aboutsummaryrefslogtreecommitdiffstats
path: root/buch/chapters/110-elliptisch/dglsol.tex
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--buch/chapters/110-elliptisch/dglsol.tex494
1 files changed, 494 insertions, 0 deletions
diff --git a/buch/chapters/110-elliptisch/dglsol.tex b/buch/chapters/110-elliptisch/dglsol.tex
new file mode 100644
index 0000000..7eaab38
--- /dev/null
+++ b/buch/chapters/110-elliptisch/dglsol.tex
@@ -0,0 +1,494 @@
+%
+% dglsol.tex -- Lösung von Differentialgleichungen
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+
+%
+% Lösung von Differentialgleichungen
+%
+\subsection{Lösungen von Differentialgleichungen
+\label{buch:elliptisch:subsection:differentialgleichungen}}
+Die elliptischen Funktionen ermöglichen die Lösung gewisser nichtlinearer
+Differentialgleichungen in geschlossener Form.
+Ziel dieses Abschnitts ist, Differentialgleichungen der Form
+\(
+\dot{x}(t)^2
+=
+P(x(t))
+\)
+mit einem Polynom $P$ vierten Grades oder
+\(
+\ddot{x}(t)
+=
+p(x(t))
+\)
+mit einem Polynom dritten Grades als rechter Seite lösen zu können.
+
+%
+% Die Differentialgleichung der elliptischen Funktionen
+%
+\subsubsection{Die Differentialgleichungen der elliptischen Funktionen}
+Um Differentialgleichungen mit elliptischen Funktion lösen zu
+können, muss man als erstes die Differentialgleichungen derselben
+finden.
+Quadriert man die Ableitungsregel für $\operatorname{sn}(u,k)$, erhält
+man
+\[
+\biggl(\frac{d}{du}\operatorname{sn}(u,k)\biggr)^2
+=
+\operatorname{cn}(u,k)^2 \operatorname{dn}(u,k)^2.
+\]
+Die Funktionen auf der rechten Seite können durch $\operatorname{sn}(u,k)$
+ausgedrückt werden, dies führt auf die Differentialgleichung
+\begin{align*}
+\biggl(\frac{d}{du}\operatorname{sn}(u,k)\biggr)^2
+&=
+\bigl(
+1-\operatorname{sn}(u,k)^2
+\bigr)
+\bigl(
+1-k^2 \operatorname{sn}(u,k)^2
+\bigr)
+\\
+&=
+k^2\operatorname{sn}(u,k)^4
+-(1+k^2)
+\operatorname{sn}(u,k)^2
++1.
+\end{align*}
+Für die Funktion $\operatorname{cn}(u,k)$ ergibt die analoge Rechnung
+\begin{align*}
+\frac{d}{du}\operatorname{cn}(u,k)
+&=
+-\operatorname{sn}(u,k) \operatorname{dn}(u,k)
+\\
+\biggl(\frac{d}{du}\operatorname{cn}(u,k)\biggr)^2
+&=
+\operatorname{sn}(u,k)^2 \operatorname{dn}(u,k)^2
+\\
+&=
+\bigl(1-\operatorname{cn}(u,k)^2\bigr)
+\bigl(k^{\prime 2}+k^2 \operatorname{cn}(u,k)^2\bigr)
+\\
+&=
+-k^2\operatorname{cn}(u,k)^4
++
+(k^2-k^{\prime 2})\operatorname{cn}(u,k)^2
++
+k^{\prime 2}
+\intertext{und weiter für $\operatorname{dn}(u,k)$:}
+\frac{d}{du}\operatorname{dn}(u,k)
+&=
+-k^2\operatorname{sn}(u,k)\operatorname{cn}(u,k)
+\\
+\biggl(
+\frac{d}{du}\operatorname{dn}(u,k)
+\biggr)^2
+&=
+\bigl(k^2 \operatorname{sn}(u,k)^2\bigr)
+\bigl(k^2 \operatorname{cn}(u,k)^2\bigr)
+\\
+&=
+\bigl(
+1-\operatorname{dn}(u,k)^2
+\bigr)
+\bigl(
+\operatorname{dn}(u,k)^2-k^{\prime 2}
+\bigr)
+\\
+&=
+-\operatorname{dn}(u,k)^4
++
+(1+k^{\prime 2})\operatorname{dn}(u,k)^2
+-k^{\prime 2}.
+\end{align*}
+
+\begin{table}
+\centering
+\renewcommand{\arraystretch}{1.7}
+\begin{tabular}{|>{$}l<{$}|>{$}l<{$}|>{$}c<{$}|>{$}c<{$}|>{$}c<{$}|}
+\hline
+\text{Funktion $y=$}&\text{Differentialgleichung}&\alpha&\beta&\gamma\\
+\hline
+\operatorname{sn}(u,k)
+ & y'^2 = \phantom{-}(1-y^2)(1-k^2y^2)
+ &k^2&1+k^2&1
+\\
+\operatorname{cn}(u,k) &y'^2 = \phantom{-}(1-y^2)(k^{\prime2}+k^2y^2)
+ &-k^2 &k^2-k^{\prime 2}=2k^2-1&k^{\prime2}
+\\
+\operatorname{dn}(u,k)
+ & y'^2 = -(1-y^2)(k^{\prime 2}-y^2)
+ &-1 &1+k^{\prime 2}=2-k^2 &-k^{\prime2}
+\\
+\hline
+\end{tabular}
+\caption{Elliptische Funktionen als Lösungsfunktionen für verschiedene
+nichtlineare Differentialgleichungen der Art
+\eqref{buch:elliptisch:eqn:1storderdglell}.
+Die Vorzeichen der Koeffizienten $\alpha$, $\beta$ und $\gamma$
+entscheidet darüber, welche Funktion für die Lösung verwendet werden
+muss.
+\label{buch:elliptisch:tabelle:loesungsfunktionen}}
+\end{table}
+
+Die drei grundlegenden Jacobischen elliptischen Funktionen genügen also alle
+einer nichtlinearen Differentialgleichung erster Ordnung der selben Art.
+Das Quadrat der Ableitung ist ein Polynom vierten Grades der Funktion.
+Die Differentialgleichungen sind in der
+Tabelle~\ref{buch:elliptisch:tabelle:loesungsfunktionen} zusammengefasst.
+
+%
+% Differentialgleichung der abgeleiteten elliptischen Funktionen
+%
+\subsubsection{Die Differentialgleichung der abgeleiteten elliptischen
+Funktionen}
+Da auch die Ableitungen der abgeleiteten Jacobischen elliptischen
+Funktionen Produkte von genau zwei Funktionen sind, die sich wieder
+durch die ursprüngliche Funktion ausdrücken lassen, darf man erwarten,
+dass alle elliptischen Funktionen einer ähnlichen Differentialgleichung
+genügen.
+Um dies besser einzufangen, schreiben wir $\operatorname{pq}(u,k)$,
+wenn wir eine beliebige abgeleitete Jacobische elliptische Funktion.
+Für
+$\operatorname{pq}=\operatorname{sn}$
+$\operatorname{pq}=\operatorname{cn}$
+und
+$\operatorname{pq}=\operatorname{dn}$
+wissen wir bereits und erwarten für jede andere Funktion dass
+$\operatorname{pq}(u,k)$ auch, dass sie Lösung einer Differentialgleichung
+der Form
+\begin{equation}
+\operatorname{pq}'(u,k)^2
+=
+\alpha \operatorname{pq}(u,k)^4 + \beta \operatorname{pq}(u,k)^2 + \gamma
+\label{buch:elliptisch:eqn:1storderdglell}
+\end{equation}
+erfüllt,
+wobei wir mit $\operatorname{pq}'(u,k)$ die Ableitung von
+$\operatorname{pq}(u,k)$ nach dem ersten Argument meinen.
+Die Koeffizienten $\alpha$, $\beta$ und $\gamma$ hängen von $k$ ab,
+ihre Werte für die grundlegenden Jacobischen elliptischen
+sind in Tabelle~\ref{buch:elliptisch:table:differentialgleichungen}
+zusammengestellt.
+
+Die Koeffizienten müssen nicht für jede Funktion wieder neu bestimmt
+werden, denn für den Kehrwert einer Funktion lässt sich die
+Differentialgleichung aus der Differentialgleichung der ursprünglichen
+Funktion ermitteln.
+
+%
+% Differentialgleichung der Kehrwertfunktion
+%
+\subsubsection{Differentialgleichung für den Kehrwert einer elliptischen Funktion}
+Aus der Differentialgleichung~\eqref{buch:elliptisch:eqn:1storderdglell}
+für die Funktion $\operatorname{pq}(u,k)$ kann auch eine
+Differentialgleichung für den Kehrwert
+$\operatorname{qp}(u,k)=\operatorname{pq}(u,k)^{-1}$
+ableiten.
+Dazu rechnet man
+\[
+\operatorname{qp}'(u,k)
+=
+\frac{d}{du}\frac{1}{\operatorname{pq}(u,k)}
+=
+\frac{\operatorname{pq}'(u,k)}{\operatorname{pq}(u,k)^2}
+\qquad\Rightarrow\qquad
+\left\{
+\quad
+\begin{aligned}
+\operatorname{pq}(u,k)
+&=
+\frac{1}{\operatorname{qp}(u,k)}
+\\
+\operatorname{pq}'(u,k)
+&=
+\frac{\operatorname{qp}'(u,k)}{\operatorname{qp}(u,k)^2}
+\end{aligned}
+\right.
+\]
+und setzt in die Differentialgleichung ein:
+\begin{align*}
+\biggl(
+\frac{
+\operatorname{qp}'(u,k)
+}{
+\operatorname{qp}(u,k)
+}
+\biggr)^2
+&=
+\alpha \frac{1}{\operatorname{qp}(u,k)^4}
++
+\beta \frac{1}{\operatorname{qp}(u,k)^2}
++
+\gamma.
+\end{align*}
+Nach Multiplikation mit $\operatorname{qp}(u,k)^4$ erhält man den
+folgenden Satz.
+
+\begin{satz}
+Wenn die Jacobische elliptische Funktion $\operatorname{pq}(u,k)$
+der Differentialgleichung genügt, dann genügt der Kehrwert
+$\operatorname{qp}(u,k) = 1/\operatorname{pq}(u,k)$ der Differentialgleichung
+\begin{equation}
+(\operatorname{qp}'(u,k))^2
+=
+\gamma \operatorname{qp}(u,k)^4
++
+\beta \operatorname{qp}(u,k)^2
++
+\alpha
+\label{buch:elliptisch:eqn:kehrwertdgl}
+\end{equation}
+\end{satz}
+
+\begin{table}
+\centering
+\def\lfn#1{\multicolumn{1}{|l|}{#1}}
+\def\rfn#1{\multicolumn{1}{r|}{#1}}
+\renewcommand{\arraystretch}{1.3}
+\begin{tabular}{l|>{$}c<{$}>{$}c<{$}>{$}c<{$}|r}
+\cline{1-4}
+\lfn{Funktion}
+ & \alpha & \beta & \gamma &\\
+\hline
+\lfn{sn}& k^2 & -(1+k^2) & 1 &\rfn{ns}\\
+\lfn{cn}& -k^2 & -(1-2k^2) & 1-k^2 &\rfn{nc}\\
+\lfn{dn}& 1 & 2-k^2 & -(1-k^2) &\rfn{nd}\\
+\hline
+\lfn{sc}& 1-k^2 & 2-k^2 & 1 &\rfn{cs}\\
+\lfn{sd}&-k^2(1-k^2)&-(1-2k^2) & 1 &\rfn{ds}\\
+\lfn{cd}& k^2 &-(1+k^2) & 1 &\rfn{dc}\\
+\hline
+ & \gamma & \beta & \alpha &\rfn{Reziproke}\\
+\cline{2-5}
+\end{tabular}
+\caption{Koeffizienten der Differentialgleichungen für die Jacobischen
+elliptischen Funktionen.
+Der Kehrwert einer Funktion hat jeweils die Differentialgleichung der
+ursprünglichen Funktion, in der die Koeffizienten $\alpha$ und $\gamma$
+vertauscht worden sind.
+\label{buch:elliptisch:table:differentialgleichungen}}
+\end{table}
+
+%
+% Differentialgleichung zweiter Ordnung
+%
+\subsubsection{Differentialgleichung zweiter Ordnung}
+Leitet die Differentialgleichung~\eqref{buch:elliptisch:eqn:1storderdglell}
+man dies nochmals nach $u$ ab, erhält man die Differentialgleichung
+\[
+2\operatorname{pq}''(u,k)\operatorname{pq}'(u,k)
+=
+4\alpha \operatorname{pq}(u,k)^3\operatorname{pq}'(u,k) + 2\beta \operatorname{pq}'(u,k)\operatorname{pq}(u,k).
+\]
+Teilt man auf beiden Seiten durch $2\operatorname{pq}'(u,k)$,
+bleibt die nichtlineare
+Differentialgleichung
+\[
+\frac{d^2\operatorname{pq}}{du^2}
+=
+\beta \operatorname{pq} + 2\alpha \operatorname{pq}^3.
+\]
+Dies ist die Gleichung eines harmonischen Oszillators mit einer
+Anharmonizität der Form $2\alpha z^3$.
+
+
+
+%
+% Jacobischen elliptische Funktionen und elliptische Integrale
+%
+\subsubsection{Jacobische elliptische Funktionen als elliptische Integrale}
+Die in Tabelle~\ref{buch:elliptisch:tabelle:loesungsfunktionen}
+zusammengestellten Differentialgleichungen ermöglichen nun, den
+Zusammenhang zwischen den Funktionen
+$\operatorname{sn}(u,k)$, $\operatorname{cn}(u,k)$ und $\operatorname{dn}(u,k)$
+und den unvollständigen elliptischen Integralen herzustellen.
+Die Differentialgleichungen sind alle von der Form
+\begin{equation}
+\biggl(
+\frac{d y}{d u}
+\biggr)^2
+=
+p(u),
+\label{buch:elliptisch:eqn:allgdgl}
+\end{equation}
+wobei $p(u)$ ein Polynom vierten Grades in $y$ ist.
+Diese Differentialgleichung lässt sich mit Separation lösen.
+Dazu zieht man aus~\eqref{buch:elliptisch:eqn:allgdgl} die
+Wurzel
+\begin{align}
+\frac{dy}{du}
+=
+\sqrt{p(y)}
+\notag
+\intertext{und trennt die Variablen. Man erhält}
+\int\frac{dy}{\sqrt{p(y)}} = u+C.
+\label{buch:elliptisch:eqn:yintegral}
+\end{align}
+Solange $p(y)>0$ ist, ist der Integrand auf der linken Seite
+von~\eqref{buch:elliptisch:eqn:yintegral} ebenfalls positiv und
+das Integral ist eine monoton wachsende Funktion $F(y)$.
+Insbesondere ist $F(y)$ invertierbar.
+Die Lösung $y(u)$ der Differentialgleichung~\eqref{buch:elliptisch:eqn:allgdgl}
+ist daher
+\[
+y(u) = F^{-1}(u+C).
+\]
+Die Jacobischen elliptischen Funktionen sind daher inverse Funktionen
+der unvollständigen elliptischen Integrale.
+
+
+%
+% Differentialgleichung des anharmonischen Oszillators
+%
+\subsubsection{Differentialgleichung des anharmonischen Oszillators}
+Wir möchten die nichtlineare Differentialgleichung
+\begin{equation}
+\biggl(
+\frac{dx}{dt}
+\biggr)^2
+=
+Ax^4+Bx^2 + C
+\label{buch:elliptisch:eqn:allgdgl}
+\end{equation}
+mit Hilfe elliptischer Funktionen lösen.
+Wir nehmen also an, dass die gesuchte Lösung eine Funktion der Form
+\begin{equation}
+x(t) = a\operatorname{zn}(bt,k)
+\label{buch:elliptisch:eqn:loesungsansatz}
+\end{equation}
+ist.
+Die erste Ableitung von $x(t)$ ist
+\[
+\dot{x}(t)
+=
+a\operatorname{zn}'(bt,k).
+\]
+
+Indem wir diesen Lösungsansatz in die
+Differentialgleichung~\eqref{buch:elliptisch:eqn:allgdgl}
+einsetzen, erhalten wir
+\begin{equation}
+a^2b^2 \operatorname{zn}'(bt,k)^2
+=
+a^4A\operatorname{zn}(bt,k)^4
++
+a^2B\operatorname{zn}(bt,k)^2
++C
+\label{buch:elliptisch:eqn:dglx}
+\end{equation}
+Andererseits wissen wir, dass $\operatorname{zn}(u,k)$ einer
+Differentilgleichung der Form~\eqref{buch:elliptisch:eqn:1storderdglell}
+erfüllt.
+Wenn wir \eqref{buch:elliptisch:eqn:dglx} durch $a^2b^2$ teilen, können wir
+die rechte Seite von \eqref{buch:elliptisch:eqn:dglx} mit der rechten
+Seite von \eqref{buch:elliptisch:eqn:1storderdglell} vergleichen:
+\[
+\frac{a^2A}{b^2}\operatorname{zn}(bt,k)^4
++
+\frac{B}{b^2}\operatorname{zn}(bt,k)^2
++\frac{C}{a^2b^2}
+=
+\alpha\operatorname{zn}(bt,k)^4
++
+\beta\operatorname{zn}(bt,k)^2
++
+\gamma\operatorname{zn}(bt,k).
+\]
+Daraus ergeben sich die Gleichungen
+\begin{align}
+\alpha &= \frac{a^2A}{b^2},
+&
+\beta &= \frac{B}{b^2}
+&&\text{und}
+&
+\gamma &= \frac{C}{a^2b^2}
+\label{buch:elliptisch:eqn:koeffvergl}
+\intertext{oder aufgelöst nach den Koeffizienten der ursprünglichen
+Differentialgleichung}
+A&=\frac{\alpha b^2}{a^2}
+&
+B&=\beta b^2
+&&\text{und}&
+C &= \gamma a^2b^2
+\label{buch:elliptisch:eqn:koeffABC}
+\end{align}
+für die Koeffizienten der Differentialgleichung der zu verwendenden
+Funktion.
+
+Man beachte, dass nach \eqref{buch:elliptisch:eqn:koeffvergl} die
+Koeffizienten $A$, $B$ und $C$ die gleichen Vorzeichen haben wie
+$\alpha$, $\beta$ und $\gamma$, da in
+\eqref{buch:elliptisch:eqn:koeffvergl} nur mit Quadraten multipliziert
+wird, die immer positiv sind.
+Diese Vorzeichen bestimmen, welche der Funktionen gewählt werden muss.
+
+In den Differentialgleichungen für die elliptischen Funktionen gibt
+es nur den Parameter $k$, der angepasst werden kann.
+Es folgt, dass die Gleichungen
+\eqref{buch:elliptisch:eqn:koeffvergl}
+auch $a$ und $b$ bestimmen.
+Zum Beispiel folgt aus der letzten Gleichung, dass
+\[
+b = \pm\sqrt{\frac{B}{\beta}}.
+\]
+Damit folgt dann aus der zweiten
+\[
+a=\pm\sqrt{\frac{\beta C}{\gamma B}}.
+\]
+Die verbleibende Gleichung legt $k$ fest.
+Das folgende Beispiel illustriert das Vorgehen am Beispiel einer
+Gleichung, die Lösungsfunktion $\operatorname{sn}(u,k)$ verlangt.
+
+\begin{beispiel}
+Wir nehmen an, dass die Vorzeichen von $A$, $B$ und $C$ gemäss
+Tabelle~\ref{buch:elliptische:tabelle:loesungsfunktionen} verlangen,
+dass die Funktion $\operatorname{sn}(u,k)$ für die Lösung verwendet
+werden muss.
+Die Tabelle sagt dann auch, dass
+$\alpha=k^2$, $\beta=1$ und $\gamma=1$ gewählt werden müssen.
+Aus dem Koeffizientenvergleich~\eqref{buch:elliptisch:eqn:koeffvergl}
+folgt dann der Reihe nach
+\begin{align*}
+b&=\pm \sqrt{B}
+\\
+a&=\pm \sqrt{\frac{C}{B}}
+\\
+k^2
+&=
+\frac{AC}{B^2}.
+\end{align*}
+Man beachte, dass man $k^2$ durch Einsetzen von
+\eqref{buch:elliptisch:eqn:koeffABC}
+auch direkt aus den Koeffizienten $\alpha$, $\beta$ und $\gamma$
+erhalten kann, nämlich
+\[
+\frac{AC}{B^2}
+=
+\frac{\frac{\alpha b^2}{a^2} \gamma a^2b^2}{\beta^2 b^4}
+=
+\frac{\alpha\gamma}{\beta^2}.
+\qedhere
+\]
+\end{beispiel}
+
+Da alle Parameter im
+Lösungsansatz~\eqref{buch:elliptisch:eqn:loesungsansatz} bereits
+festgelegt sind stellt sich die Frage, woher man einen weiteren
+Parameter nehmen kann, mit dem Anfangsbedingungen erfüllen kann.
+Die Differentialgleichung~\eqref{buch:elliptisch:eqn:allgdgl} ist
+autonom, die Koeffizienten der rechten Seite der Differentialgleichung
+sind nicht von der Zeit abhängig.
+Damit ist eine zeitverschobene Funktion $x(t-t_0)$ ebenfalls eine
+Lösung der Differentialgleichung.
+Die allgmeine Lösung der
+Differentialgleichung~\eqref{buch:elliptisch:eqn:allgdgl} hat
+also die Form
+\[
+x(t) = a\operatorname{zn}(b(t-t_0)),
+\]
+wobei die Funktion $\operatorname{zn}(u,k)$ auf Grund der Vorzeichen
+von $A$, $B$ und $C$ gewählt werden müssen.
+