=b+a$
+für alle $a,b\in K$
+\item Neutrales Element der Addition: es gibt ein Element $0\in K$ mit
+der Eigenschaft $a+0=a$ für alle $a\in K$
+\item Additiv inverses Element: zu jedem Element $a\in K$ gibt es das Element
+$-a$ mit der Eigenschaft $a+(-a)=0$.
+\end{enumerate}
+&&%
+%Eigenschaften der
+Multiplikation:
+\begin{enumerate}[{\bf M}.1)]
+\item assoziativ: $(a\cdot b)\cdot c=a\cdot (b\cdot c)$
+für alle $a,b,c\in K$
+\index{Assoziativgesetz}%
+\index{assoziativ}%
+\item kommutativ: $a\cdot b=b\cdot a$
+für alle $a,b\in K$
+\index{Kommutativgesetz}%
+\index{kommutativ}%
+\item Neutrales Element der Multiplikation: es gibt ein Element $1\in K$ mit
+der Eigenschaft $a\cdot 1 =a$ für alle $a\in K$
+\index{neutrales Element}%
+\item Multiplikativ inverses Element: zu jedem Element
+\index{inverses Element}%
+$a\in K^*=K\setminus\{0\}$
+gibt es das Element $a^{-1}$ mit der Eigenschaft $a\cdot a^{-1}=1$.
+\index{Einheitengruppe}%
+\index{Gruppe der invertierbaren Elemente}%
+\end{enumerate}
+\end{tabular}
+\end{center}
+\vspace{-22pt}
+Ausserdem gilt das Distributivgesetz: für alle $a,b,c\in K$ gilt
+$a\cdot(b+c)=a\cdot b + a\cdot c$.
+\index{Disitributivgesetz}%
+Die Menge $K^*$ heisst auch die {\em Einheitengruppe} oder die
+{\em Gruppe der invertierbaren Elemente} des Körpers.
+\end{definition}
+
+Das Assoziativgesetz {\bf A}.1 besagt, dass Summen mit beliebig
+vielen Termen ohne Klammern geschrieben werden kann, weil es nicht
+darauf ankommt, in welcher Reihenfolge die Additionen ausgeführt werden.
+Ebenso für das Assoziativgesetz {\bf M}.1 der Multiplikation.
+Die Kommutativgesetze {\bf A}.2 und {\bf M}.2 implizieren, dass man
+nicht auf die Reihenfolge der Summanden oder Faktoren achten muss.
+Das Distributivgesetz schliesslich besagt, dass man Produkte ausmultiplizieren
+oder gemeinsame Faktoren ausklammern kann, wie man es in der Schule
+gelernt hat.
+
+Die rellen Zahlen $\mathbb{R}$ und die komplexen Zahlen $\mathbb{C}$
+bilden ebenfalls einen Körper, die von den rationalen Zahlen geerbten
+Eigenschaften der Verknüpfungen setzen sich auf $\mathbb{R}$ und
+$\mathbb{C}$ fort.
+Es lassen sich allerdings auch Zahlkörper zwischen $\mathbb{Q}$ und
+$\mathbb{R}$ konstruieren, wie das folgende Beispiel zeigt.
+
+\begin{beispiel}
+\label{buch:integral:beispiel:Qsqrt2}
+Die Menge
+\[
+\mathbb{Q}(\!\sqrt{2})
+=
+\{
+a+b\sqrt{2}
+\;|\;
+a,b\in \mathbb{Q}
+\}
+\]
+ist eine Teilmenge von $\mathbb{R}$.
+Die Rechenoperationen haben alle verlangten Eigenschaften, wenn gezeigt
+werden kann, dass Produkte und Quotienten von Zahlen in $\mathbb{Q}(\!\sqrt{2})$
+wieder in $\mathbb{Q}(\!\sqrt{2})$ sind.
+Dazu rechnet man
+\begin{align*}
+(a+b\sqrt{2})
+(c+d\sqrt{2})
+&=
+ac + 2bd + (ad+bc)\sqrt{2} \in \mathbb{Q}(\!\sqrt{2})
+\intertext{und}
+\frac{a+b\sqrt{2}}{c+d\sqrt{2}}
+&=
+\frac{a+b\sqrt{2}}{c+d\sqrt{2}}
+\cdot
+\frac{c-d\sqrt{2}}{c-d\sqrt{2}}
+=
+\frac{ac-2bd +(-ad+bc)\sqrt{2}}{c^2-2d^2}
+\\
+&=
+\underbrace{\frac{ac-2bd}{c^2-2d^2}}_{\displaystyle\in\mathbb{Q}}
++
+\underbrace{\frac{-ad+bc}{c^2-2d^2}}_{\displaystyle\in\mathbb{Q}}
+\sqrt{2}
+\in \mathbb{Q}(\!\sqrt{2}).
+\qedhere
+\end{align*}
+\end{beispiel}
+
+%
+% Rationale Funktionen
+%
+\subsubsection{Rationalen Funktionen}
+Die als Antworten auf die Frage nach einer Stammfunktion akzeptablen
+Funktionen sollten alle rationalen Zahlen sowie die unabhängige
+Variable $x$ enthalten.
+Ausserdem sollte man beliebige arithmetische Operationen mit
+diesen Ausdrücken durchführen können.
+Mit Addition, Subtraktion und Multiplikation entstehen aus den
+rationalen Zahlen und der unabhängigen Variablen die Polynome $\mathbb{Q}[x]$
+(siehe auch Abschnitt~\ref{buch:potenzen:section:polynome}).
+
+
+\begin{definition}
+Die Menge
+\[
+\mathbb{Q}(x)
+=
+\biggl\{
+\frac{p(x)}{q(x)}
+\;\bigg|\;
+p(x),q(x)\in\mathbb{Q}[x]
+\wedge
+q(x)\ne 0
+\biggr\},
+\]
+bestehend aus allen Quotienten von Polynomen, deren Nenner nicht
+das Nullpolynom ist, heisst der Körper der {\em rationalen Funktionen}
+\index{rationale Funktion}%
+mit Koeffizienten in $\mathbb{Q}$.
+\end{definition}
+
+Die Definition erlaubt, dass der Nenner Nullstellen hat, die sich in
+Polen der Funktion äussern.
+Die Eigenschaften eines Körpers sind sicher erfüllt, wenn wir uns
+nur davon überzeugen können,
+dass die arithmetischen Operationen nicht aus dieser Funktionenmenge
+herausführen.
+Dazu muss man nur verstehen, dass die Operation des gleichnamig Machens
+zweier Brüche auch für Nenner funktioniert, die Polynome sind, und die
+Summe wzeier Brüche von Polynomen wieder in einen Bruch von Polynomen
+umwandelt.
+
+%
+% Warum rationale Zahlen?
+%
+\subsubsection{Warum die Beschränkung auf rationale Zahlen?}
+Aus mathematischer Sicht gibt es gute Gründe, Analysis im Körper $\mathbb{R}$
+oder $\mathbb{C}$ zu betreiben.
+Da Ableitung und Integral als Grenzwerte definiert sind, stellt diese
+Wahl des Körpers sicher, dass die Grenzwerte auch tatsächlich existieren.
+Der Fundamentalsatz der Algebra garantiert, dass über $\mathbb{C}$
+jedes Polynome in Linearfaktoren zerlegt werden kann.
+
+Der Einfachheit der Analyse in $\mathbb{R}$ oder $\mathbb{C}$ steht
+die Schwierigkeit gegenüber, beliebige Elemente von $\mathbb{R}$ in
+einem Computer exakt darzustellen.
+Für Brüche in $\mathbb{Q}$ gibt es eine solche Darstellung durch
+Paare von Ganzzahlen, wie sie die GNU Multiprecision Arithmetic Library
+\cite{buch:gmp} realisiert.
+Irrationale Zahlen dagegen können nur exakt gehandhabt werden, wenn
+man im wesentlichen symbolisch mit ihnen rechnet.
+Die Grundlage dafür wird in
+Abschnitt~\ref{buch:integral:subsection:koerpererweiterungen}
+gelegt.
+
+
+
diff --git a/buch/chapters/060-integral/risch.tex b/buch/chapters/060-integral/risch.tex
index 6c8ff96..2080ce8 100644
--- a/buch/chapters/060-integral/risch.tex
+++ b/buch/chapters/060-integral/risch.tex
@@ -6,7 +6,20 @@
\section{Der Risch-Algorithmus
\label{buch:integral:section:risch}}
\rhead{Risch-Algorithmus}
+Die Lösung des Integrationsproblem für $\mathbb{Q}(x)$ und für
+$\mathbb{Q}(x,y)$ mit $y=\!\sqrt{ax^2+bx+c}$ hat gezeigt, dass
+ein Differentialkörper genau die richtige Bühne für dieses Unterfangen
+sein dürfte.
+Die Stammfunktionen konnten in einem Erweiterungskörper gefunden
+werden, der ein paar Logarithmen hinzugefügt worden sind.
+Tatsächlich lässt sich in diesem Rahmen sogar ein Algorithmus
+formulieren, der in einem noch zu definierenden Sinn ``elementare''
+Funktionen als Stammfunktionen finden kann oder beweisen kann, dass
+eine solche nicht existiert.
+Dieser Abschnitt soll einen Überblick darüber geben.
+\input{chapters/060-integral/logexp.tex}
+\input{chapters/060-integral/elementar.tex}
diff --git a/buch/chapters/060-integral/sqrat.tex b/buch/chapters/060-integral/sqrat.tex
new file mode 100644
index 0000000..787cfc9
--- /dev/null
+++ b/buch/chapters/060-integral/sqrat.tex
@@ -0,0 +1,480 @@
+%
+% sqrat.tex
+%
+% (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschlue
+%
+\subsection{Integranden der Form $R(x,\sqrt{ax^2+bx+c})$
+\label{buch:integral:subsection:rxy}}
+Für rationale Funktionen lässt sich immer eine Stammfunktion in einem
+Erweiterungskörper angeben, der durch hinzufügen einzelner logarithmischer
+Funktionen entsteht.
+Die dabei verwendeten Techniken lassen sich verallgemeinern.
+Zur Illustration und Motivation des später beschriebenen Risch-Algorithmus
+stellen wir uns in diesem Abschnitt der Aufgabe, Integrale
+mit einem Integranden zu berechnen, der eine rationale Funktion von $x$
+und $\sqrt{ax^2+bx+c}$ ist.
+
+%
+% Aufgabenstellung
+%
+\subsubsection{Aufgabenstellung}
+Eine rationale Funktion von $x$ und $\sqrt{ax^2+bx+c}$ ist ein
+Element des Differentialkörpers, den man aus $\mathbb{Q}(x)$ durch
+hinzufügen des Elementes
+\[
+y=\sqrt{ax^2+bx+c}
+\]
+erhält.
+Eine Funktion $f\in\mathbb{Q}(x,y)$ kann geschrieben werden als Bruch
+\begin{equation}
+f
+=
+\frac{
+\tilde{p}_0 + \tilde{p}_1y + \dots + \tilde{p}_n y^n
+}{
+\tilde{q}_0 + \tilde{q}_1y + \dots + \tilde{q}_m y^m
+}
+\label{buch:integral:sqrat:eqn:ftilde}
+\end{equation}
+mit rationalen Koeffizienten $\tilde{p}_i,\tilde{q}_i\in\mathbb{Q}(x)$.
+Gesucht ist eine Stammfunktion von $f$.
+
+%
+% Algebraische Vereinfachungen
+%
+\subsubsection{Algebraische Vereinfachungen}
+Da $x^2=ax^2+bx+c$ ein Polynom ist, sind auch alle geraden Potenzen
+von $y$ Polynome in $\mathbb{Q}(x)$,
+und die ungeraden Potenzen von $y$ lassen sich als Produkt aus einem
+Polynom und dem Faktor $y$ schreiben.
+Der Integrand~\eqref{buch:integral:sqrat:eqn:ftilde}
+lässt sich daher vereinfachen zu einem Bruch der Form
+\begin{equation}
+f(x)
+=
+\frac{p_0+p_1y}{q_0+q_1y},
+\label{buch:integral:sqrat:eqn:moebius}
+\end{equation}
+wobei $p_i$ und $q_i$ rationale Funktionen in $\mathbb{Q}(x)$ sind.
+
+%
+% Rationalisieren
+%
+\subsubsection{Rationalisieren}
+Unschön an der Form~\eqref{buch:integral:sqrat:eqn:moebius} ist die
+Tatsache, dass $y$ sowohl im Nenner wie auch im Zähler auftreten kann.
+Da aber $y$ die quadratische Identität $y^2=ax^2+bx+c$ erfüllt,
+kann das $y$ im Nenner durch Erweitern mit $q_0-q_1y$ zum verschwinden
+gebracht werden.
+Die Rechnung ergibt
+\begin{align*}
+\frac{p_0+p_1y}{q_0+q_1y}
+&=
+\frac{p_0+p_1y}{q_0+q_1y}
+\cdot
+\frac{q_0-q_1y}{q_0-q_1y}
+=
+\frac{(p_0+p_1y)(q_0-q_1y)}{q_0^2-q_1^2y^2}
+\\
+&=
+\frac{p_0q_0-p_1q_1(ax^2+bx+c)}{q_0^2-q_1^2(ax^2+bx+c)}
++
+\frac{q_0p_1-q_1p_0}{q_0^2-q_1^2(ax^2+bx+c)} y.
+\end{align*}
+Die Quotienten enthalten $y$ nicht mehr, sind also in $\mathbb{Q}(x)$.
+In der späteren Rechnung stellt sich heraus, dass es praktischer ist,
+das $y$ im Nenner zu haben, was man durch erweitern mit $y$ wieder
+unter Ausnützung von $y^2=ax^2+bx+c$ erreichen kann.
+Die zu integrierende Funktion kann also in der Form
+\begin{equation}
+f(x)
+=
+W_1 + W_2\frac{1}{y}
+\label{buch:integral:sqint:eqn:w1w2y}
+\end{equation}
+geschrieben werden mit rationalen Funktionen
+$W_1,W_2\in\mathbb{Q}(x)$.
+Eine Stammfunktion von $W_1$ kann mit der Methode von
+Abschnitt~\ref{buch:integral:subsection:rationalefunktionen}
+gefunden werden.
+Im Folgenden kümmern wir uns daher nur noch um $W_1$.
+
+%
+% Polynomdivision
+%
+\subsubsection{Polynomdivision}
+Die Funktion $W_2$ in \eqref{buch:integral:sqint:eqn:w1w2y} ist eine
+rationale Funktion $W_2\in \mathbb{K}(x)$, also ein Bruch mit Polynomen
+in $x$ als Zähler und Nenner.
+Durch Polynomdivision mit Rest können wir $W_2$ schreiben als
+\[
+W_1 = \varphi + W_3,
+\]
+wobei $\varphi$ ein Polynom in $x$ ist und $W_3$ eine rationale
+Funktion, deren Zählergrad kleiner ist als der Nennergrad.
+Zur Bestimmung der Stammfunktion bleibt jetzt nur noch
+\begin{equation}
+\int W_2\frac{1}{y}
+=
+\int \frac{\varphi}{y}
++
+\int W_3\frac1{y}
+\label{buch:integral:sqint:eqn:Wy}
+\end{equation}
+zu berechnen.
+
+%
+% Integranden der Form $\varphi(x)/y$
+%
+\subsubsection{Integranden der Form $\varphi(x)/y$}
+Der erste Term in~\eqref{buch:integral:sqint:eqn:Wy} ist ein Integral eines
+Quotienten eines Polynoms geteilt durch $y$.
+Solche Integrale können, wie im Folgenden gezeigt werden soll, reduziert
+werden auf das Integral von $1/y$.
+Genauer gilt der folgende Satz.
+
+\begin{satz}
+\label{buch:integral:sqint:satz:polyy}
+Sei $\varphi\in\mathcal{K}(x)$ ein Polynom in $x$, dann gibt
+es ein Polynom $\psi\in\mathcal{K}(x)$ vom Grad $\deg\psi < \deg\varphi$,
+und $A\in\mathcal{K}$ derart, dass
+\begin{equation}
+\int \frac{\varphi}{y}
+=
+\psi y + A\int\frac{1}{y}.
+\label{buch:integral:sqint:eqn:phipsi}
+\end{equation}
+\end{satz}
+
+\begin{proof}[Beweis]
+Wir schreiben die Polynome in der Form
+\begin{align*}
+\varphi
+&=
+\varphi_mx^m + \varphi_{m-1}x^{m-1} + \dots + \varphi_2x^2 + \varphi_1x + \varphi_0
+\\
+\psi
+&=
+\phantom{\varphi_mx^m+\mathstrut}
+\psi_{m-1}x^{m-1} + \dots + \psi_2x^2 + \psi_1x + \psi_0
+\intertext{mit der Ableitung}
+\psi'
+&=
+\phantom{\varphi_mx^m+\mathstrut}
+\psi_{m-1}(m-1)x^{m-2} + \dots + 2\psi_2x + \psi_1.
+\end{align*}
+Wir leiten die Gleichung~\eqref{buch:integral:sqint:eqn:phipsi}
+nach $x$ ab und erhalten
+\begin{align*}
+\frac{\varphi}{y}
+&=
+\psi'y + \psi y' + \frac{A}{y}
+=
+\psi'y + \psi \frac{ax+b/2}{y} + \frac{A}{y}.
+\intertext{Durch Multiplikation mit $y$ wird die Gleichung wesentlich
+vereinfacht zu}
+\varphi
+&=
+\psi' y^2 + \psi y' y + A
+=
+\psi' \cdot(ax^2+bx+c) + \psi\cdot (ax+b/2) + A.
+\end{align*}
+Auf beiden Seiten stehen Polynome, man kann daher versuchen, die
+Koeffizienten von $\psi$ mit Hilfe eines Koeffizientenvergleichs zu
+bestimmen.
+Dazu müssen die Produkte auf der rechten Seite ausmultipliziert werden.
+So ergeben sich die Gleichungen
+\begin{equation}
+\renewcommand{\arraycolsep}{2pt}
+\begin{array}{lcrcrcrcrcrcrcr}
+\varphi_m
+&=&
+(m-1)\psi_{m-1} a &+& & &
+&+&
+\psi_{m-1} a & & & &
+\\
+\varphi_{m-1}
+&=&
+(m-2)\psi_{m-2}a
+&+&
+(m-1)\psi_{m-1}b
+& &
+&+&
+\psi_{m-2}a
+&+&
+\psi_{m-1}\frac{b}2
+& &
+\\
+\varphi_{m-2}
+&=&
+(m-3)\psi_{m-3}a
+&+&
+(m-2)\psi_{m-2}b
+&+&
+(m-1)\psi_{m-1}c
+&+&
+\psi_{m-3}a
+&+&
+\psi_{m-2}\frac{b}2
+& &
+\\
+&\vdots&&&&&&&&&&&
+\\
+\varphi_2
+&=&
+\psi_{1\phantom{-m}}a
+&+&
+2\psi_{2\phantom{-m}}b
+&+&
+3\psi_{3\phantom{-m}}c
+&+&
+\psi_{1\phantom{-m}}a
+&+&
+\psi_{2\phantom{-m}}\frac{b}2
+& &
+\\
+\varphi_1
+&=&
+& &
+\psi_{1\phantom{-m}}b
+& &
+2\psi_{2\phantom{-m}}c
+&+&
+\psi_{0\phantom{-m}}a
+&+&
+\psi_{1\phantom{-m}}\frac{b}2
+\\
+\varphi_0
+&=&
+& &
+& &
+\psi_{1\phantom{-m}}c
+& &
+&+&
+\psi_{0\phantom{-m}}\frac{b}2
+&+&A
+\end{array}
+\end{equation}
+In jeder Gleichung kommen hächstens drei der Koeffizienten von $\psi$ vor.
+Fasst man sie zusammen und stellt die Terme etwas um,
+erhält man die einfacheren Gleichungen
+\begin{equation}
+\renewcommand{\arraycolsep}{2pt}
+\renewcommand{\arraystretch}{1.3}
+\begin{array}{lcrcrcrcrcrcrcr}
+\varphi_m
+&=&
+(m-0){\color{red}\psi_{m-1}}a & & & &
+& &
+\\
+\varphi_{m-1}
+&=&
+(m-1+\frac12)\psi_{m-1}b
+&+&
+(m-1){\color{red}\psi_{m-2}}a
+& &
+& &
+\\
+\varphi_{m-2}
+&=&
+(m-1)\psi_{m-1}c
+&+&
+(m-2+\frac12)\psi_{m-2}b
+&+&
+(m-2){\color{red}\psi_{m-3}}a
+& &
+\\
+&\vdots&&&&&&&&&&&
+\\
+\varphi_2
+&=&
+3\psi_{3\phantom{-m}}c
+&+&
+(2+\frac12)\psi_{2\phantom{-m}}b
+&+&
+2{\color{red}\psi_{1\phantom{-m}}}a
+& &
+\\
+\varphi_1
+&=&
+2\psi_{2\phantom{-m}}c
+&+&
+(1+\frac12)\psi_{1\phantom{-m}}b
+&+&
+{\color{red}\psi_{0\phantom{-m}}}a
+& &
+\\
+\varphi_0
+&=&
+\psi_{1\phantom{-m}}c
+& &
+&+&
+(0+\frac12) \psi_{0\phantom{-m}}b
+&+&{\color{red}A}
+\end{array}
+\end{equation}
+Die erste Gleichung kann wegen $a\ne 0$ nach $\psi_{m-1}$ aufgelöst werden,
+dadurch ist $\psi_{m-1}$ bestimmt.
+In allen folgenden Gleichungen taucht jeweils ein neuer Koeffizient
+von $\psi$ auf, der rot hervorgehoben ist.
+Wieder wegen $a\ne 0$ kann die Gleichung immer nach dieser Variablen
+aufgelöst werden.
+Die Gleichungen zeigen daher, dass die Koeffizienten des Polynoms $\psi$
+in absteigender Folge und die Konstanten $A$ eindeutig bestimmt werden.
+\end{proof}
+
+Mit diesem Satz ist das Integral über den Teil $\varphi/y$ auf den
+Fall des Integrals von $1/y$ reduziert.
+Letzteres wird im nächsten Abschnitt berechnet.
+
+%
+% Das Integral von $1/y$
+%
+\subsubsection{Das Integral von $1/y$}
+Eine Stammfunktion von $1/y$ kann mit etwas Geschick mit den
+Interationstechniken gefunden werden, die man in einem Analysis-Kurs
+lernt.
+Durch Ableitung der Funktion
+\[
+F
+=
+\frac{1}{\sqrt{a}}\log\biggl(x+\frac{b}{2a}+\frac{y}{\sqrt{a}}\biggr)
+\]
+kann man nachprüfen, dass $F$ eine Stammfunktion von $1/y$ ist,
+also
+\begin{equation}
+\int
+\frac{1}{y}
+=
+\frac{1}{\sqrt{a}}\log\biggl(x+\frac{b}{2a}+\frac{y}{\sqrt{a}}\biggr).
+\end{equation}
+
+%
+% Partialbruchzerlegung
+%
+\subsubsection{Partialbruchzerlegung}
+In der rationalen Funktion $W_3$ in \eqref{buch:integral:sqint:eqn:Wy}
+hat der Zähler kleineren Grad als der Nenner, sie kann daher wieder
+in Partialbrüche
+\[
+W_3
+=
+\sum_{i=1}^n
+\sum_{k=1}^{k_i}
+\frac{A_{ik}}{(x-\alpha_i)^k}
+\]
+mit den Nullstellen $\alpha_i$ des Nenners von $W_3$ mit Vielfachheiten
+$k_i$ zerlegt werden.
+Die Stammfunktion von $W_3/y$ wird damit zu
+\begin{equation}
+\int W_3\frac{1}{y}
+=
+\sum_{i=1}^n
+\sum_{k=1}^{k_i}
+A_{ik}
+\int
+\frac{1}{(x-\alpha_i)^ky}
+=
+\sum_{i=1}^n
+\sum_{k=1}^{k_i}
+A_{ik}
+\int
+\frac{1}{(x-\alpha_i)^k \sqrt{ax^2+bx+c}}.
+\end{equation}
+Die Stammfunktion ist damit reduziert auf Integrale der Form
+\begin{equation}
+\int
+\frac{1}{(x-\alpha)^k \sqrt{ax^2+bx+c}}
+\label{buch:integral:sqrat:eqn:2teart}
+\end{equation}
+mit $k>0$.
+
+%
+% Integrale der Form \eqref{buch:integral:sqrat:eqn:2teart}
+%
+\subsubsection{Integrale der Form \eqref{buch:integral:sqrat:eqn:2teart}}
+Die Integrale~\eqref{buch:integral:sqrat:eqn:2teart}
+können mit Hilfe der Substution
+\[
+t=\frac{1}{x-\alpha}
+\qquad\text{oder}\qquad
+x=\frac1t+\alpha
+\]
+In ein Integral verwandelt werden, für welches bereits eine
+Berechnungsmethode entwickelt wurde.
+Dazu berechnet man
+\begin{align*}
+y^2
+&= a\biggl(\frac1t+\alpha\biggr)^2 + b\biggl(\frac1t+\alpha\biggr) + c
+\\
+&=
+a\biggl(\frac{1}{t^2}+2\frac{\alpha}{t}+\alpha^2\biggr)
++\frac{b}{t}+b\alpha+c
+=
+\frac{1}{t^2}\bigl(
+\underbrace{a+(2a\alpha+b)t+(a\alpha^2+c)t^2}_{\displaystyle=Y^2}
+\bigr)
+\intertext{und damit}
+y&=\frac{Y}{t}.
+\end{align*}
+Führt man die Substition
+$dx = -dt/t^2$ im Integral aus, erhält man
+\begin{align*}
+\int\frac{dx}{(x-\alpha)^ky}
+&=
+-
+\int
+t^k\cdot\frac{t}{Y}\frac{dt}{t^2}
+=
+-\int\frac{t^{k-1}}{Y}\,dt.
+\end{align*}
+Das letzte Integral ist wieder von der Form, die in
+Satz~\ref{buch:integral:sqint:satz:polyy} behandelt wurde.
+Insbesondere gibt es ein Polynom $\psi$ vom Grad $k-2$ und
+eine Konstante $A$ derart, dass
+\[
+\int\frac{1}{(x-\alpha)^ky}
+=
+\psi Y + A\int\frac{1}{Y}
+\]
+ist.
+Damit ist das Integral von $R(x,y)$ vollständig bestimmt.
+
+\subsubsection{Beobachtungen}
+Die eben dargestellte Berechnung des Integrals von $R(x,y)$ zeigt einige
+Gemeinsamkeiten mit der entsprechenden Rechnung für rationale
+Integranden, aber auch einige wesentliche Unterschiede.
+Wieder zeigt sich, dass Polynomdivision und Partialbruchzerlegung
+die zentralen Werkzeuge sind, mit denen der Integrand zerlegt und
+leichter integrierbare Funktionen umgeformt werden kann.
+Andererseits ist der in
+Satz~\ref{buch:integral:sqint:satz:polyy}
+zusammengefasste Schritt eine wesentliche zusätzliche Vereinfachung,
+die keine Entsprechung bei rationalen Integranden hat.
+
+Die gefunden Form der Stammfunktion hat jedoch die allgemeine
+Form
+\[
+\int R(x,y)
+=
+v_0 +
+C
+\log\biggl(x+\frac{b}{2a}+\frac{y}{\sqrt{a}}\biggr)
++
+\sum_{i=1}^n c_i
+\log v_i,
+\]
+die ganz der bei rationalen Integranden gefunden Form entspricht.
+Darin ist $v_0$ die Summe der angefallenen rationalen Teilintegrale,
+also $v_0\in\mathcal{K}(x,y)$.
+Die $v_i\in\mathcal{K}(x,y)$ sind die entsprechenden Logarithmusfunktionen,
+die bei der Berechnung der Integrale \eqref{buch:integral:sqrat:eqn:2teart}
+auftreten.
+Insbesondere liefert die Rechnung eine Körpererweiterung von
+$\mathcal{K}(x,y)$ um die logarithmische Funktionen
+$\log(x+b/2a+y/\!\sqrt{y})$ und $\log v_i$, in der $R(x,y)$ eine
+Stammfunktion hat.
+
+
+
+