diff options
Diffstat (limited to '')
-rw-r--r-- | buch/chapters/070-orthogonalitaet/chapter.tex | 58 |
1 files changed, 52 insertions, 6 deletions
diff --git a/buch/chapters/070-orthogonalitaet/chapter.tex b/buch/chapters/070-orthogonalitaet/chapter.tex index 4756844..fba1298 100644 --- a/buch/chapters/070-orthogonalitaet/chapter.tex +++ b/buch/chapters/070-orthogonalitaet/chapter.tex @@ -8,20 +8,66 @@ \label{buch:chapter:orthogonalitaet}} \lhead{Orthogonalität} \rhead{} +In der linearen Algebra lernt man, dass orthonormierte Basen für die +Lösung vektorgeometrischer Probleme, bei denen auch das Skalarprodukt +involviert ist, besonders günstig sind. +Die Zerlegung eines Vektors in einer Basis verlangt normalerweise nach +der Lösung eines linearen Gleichungssystems, für orthonormierte +Basisvektoren beschränkt sie sich auf die Berechnung von Skalarprodukten. + +Oft dienen spezielle Funktionen als Basis der Lösungen einer linearen +partiellen Differentialgleichung (siehe Kapitel~\ref{buch:chapter:pde}). +Die Randbedingungen müssen dazu in der gewählten Basis von Funktionen +zerlegt werden. +Fourier ist es gelungen, die Idee des Skalarproduktes und der Orthogonalität +auf Funktionen zu verallgemeinern und so zum Beispiel das Wärmeleitungsproblem +zu lösen. + +Der Orthonormalisierungsprozess von Gram-Schmidt wird damit auch auf +Funktionen anwendbar +(Abschnitt~\ref{buch:orthogonalitaet:section:orthogonale-funktionen}), +der Nutzen führt aber noch viel weiter. +Da $K[x]$ ein Vektorraum ist, führt er von der Basis der Monome +$\{1,x,x^2,\dots,x^n\}$ +auf orthonormierte Polynome. +Diese haben jedoch eine ganze Reihe weiterer nützlicher Eigenschaften. +So wird in Abschnitt~\ref{buch:orthogonal:section:drei-term-rekursion} +gezeigt, dass sich die Werte aller Polynome einer solchen Familie mit +einer Rekursionsformel effizient berechnen lassen, die höchstens drei +Terme umfasst. +In Abschnitt~\ref{buch:orthogonalitaet:section:rodrigues} werden +die Rodrigues-Formeln vorgeführt, die Polynome durch Anwendung eines +Differentialoperators hervorbringen. +In Abschnitt~\ref{buch:orthogonal:section:orthogonale-polynome-und-dgl} +schliesslich wird gezeigt, dass diese Polynome auch Eigenfunktionen +eines selbstadjungierten Operators sind. +Da man in der linearen Algebra auch lernt, dass die Eigenvektoren einer +symmetrischen Matrix zu verschiedenen Eigenwerten orthogonal sind, +ist die Orthogonalität plötzlich nicht mehr überraschend. + +Die Bessel-Funktionen von +Abschnitt~\ref{buch:differntialgleichungen:section:bessel} +sind auch Eigenfunktionen eines Differentialoperators. +Abschnitt~\ref{buch:orthogonalitaet:section:bessel} findet das zugehörige +Skalarprodukt, welches andeutet, dass auch für andere Funktionenfamilien +eine entsprechende Konstruktion möglich ist. +Das in Abschnitt~\ref{buch:integrale:subsection:sturm-liouville-problem} +präsentierte Sturm-Liouville-Problem führt sie durch. +Das Kapitel schliesst mit dem +Abschnitt~\ref{buch:orthogonal:section:gauss-quadratur} +über die Gauss-Quadratur, welche die Eigenschaften orthogonaler Polynome +für einen besonders effizienten numerischen Integrationsalgorithmus +ausnutzt. + \input{chapters/070-orthogonalitaet/orthogonal.tex} \input{chapters/070-orthogonalitaet/rekursion.tex} \input{chapters/070-orthogonalitaet/rodrigues.tex} -%\input{chapters/070-orthogonalitaet/jacobi.tex} \input{chapters/070-orthogonalitaet/legendredgl.tex} \input{chapters/070-orthogonalitaet/bessel.tex} \input{chapters/070-orthogonalitaet/sturm.tex} \input{chapters/070-orthogonalitaet/gaussquadratur.tex} -%\section{TODO} -%\begin{itemize} -%\end{itemize} - -\section*{Übungsaufgaben} +\section*{Übungsaufgabe} \rhead{Übungsaufgaben} \aufgabetoplevel{chapters/070-orthogonalitaet/uebungsaufgaben} \begin{uebungsaufgaben} |