diff options
Diffstat (limited to '')
-rw-r--r-- | buch/chapters/070-orthogonalitaet/Makefile.inc | 3 | ||||
-rw-r--r-- | buch/chapters/070-orthogonalitaet/chapter.tex | 2 | ||||
-rw-r--r-- | buch/chapters/070-orthogonalitaet/gaussquadratur.tex | 16 | ||||
-rw-r--r-- | buch/chapters/070-orthogonalitaet/jacobi.tex | 22 | ||||
-rw-r--r-- | buch/chapters/070-orthogonalitaet/orthogonal.tex | 55 | ||||
-rw-r--r-- | buch/chapters/070-orthogonalitaet/rekursion.tex | 10 | ||||
-rw-r--r-- | buch/chapters/070-orthogonalitaet/sturm.tex | 2 | ||||
-rw-r--r-- | buch/chapters/070-orthogonalitaet/uebungsaufgaben/701.tex | 137 |
8 files changed, 230 insertions, 17 deletions
diff --git a/buch/chapters/070-orthogonalitaet/Makefile.inc b/buch/chapters/070-orthogonalitaet/Makefile.inc index 48e5356..8f58489 100644 --- a/buch/chapters/070-orthogonalitaet/Makefile.inc +++ b/buch/chapters/070-orthogonalitaet/Makefile.inc @@ -4,7 +4,7 @@ # (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule # -CHAPTERFILES = $(CHAPTERFILES) \ +CHAPTERFILES += \ chapters/070-orthogonalitaet/orthogonal.tex \ chapters/070-orthogonalitaet/rekursion.tex \ chapters/070-orthogonalitaet/rodrigues.tex \ @@ -13,4 +13,5 @@ CHAPTERFILES = $(CHAPTERFILES) \ chapters/070-orthogonalitaet/jacobi.tex \ chapters/070-orthogonalitaet/sturm.tex \ chapters/070-orthogonalitaet/gaussquadratur.tex \ + chapters/070-orthogonalitaet/uebungsaufgaben/701.tex \ chapters/070-orthogonalitaet/chapter.tex diff --git a/buch/chapters/070-orthogonalitaet/chapter.tex b/buch/chapters/070-orthogonalitaet/chapter.tex index 5ebb795..4756844 100644 --- a/buch/chapters/070-orthogonalitaet/chapter.tex +++ b/buch/chapters/070-orthogonalitaet/chapter.tex @@ -25,7 +25,7 @@ \rhead{Übungsaufgaben} \aufgabetoplevel{chapters/070-orthogonalitaet/uebungsaufgaben} \begin{uebungsaufgaben} -%\uebungsaufgabe{0} +\uebungsaufgabe{701} %\uebungsaufgabe{1} \end{uebungsaufgaben} diff --git a/buch/chapters/070-orthogonalitaet/gaussquadratur.tex b/buch/chapters/070-orthogonalitaet/gaussquadratur.tex index 55f9700..2e43cec 100644 --- a/buch/chapters/070-orthogonalitaet/gaussquadratur.tex +++ b/buch/chapters/070-orthogonalitaet/gaussquadratur.tex @@ -135,12 +135,12 @@ p(x)&=x^2\colon& \frac23 &= A_0x_0^2 + A_1x_1^2\\ p(x)&=x^3\colon& 0 &= A_0x_0^3 + A_1x_1^3. \end{aligned} \] -Dividiert man die zweite und vierte Gleichung in der Form +Dividiert man die vierte durch die zweite Gleichung in der Form \[ \left. \begin{aligned} -A_0x_0 &= -A_1x_1\\ -A_0x_0^2 &= -A_1x_1^2 +A_0x_0^3 &= -A_1x_1^3 &\qquad&\text{(vierte Gleichung)}\\ +A_0x_0 &= -A_1x_1 &\qquad&\text{(zweite Gleichung)} \end{aligned} \quad \right\} @@ -155,7 +155,7 @@ x_1=-x_0. \] Indem wir dies in die zweite Gleichung einsetzen, finden wir \[ -0 = A_0x_0 + A_1x_1 = A_0x_1 -A_1x_0 = (A_0-A_1)x_0 +0 = A_0x_0 + A_1x_1 = A_0x_0 -A_1x_0 = (A_0-A_1)x_0 \quad\Rightarrow\quad A_0=A_1. \] @@ -263,7 +263,7 @@ werden können, muss auch = \int_{-1}^1 q(x)p(x)\,dx = -\sum_{i=0}^n q(x_i)p(x_i) +\sum_{i=0}^n A_iq(x_i)p(x_i) \] für jedes beliebige Polynom $q\in R_{n-1}$ gelten. Da man für $q$ die Interpolationspolynome $l_j(x)$ verwenden @@ -272,9 +272,11 @@ kann, den Grad $n-1$ haben, folgt 0 = \sum_{i=0}^n -l_j(x_i)p(x_i) +A_il_j(x_i)p(x_i) = -\sum_{i=0}^n \delta_{ij}p(x_i), +\sum_{i=0}^n A_i\delta_{ij}p(x_i) += +A_jp(x_j), \] die Stützstellen $x_i$ müssen also die Nullstellen des Polynoms $p(x)$ sein. diff --git a/buch/chapters/070-orthogonalitaet/jacobi.tex b/buch/chapters/070-orthogonalitaet/jacobi.tex index 042d466..f776c03 100644 --- a/buch/chapters/070-orthogonalitaet/jacobi.tex +++ b/buch/chapters/070-orthogonalitaet/jacobi.tex @@ -189,6 +189,28 @@ rechten Rand haben. \label{buch:orthogonal:fig:jacobi-parameter}} \end{figure} +\subsection{Jacobi-Gewichtsfunktion und Beta-Verteilung +\label{buch:orthogonal:subsection:beta-verteilung}} +Die Jacobi-Gewichtsfunktion entsteht aus der Wahrscheinlichkeitsdichte +der Beta-Verteilung, die in +Abschnitt~\ref{buch:rekursion:subsection:beta-verteilung} +eingeführt wurde mit Hilfe der Variablen-Transformation $x = 2t-1$ +oder $t=(x+1)/2$. +Das Integral mit der Jacobi-Gewichtsfunktion $w^{(\alpha,\beta)}(x)$ +kann damit umgeformt werden in +\[ +\int_{-1}^1 +f(x)\,w^{(\alpha,\beta)}(x)\,dx += +\int_0^1 +f(2t-1) w^{(\alpha,\beta)}(2t-1)\,2\,dt += +\int_0^1 +f(2t-1) +(1-(2t-1))^\alpha (1+(2t-1))^\beta +\,2\,dt +\] + % % % diff --git a/buch/chapters/070-orthogonalitaet/orthogonal.tex b/buch/chapters/070-orthogonalitaet/orthogonal.tex index d06f46e..677e865 100644 --- a/buch/chapters/070-orthogonalitaet/orthogonal.tex +++ b/buch/chapters/070-orthogonalitaet/orthogonal.tex @@ -737,6 +737,57 @@ rechten Rand haben. \label{buch:orthogonal:fig:jacobi-parameter}} \end{figure} +\subsubsection{Jacobi-Gewichtsfunktion und Beta-Verteilung +\label{buch:orthogonal:subsection:beta-verteilung}} +Die Jacobi-Gewichtsfunktion entsteht aus der Wahrscheinlichkeitsdichte +der Beta-Verteilung, die in +Abschnitt~\ref{buch:rekursion:subsection:beta-verteilung} +eingeführt wurde mit Hilfe der Variablen-Transformation $x = 2t-1$ +oder $t=(x+1)/2$. +Das Integral mit der Jacobi-Gewichtsfunktion $w^{(\alpha,\beta)}(x)$ +kann damit umgeformt werden in +\begin{align*} +\int_{-1}^1 +f(x)\,w^{(\alpha,\beta)}(x)\,dx +&= +\int_0^1 +f(2t-1) w^{(\alpha,\beta)}(2t-1)\,2\,dt +\\ +&= +\int_0^1 +f(2t-1) +(1-(2t-1))^\alpha (1+(2t-1))^\beta +\,2\,dt +\\ +&= +2^{\alpha+\beta+1} +\int_0^1 +f(2t-1) +\, +t^\beta +(1-t)^\alpha +\,dt +\\ +&= +2^{\alpha+\beta+1} +B(\alpha+1,\beta+1) +\int_0^1 +f(2t-1) +\, +\frac{ +t^\beta +(1-t)^\alpha +}{B(\alpha+1,\beta+1)} +\,dt. +\end{align*} +Auf der letzten Zeile steht ein Integral mit der Wahrscheinlichkeitsdichte +der Beta-Verteilung. +Orthogonale Funktionen bezüglich der Jacobischen Gewichtsfunktion +$w^{(\alpha,\beta)}$ werden mit der genannten Substitution also +zu orthogonalen Funktionen bezüglich der Beta-Verteilung mit +Parametern $\beta+1$ und $\alpha+1$. + + % % Tschebyscheff-Gewichtsfunktion % @@ -791,14 +842,14 @@ bei geeigneter Normierung die {\em Hermite-Polynome}. % % Laguerre-Gewichtsfunktion % -\subsection{Laguerre-Gewichtsfunktion} +\subsubsection{Laguerre-Gewichtsfunktion} Ähnlich wie die Hermite-Gewichtsfunktion ist die {\em Laguerre-Gewichtsfunktion} \index{Laguerre-Gewichtsfunktion}% \[ w_{\text{Laguerre}}(x) = -w^{-x} +e^{-x} \] auf ganz $\mathbb{R}$ definiert, und sie geht für $x\to\infty$ wieder sehr rasch gegen $0$. diff --git a/buch/chapters/070-orthogonalitaet/rekursion.tex b/buch/chapters/070-orthogonalitaet/rekursion.tex index 5ec7fed..dc5531b 100644 --- a/buch/chapters/070-orthogonalitaet/rekursion.tex +++ b/buch/chapters/070-orthogonalitaet/rekursion.tex @@ -30,7 +30,7 @@ Skalarproduktes $\langle\,\;,\;\rangle_w$, wenn für alle $n$, $m$. \end{definition} -\subsection{Allgemeine Drei-Term-Rekursion für orthogonale Polynome} +\subsubsection{Allgemeine Drei-Term-Rekursion für orthogonale Polynome} Der folgende Satz besagt, dass $p_n$ eine Rekursionsbeziehung erfüllt. \begin{satz} @@ -55,7 +55,7 @@ C_{n+1} = \frac{A_{n+1}}{A_n}\frac{h_{n+1}}{h_n}. \end{equation} \end{satz} -\subsection{Multiplikationsoperator mit $x$} +\subsubsection{Multiplikationsoperator mit $x$} Man kann die Relation auch nach dem Produkt $xp_n(x)$ auflösen, dann wird sie \begin{equation} @@ -72,7 +72,7 @@ Die Multiplikation mit $x$ ist eine lineare Abbildung im Raum der Funktionen. Die Relation~\eqref{buch:orthogonal:eqn:multixrelation} besagt, dass diese Abbildung in der Basis der Polynome $p_k$ tridiagonale Form hat. -\subsection{Drei-Term-Rekursion für die Tschebyscheff-Polynome} +\subsubsection{Drei-Term-Rekursion für die Tschebyscheff-Polynome} Eine Relation der Form~\eqref{buch:orthogonal:eqn:multixrelation} wurde bereits in Abschnitt~\ref{buch:potenzen:tschebyscheff:rekursionsbeziehungen} @@ -80,12 +80,12 @@ hergeleitet. In der Form~\eqref{buch:orthogonal:eqn:rekursion} geschrieben lautet sie \[ -T_{n+1}(x) = 2x\,T_n(x)-T_{n-1}(x). +T_{n+1}(x) = 2x\,T_n(x)-T_{n-1}(x), \] also $A_n=2$, $B_n=0$ und $C_n=1$. -\subsection{Beweis von Satz~\ref{buch:orthogonal:satz:drei-term-rekursion}} +\subsubsection{Beweis von Satz~\ref{buch:orthogonal:satz:drei-term-rekursion}} Die Relation~\eqref{buch:orthogonal:eqn:multixrelation} zeigt auch, dass der Beweis die Koeffizienten $\langle xp_k,p_j\rangle_w$ berechnen muss. diff --git a/buch/chapters/070-orthogonalitaet/sturm.tex b/buch/chapters/070-orthogonalitaet/sturm.tex index c9c9cc6..35054ab 100644 --- a/buch/chapters/070-orthogonalitaet/sturm.tex +++ b/buch/chapters/070-orthogonalitaet/sturm.tex @@ -375,7 +375,7 @@ automatisch für diese Funktionenfamilien. \subsubsection{Trigonometrische Funktionen} Die trigonometrischen Funktionen sind Eigenfunktionen des Operators $d^2/dx^2$, also eines Sturm-Liouville-Operators mit $p(x)=1$, $q(x)=0$ -und $w(x)=0$. +und $w(x)=1$. Auf dem Intervall $(-\pi,\pi)$ können wir die Randbedingungen \bgroup \renewcommand{\arraycolsep}{2pt} diff --git a/buch/chapters/070-orthogonalitaet/uebungsaufgaben/701.tex b/buch/chapters/070-orthogonalitaet/uebungsaufgaben/701.tex new file mode 100644 index 0000000..dad489f --- /dev/null +++ b/buch/chapters/070-orthogonalitaet/uebungsaufgaben/701.tex @@ -0,0 +1,137 @@ +Für Funktionen auf dem Interval $(-\frac{\pi}2,\frac{\pi}2)$ ist +\[ +\langle f,g\rangle += +\frac12\int_{-\frac{\pi}2}^{\frac{\pi}2} f(x)g(x)\cos x\,dx +\] +ein Skalarprodukt. +Bestimmen Sie bezüglich dieses Skalarproduktes orthogonale Polynome +bis zum Grad $2$. + +\begin{hinweis} +Verwenden Sie +\begin{align*} +\int_{-\frac{\pi}2}^{\frac{\pi}2} 1\cos x\,dx +&= +1, +& +\int_{-\frac{\pi}2}^{\frac{\pi}2} x^2\cos x\,dx +&= +\frac{\pi^2-8}{2}, +& +\int_{-\frac{\pi}2}^{\frac{\pi}2} x^4\cos x\,dx +&= +\frac{\pi^4-48\pi^2+384}{8}. +\end{align*} +\end{hinweis} + +\begin{loesung} +Wir müssen den Gram-Schmidt-Orthogonalisierungsprozess für die +Polynome $f_0(x)=1$, $f_1(x)=x$ und $f_2(x)=x^2$ durchführen. +Zunächst halten wir fest, dass +\[ +\langle f_0,f_0\rangle += +\frac12 +\int_{-\frac{\pi}2}^{\frac{\pi}2} \cos x\,dx += +1, +\] +das Polynom $g_0(x)=f_0(x)$ ist hat also Norm $1$. + +Ein dazu orthogonales Polynom ist +\( +f_1(x) - \langle g_0,f_1\rangle g_0(x), +\) +wir müssen also das Skalarprodukt +\[ +\langle g_0,f_1\rangle += +\frac{1}{2} +\int_{-\frac{\pi}2}^{\frac{\pi}2} +x\cos x\,dx +\] +bestimmen. +Es verschwindet, weil die Funktion $x\cos x$ ungerade ist. +Somit ist die Funktion $f_1(x)=x$ orthogonal zu $f_0(x)=1$, um sie auch zu +normieren berechnen wir das Integral +\[ +\| f_1\|^2 += +\frac12\int_{-\frac{\pi}2}^{\frac{\pi}2} x^2\cos x\,dx += +\frac{\pi^2-8}{4}, +\] +und +\[ +g_1(x) += +\frac{2}{\sqrt{\pi^2-8}} x. +\] + +Zur Berechnung von $g_2$ müssen wir die Skalarprodukte +\begin{align*} +\langle g_0,f_2\rangle +&= +\frac{1}{2} +\int_{-\frac{\pi}2}^{\frac{\pi}2} +x^2 +\cos x +\,dx += +\frac{\pi^2-8}{4} +\\ +\langle g_1,f_2\rangle +&= +\frac{1}{2} +\int_{-\frac{\pi}2}^{\frac{\pi}2} +\frac{2}{\sqrt{\pi^2-8}} +x +\cdot x^2 +\cos x +\,dx += +0 +\end{align*} +bestimmen. +Damit wird das dritte Polynom +\[ +f_2(x) +- g_0(x)\langle g_0,f_2\rangle +- g_1(x)\langle g_1,f_2\rangle += +x^2 - \frac{\pi^2-8}{4}, +\] +welches bereits orthogonal ist zu $g_0$ und $g_1$. +Wir können auch noch erreichen, obwohl das nicht verlangt war, +dass es normiert ist, indem wir die Norm berechnen: +\[ +\left\| x^2-\frac{\pi^2-8}{4} \right\|^2 += +\frac12 +\int_{-\frac{\pi}2}^{\frac{\pi}2} +\biggl(x^2-\frac{\pi^2-8}{4}\biggr)^2 +\cos x\,dx += +20-2\pi^2 +\] +woraus sich +\[ +g_2(x) += +\frac{1}{\sqrt{20-2\pi^2}} +\biggl( +x^2 - \frac{\pi^2-8}{4} +\biggr). +\] +Damit haben wir die ersten drei bezüglich des obigen Skalarproduktes +orthogonalen Polynome +\begin{align*} +g_0(x)&=1, +& +g_1(x)&=\frac{2x}{\sqrt{\pi^2-8}}, +& +g_2(x)&=\frac{1}{\sqrt{20-2\pi^2}}\biggl(x^2-\frac{\pi^2-8}{4}\biggr) +\end{align*} +gefunden. +\end{loesung} |