aboutsummaryrefslogtreecommitdiffstats
path: root/buch/chapters/110-elliptisch/lemniskate.tex
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--buch/chapters/110-elliptisch/lemniskate.tex617
1 files changed, 566 insertions, 51 deletions
diff --git a/buch/chapters/110-elliptisch/lemniskate.tex b/buch/chapters/110-elliptisch/lemniskate.tex
index 7083b63..04c137d 100644
--- a/buch/chapters/110-elliptisch/lemniskate.tex
+++ b/buch/chapters/110-elliptisch/lemniskate.tex
@@ -12,33 +12,70 @@ veröffentlich hat.
In diesem Abschnitt soll die Verbindung zu den Jacobischen
elliptischen Funktionen hergestellt werden.
+%
+% Lemniskate
+%
\subsection{Lemniskate
\label{buch:gemotrie:subsection:lemniskate}}
+Die {\em Lemniskate von Bernoulli} ist die Kurve vierten Grades
+mit der Gleichung
+\index{Lemniskate von Bernoulli}%
+\begin{equation}
+(X^2+Y^2)^2 = 2a^2(X^2-Y^2).
+\label{buch:elliptisch:eqn:lemniskate}
+\end{equation}
+Sie ist in Abbildung~\ref{buch:elliptisch:fig:lemniskate}
+dargestellt.
+Der Fall $a=1/\!\sqrt{2}$ ist eine Kurve mit der Gleichung
+\[
+(x^2+y^2)^2 = x^2-y^2,
+\]
+wir nennen sie die {\em Standard-Lemniskate}.
+
+\subsubsection{Scheitelpunkte}
+Die beiden Scheitel der Lemniskate befinden sich bei $X_s=\pm a\!\sqrt{2}$.
+Dividiert man die Gleichung der Lemniskate durch $X_s^2=4a^4$ entsteht
+\begin{equation}
+\biggl(
+\biggl(\frac{X}{a\!\sqrt{2}}\biggr)^2
++
+\biggl(\frac{Y}{a\!\sqrt{2}}\biggr)^2
+\biggr)^2
+=
+2\frac{a^2}{2a^2}\biggl(
+\biggl(\frac{X}{a\!\sqrt{2}}\biggr)^2
+-
+\biggl(\frac{Y}{a\!\sqrt{2}}\biggr)^2
+\biggr).
+\qquad
+\Leftrightarrow
+\qquad
+(x^2+y^2)^2 = x^2-y^2,
+\label{buch:elliptisch:eqn:lemniskatenormiert}
+\end{equation}
+wobei wir $x=X/a\!\sqrt{2}$ und $y=Y/a\!\sqrt{2}$ gesetzt haben.
+In dieser Normierung, der Standard-Lemniskaten, liegen die Scheitel
+bei $\pm 1$.
+Dies ist die Skalierung, die für die Definition des lemniskatischen
+Sinus und Kosinus verwendet werden soll.
\begin{figure}
\centering
\includegraphics{chapters/110-elliptisch/images/lemniskate.pdf}
\caption{Bogenlänge und Radius der Lemniskate von Bernoulli.
\label{buch:elliptisch:fig:lemniskate}}
\end{figure}
-Die Lemniskate von Bernoulli ist die Kurve vierten Grades mit der Gleichung
-\begin{equation}
-(x^2+y^2)^2 = 2a^2(x^2-y^2).
-\label{buch:elliptisch:eqn:lemniskate}
-\end{equation}
-Sie ist in Abbildung~\ref{buch:elliptisch:fig:lemniskate}
-dargestellt.
-Die beiden Scheitel der Lemniskate befinden sich bei $x=\pm a/\sqrt{2}$.
+\subsubsection{Polarkoordinaten}
In Polarkoordinaten $x=r\cos\varphi$ und $y=r\sin\varphi$
-gilt nach Einsetzen in \eqref{buch:elliptisch:eqn:lemniskate}
+gilt nach Einsetzen in \eqref{buch:elliptisch:eqn:lemniskatenormiert}
\begin{equation}
r^4
=
-2a^2r^2(\cos^2\varphi-\sin^2\varphi)
+r^2(\cos^2\varphi-\sin^2\varphi)
=
-2a^2r^2\cos2\varphi
+r^2\cos2\varphi
\qquad\Rightarrow\qquad
-r^2 = 2a^2\cos 2\varphi
+r^2 = \cos 2\varphi
\label{buch:elliptisch:eqn:lemniskatepolar}
\end{equation}
als Darstellung der Lemniskate in Polardarstellung.
@@ -46,20 +83,180 @@ Sie gilt für Winkel $\varphi\in[-\frac{\pi}4,\frac{\pi}4]$ für das
rechte Blatt und $\varphi\in[\frac{3\pi}4,\frac{5\pi}4]$ für das linke
Blatt der Lemniskate.
-Für die Definition des lemniskatischen Sinus wird eine Skalierung
-verwendet, die den rechten Scheitel im Punkt $(1,0)$.
-Dies ist der Fall für $a=1/\sqrt{2}$, die Gleichung der Lemniskate
-wird dann zu
+%
+% Schnitt eines Kegels mit einem Paraboloid
+%
+\subsubsection{Schnitt eines Kegels mit einem Paraboloid}
+\begin{figure}
+\center
+\includegraphics{chapters/110-elliptisch/images/kegelpara.pdf}
+\caption{Leminiskate (rot) als Projektion (gelb) der Schnittkurve (pink)
+eines geraden
+Kreiskegels (grün) mit einem Rotationsparaboloid (hellblau).
+\label{buch:elliptisch:lemniskate:kegelpara}}
+\end{figure}%
+\index{Kegel}%
+\index{Paraboloid}%
+Schreibt man in der Gleichung~\eqref{buch:elliptisch:eqn:lemniskate}
+für die Klammer auf der rechten Seite $Z^2 = X^2 - Y^2$, dann wird die
+Lemniskate die Projektion in die $X$-$Y$-Ebene der Schnittkurve der Flächen,
+die durch die Gleichungen
+\begin{equation}
+X^2-Y^2 = Z^2
+\qquad\text{und}\qquad
+(X^2+Y^2) = R^2 = \!\sqrt{2}aZ
+\label{buch:elliptisch:eqn:kegelparabolschnitt}
+\end{equation}
+beschrieben wird.
+Die linke Gleichung in
+\eqref{buch:elliptisch:eqn:kegelparabolschnitt}
+beschreibt einen geraden Kreiskegel, die rechte ist ein Rotationsparaboloid.
+Die Schnittkurve ist in Abbildung~\ref{buch:elliptisch:lemniskate:kegelpara}
+dargestellt.
+
+\subsubsection{Schnitt eines Torus mit einer Ebene}
+\begin{figure}
+\centering
+\includegraphics{chapters/110-elliptisch/images/torusschnitt.pdf}
+\caption{Die Schnittkurve (rot) eines Torus (grün)
+mit einer zur Torusachse parallelen Ebene (blau),
+die den inneren Äquator des Torus berührt, ist eine Lemniskate.
+\label{buch:elliptisch:lemniskate:torusschnitt}}
+\end{figure}
+\index{Torus}%
+Schneidet man einen Torus mit einer Ebene, die zur Achse des Torus
+parallel ist und den inneren Äquator des Torus berührt, wie in
+Abbildung~\ref{buch:elliptisch:lemniskate:torusschnitt},
+entsteht ebenfalls eine Lemniskate, wie in diesem Abschnitt nachgewiesen
+werden soll.
+
+Der in Abbildung~\ref{buch:elliptisch:lemniskate:torusschnitt}
+dargestellte Torus mit den Radien $2$ und $1$ hat als Achse die
+um eine Einheit in $Z$-Richtung verschobene $Y$-Achse und die
+$X$-$Z$-Ebene als Äquatorebene.
+Der Torus kann mit
+\[
+(u,v)
+\mapsto
+\begin{pmatrix}
+(2+\cos u) \cos v \\
+ \sin u \\
+(2+\cos u) \sin v + 1
+\end{pmatrix}
+\]
+parametrisiert werden, die $u$- und $v$-Koordinatenlinien sind
+in der Abbildung gelb eingezeichnet.
+Die $v$-Koordinatenlinien sind Breitenkreise um die Achse des Torus.
+Aus $u=0$ und $u=\pi$ ergeben sich die Äquatoren des Torus.
+
+Die Gleichung $Z=0$ beschreibt eine achsparallele Ebene, die den
+inneren Äquator berührt.
+Die Schnittkurve erfüllt daher
\[
-(x^2+y^2)^2 = 2(x^2-y^2).
+(2+\cos u)\sin v + 1 = 0,
\]
+was wir auch als $2 +\cos u = -1/\sin v$ schreiben können.
+Wir müssen nachprüfen, dass die Koordinaten
+$X=(2+\cos u)\cos v$ und $Y=\sin u$ die Gleichung einer Lemniskate
+erfüllen.
-\subsubsection{Bogelänge}
+Zunächst können wir in der $X$-Koordinate den Klammerausdruck durch
+$\sin v$ ausdrücken und erhalten
+\begin{equation}
+X
+=
+(2+\cos u) \cos v
+=
+-\frac{1}{\sin v}\cos v
+=
+-\frac{\cos v}{\sin v}
+\qquad\Rightarrow\qquad
+X^2
+=
+\frac{\cos^2v}{\sin^2 v}
+=
+\frac{1-\sin^2v}{\sin^2 v}.
+\label{buch:elliptisch:lemniskate:Xsin}
+\end{equation}
+Auch die $Y$-Koordinaten können wir durch $v$ ausdrücken,
+nämlich
+\begin{equation}
+Y^2=\sin^2 u = 1-\cos^2 u
+=
+1-
+\biggl(
+\frac{1}{\sin v}
+-2
+\biggr)^2
+=
+\frac{-3\sin^2 v+4\sin v-1}{\sin^2 v}.
+\label{buch:elliptisch:lemniskate:Ysin}
+\end{equation}
+Die Gleichungen
+\eqref{buch:elliptisch:lemniskate:Xsin}
+und
+\eqref{buch:elliptisch:lemniskate:Ysin}
+zeigen, dass man $X^2$ und $Y^2$ sogar einzig durch $\sin v$
+parametrisieren kann.
+Um die Ausdrücke etwas zu vereinfachen, schreiben wir $S=\sin v$
+und erhalten zusammenfassend
+\begin{equation}
+\begin{aligned}
+X^2
+&=
+\frac{1-S^2}{S^2}
+\\
+Y^2
+&=
+\frac{-3S^2+4S-1}{S^2}.
+\end{aligned}
+\end{equation}
+Daraus kann man jetzt die Summen und Differenzen der Quadrate
+berechnen, sie sind
+\begin{equation}
+\begin{aligned}
+X^2+Y^2
+&=
+\frac{-4S^2+4S}{S^2}
+=
+\frac{4S(1-S)}{S^2}
+=
+\frac{4(1-S)}{S}
+=
+4\frac{1-S}{S}
+\\
+X^2-Y^2
+&=
+\frac{2-4S+2S^2}{S^2}
+=
+\frac{2(1-S)^2}{S^2}
+=
+2\biggl(\frac{1-S}{S}\biggr)^2.
+\end{aligned}
+\end{equation}
+Die Berechnung des Quadrates von $X^2+Y^2$ ergibt die Gleichung
+\[
+(X^2+Y^2)^2
+=
+16
+\biggl(\frac{1-S}{S}\biggr)^2
+=
+8 \cdot 2
+\biggl(\frac{1-S}{S}\biggr)^2
+=
+2\cdot 2^2\cdot (X^2-Y^2).
+\]
+Sie ist eine Lemniskaten-Gleichung für $a=2$.
+
+%
+% Bogenlänge der Lemniskate
+%
+\subsection{Bogenlänge}
Die Funktionen
\begin{equation}
-x(r) = \frac{r}{\sqrt{2}}\sqrt{1+r^2},
+x(r) = \frac{r}{\!\sqrt{2}}\sqrt{1+r^2},
\quad
-y(r) = \frac{r}{\sqrt{2}}\sqrt{1-r^2}
+y(r) = \frac{r}{\!\sqrt{2}}\sqrt{1-r^2}
\label{buch:geometrie:eqn:lemniskateparam}
\end{equation}
erfüllen
@@ -74,9 +271,9 @@ r^4
=
(x(r)^2 + y(r)^2)^2,
\end{align*}
-sie stellen also eine Parametrisierung der Lemniskate dar.
+sie stellen also eine Parametrisierung der Standard-Lemniskate dar.
-Mit Hilfe der Parametrsierung~\eqref{buch:geometrie:eqn:lemniskateparam}
+Mit Hilfe der Parametrisierung~\eqref{buch:geometrie:eqn:lemniskateparam}
kann man die Länge $s$ des in Abbildung~\ref{buch:elliptisch:fig:lemniskate}
dargestellten Bogens der Lemniskate berechnen.
Dazu benötigt man die Ableitungen nach $r$, die man mit der Produkt- und
@@ -84,9 +281,9 @@ Kettenregel berechnen kann:
\begin{align*}
\dot{x}(r)
&=
-\frac{\sqrt{1+r^2}}{\sqrt{2}}
+\frac{\!\sqrt{1+r^2}}{\!\sqrt{2}}
+
-\frac{r^2}{\sqrt{2}\sqrt{1+r^2}}
+\frac{r^2}{\!\sqrt{2}\sqrt{1+r^2}}
&&\Rightarrow&
\dot{x}(r)^2
&=
@@ -94,13 +291,13 @@ Kettenregel berechnen kann:
\\
\dot{y}(r)
&=
-\frac{\sqrt{1-r^2}}{\sqrt{2}}
+\frac{\!\sqrt{1-r^2}}{\!\sqrt{2}}
-
\frac{r^2}{\sqrt{2}\sqrt{1-r^2}}
&&\Rightarrow&
\dot{y}(r)^2
&=
-\frac{1-r^2}{2} -r^2 + \frac{r^4}{2(1-r^2)}
+\frac{1-r^2}{2} -r^2 + \frac{r^4}{2(1-r^2)}.
\end{align*}
Die Summe der Quadrate ist
\begin{align*}
@@ -119,53 +316,371 @@ Durch Einsetzen in das Integral für die Bogenlänge bekommt man
s(r)
=
\int_0^r
-\frac{1}{\sqrt{1-t^4}}\,dt.
+\frac{1}{\!\sqrt{1-t^4}}\,dt.
\label{buch:elliptisch:eqn:lemniskatebogenlaenge}
\end{equation}
-\subsubsection{Darstellung als elliptisches Integral}
+%
+% Als elliptisches Integral
+%
+\subsection{Darstellung als elliptisches Integral}
Das unvollständige elliptische Integral erster Art mit Parameter
-$m=-1$ ist
+$k^2=-1$ oder $k=i$ ist
\[
-K(r,-1)
+K(r,i)
+=
+\int_0^x \frac{dt}{\!\sqrt{(1-t^2)(1-i^2 t^2)}}
=
-\int_0^x \frac{dt}{\sqrt{(1-t^2)(1-(-1)t^2)}}
+\int_0^x \frac{dt}{\!\sqrt{(1-t^2)(1-(-1)t^2)}}
=
-\int_0^x \frac{dt}{\sqrt{1-t^4}}
+\int_0^x \frac{dt}{\!\sqrt{1-t^4}}
=
s(r).
\]
Der lemniskatische Sinus ist also eine Umkehrfunktion des
-ellptischen Integrals erster Art für einen speziellen Wert des
-Parameters $m$
+elliptischen Integrals erster Art für den speziellen Wert $i$ des
+Parameters $k$.
+
+Die Länge des rechten Blattes der Lemniskate wird mit $\varpi$ bezeichnet
+und hat den numerischen Wert
+\begin{equation}
+\varpi
+=
+2\int_0^1\sqrt{\frac{1}{1-t^4}}\,dt
+=
+2.6220575542.
+\label{buch:elliptisch:eqn:varpi}
+\end{equation}
+$\varpi$ ist auch als die {\em lemniskatische Konstante} bekannt.
+\index{lemniskatische Konstante}%
+Der Lemniskatenbogen zwischen dem Nullpunkt und $(1,0)$ hat die Länge
+$\varpi/2$.
-\subsubsection{Der lemniskatische Sinus und Kosinus}
-Berechnet die Gegenkathete zu einer gegebenen Bogenlänge des Kreises.
+%
+% Bogenlängenparametrisierung
+%
+\subsection{Bogenlängenparametrisierung}
+\begin{figure}
+\centering
+\includegraphics{chapters/110-elliptisch/images/lemnispara.pdf}
+\caption{Parametrisierung der Lemniskate mit Jacobischen elliptischen
+Funktion wie in \eqref{buch:elliptisch:lemniskate:bogeneqn}
+\label{buch:elliptisch:lemniskate:bogenpara}}
+\end{figure}
+Die Lemniskate mit der Gleichung
+\[
+(X^2+Y^2)^2=2(X^2-Y^2)
+\]
+(der Fall $a=1$ in \eqref{buch:elliptisch:eqn:lemniskate})
+kann mit Jacobischen elliptischen Funktionen
+parametrisiert werden.
+Dazu schreibt man
+\begin{equation}
+\left.
+\begin{aligned}
+X(t)
+&=
+\sqrt{2}\operatorname{cn}(t,k) \operatorname{dn}(t,k)
+\\
+Y(t)
+&=
+\phantom{\sqrt{2}}
+\operatorname{cn}(t,k) \operatorname{sn}(t,k)
+\end{aligned}
+\quad\right\}
+\qquad\text{mit $k=\displaystyle\frac{1}{\sqrt{2}}.$}
+\label{buch:elliptisch:lemniskate:bogeneqn}
+\end{equation}
+Abbildung~\ref{buch:elliptisch:lemniskate:bogenpara} zeigt die
+Parametrisierung.
+Dem Parameterwert $t=0$ entspricht der Scheitelpunkt
+$S=(\!\sqrt{2},0)$ der Lemniskate.
+
+%
+% Lemniskatengleichung
+%
+\subsubsection{Verfikation der Lemniskatengleichung}
+Dass \eqref{buch:elliptisch:lemniskate:bogeneqn}
+tatsächlich eine Parametrisierung ist, kann dadurch nachgewiesen werden,
+dass man die beiden Seiten der definierenden Gleichung der
+Lemniskate berechnet.
+Zunächst sind die Quadrate von $X(t)$ und $Y(t)$
+\begin{align*}
+X(t)^2
+&=
+2\operatorname{cn}(t,k)^2
+\operatorname{dn}(t,k)^2
+\\
+Y(t)^2
+&=
+\operatorname{cn}(t,k)^2
+\operatorname{sn}(t,k)^2.
+\intertext{Für Summe und Differenz der Quadrate findet man jetzt}
+X(t)^2+Y(t)^2
+&=
+2\operatorname{cn}(t,k)^2
+\bigl(
+\underbrace{
+\operatorname{dn}(t,k)^2
++{\textstyle\frac12}
+\operatorname{sn}(t,k)^2
+}_{\displaystyle =1}
+\bigr)
+%\\
+%&
+=
+2\operatorname{cn}(t,k)^2
+\\
+X(t)^2-Y(t)^2
+&=
+\operatorname{cn}(t,k)^2
+\bigl(
+2\operatorname{dn}(t,k)^2 - \operatorname{sn}(t,k)^2
+\bigr)
+\\
+&=
+\operatorname{cn}(t,k)^2
+\bigl(
+2\bigl({\textstyle\frac12}+{\textstyle\frac12}\operatorname{cn}(t,k)^2\bigr)
+-
+\bigl(1-\operatorname{cn}(t,k)^2\bigr)
+\bigr)
+\\
+&=
+2\operatorname{cn}(t,k)^4.
+\intertext{Beide lassen sich also durch $\operatorname{cn}(t,k)^2$
+ausdrücken.
+Zusammengefasst erhält man}
+\Rightarrow\qquad
+(X(t)^2+Y(t)^2)^2
+&=
+4\operatorname{cn}(t,k)^4
+=
+2(X(t)^2-Y(t)^2),
+\end{align*}
+eine Lemniskaten-Gleichung.
+
+%
+% Berechnung der Bogenlänge
+%
+\subsubsection{Berechnung der Bogenlänge}
+Wir zeigen jetzt, dass dies tatsächlich eine Bogenlängenparametrisierung
+der Lemniskate ist.
+Dazu berechnen wir die Ableitungen
+\begin{align*}
+\dot{X}(t)
+&=
+\!\sqrt{2}\operatorname{cn}'(t,k)\operatorname{dn}(t,k)
++
+\!\sqrt{2}\operatorname{cn}(t,k)\operatorname{dn}'(t,k)
+\\
+&=
+-\!\sqrt{2}\operatorname{sn}(t,k)\operatorname{dn}(t,k)^2
+-\frac12\sqrt{2}\operatorname{sn}(t,k)\operatorname{cn}(t,k)^2
+\\
+&=
+-\!\sqrt{2}\operatorname{sn}(t,k)\bigl(
+1-{\textstyle\frac12}\operatorname{sn}(t,k)^2
++{\textstyle\frac12}-{\textstyle\frac12}\operatorname{sn}(t,k)^2
+\bigr)
+\\
+&=
+\!\sqrt{2}\operatorname{sn}(t,k)
+\bigl(
+{\textstyle \frac32}-\operatorname{sn}(t,k)^2
+\bigr)
+\\
+\dot{Y}(t)
+&=
+\operatorname{cn}'(t,k)\operatorname{sn}(t,k)
++
+\operatorname{cn}(t,k)\operatorname{sn}'(t,k)
+\\
+&=
+-\operatorname{sn}(t,k)^2
+\operatorname{dn}(t,k)
++\operatorname{cn}(t,k)^2
+\operatorname{dn}(t,k)
+\\
+&=
+\operatorname{dn}(t,k)\bigl(1-2\operatorname{sn}(t,k)^2\bigr)
+\intertext{und davon die Quadrate}
+\dot{X}(t)^2
+&=
+2\operatorname{sn}(t,k)^2
+\bigl(
+{\textstyle \frac32}-\operatorname{sn}(t,k)^2
+\bigr)^2
+\\
+&=
+{\textstyle\frac{9}{2}}\operatorname{sn}(t,k)^2
+-
+6\operatorname{sn}(t,k)^4
++2\operatorname{sn}(t,k)^6
+\\
+\dot{Y}(t)^2
+&=
+\bigl(1-{\textstyle\frac12}\operatorname{sn}(t,k)^2\bigr)
+\bigl(1-2\operatorname|{sn}(t,k)^2\bigr)^2
+\\
+&=
+1-{\textstyle\frac{9}{2}}\operatorname{sn}(t,k)^2
++6\operatorname{sn}(t,k)^4
+-2\operatorname{sn}(t,k)^6.
+\intertext{Für das Bogenlängenintegral wird die Quadratsumme der Ableitungen
+benötigt, diese ist}
+\dot{X}(t)^2 + \dot{Y}(t)^2
+&=
+1.
+\intertext{Dies bedeutet, dass die Bogenlänge zwischen den
+Parameterwerten $0$ und $t$}
+\int_0^t
+\sqrt{\dot{X}(\tau)^2 + \dot{Y}(\tau)^2}
+\,d\tau
+&=
+\int_0^s\,d\tau
+=
+t,
+\end{align*}
+der Parameter $t$ ist also ein Bogenlängenparameter.
+
+%
+% Bogenlängenparametrisierung der Standard-Lemniskate
+%
+\subsubsection{Bogenlängenparametrisierung der Standard-Lemniskate}
+Die mit dem Faktor $1/\sqrt{2}$ skalierte Standard-Lemniskate mit der
+Gleichung
+\[
+(x^2+y^2)^2 = x^2-y^2
+\]
+hat daher eine Bogenlängenparametrisierung mit
+\begin{equation}
+\left.
+\begin{aligned}
+x(t)
+&=
+\phantom{\frac{1}{\!\sqrt{2}}}
+\operatorname{cn}(\!\sqrt{2}t,k)\operatorname{dn}(\!\sqrt{2}t,k)
+\\
+y(t)
+&=
+\frac{1}{\!\sqrt{2}}
+\operatorname{cn}(\!\sqrt{2}t,k)\operatorname{sn}(\!\sqrt{2}t,k)
+\end{aligned}
+\quad
+\right\}
+\qquad
+\text{mit $\displaystyle k=\frac{1}{\!\sqrt{2}}.$}
+\label{buch:elliptisch:lemniskate:bogenlaenge}
+\end{equation}
+Der Punkt $t=0$ entspricht dem Scheitelpunkt $S=(1,0)$ der Lemniskate.
+Der Parameter misst also die Bogenlänge entlang der Lemniskate ausgehend
+vom Scheitel.
+
+%
+% der lemniskatische Sinus und Kosinus
+%
+\subsection{Der lemniskatische Sinus und Kosinus}
+Der Sinus berechnet die Gegenkathete zu einer gegebenen Bogenlänge des
+Kreises, er ist die Umkehrfunktion der Funktion, die der Gegenkathete
+die Bogenlänge zuordnet.
Daher ist es naheliegend, die Umkehrfunktion von $s(r)$ in
\eqref{buch:elliptisch:eqn:lemniskatebogenlaenge}
den {\em lemniskatischen Sinus} zu nennen mit der Bezeichnung
-$r=\operatorname{sl} s$.
+\index{lemniskatischer Sinus}%
+\index{Sinus, lemniskatischer}%
+$r=r(s)=\operatorname{sl} s$.
+\index{komplementäre Bogenlänge}
+%
+% die komplementäre Bogenlänge
+%
+\subsubsection{Die komplementäre Bogenlänge}
Der Kosinus ist der Sinus des komplementären Winkels.
Auch für die lemniskatische Bogenlänge $s(r)$ lässt sich eine
-komplementäre Bogenlänge definieren, nämlich die Bogenlänge zwischen
-dem Punkt $(x(r), y(r))$ und $(1,0)$.
-Die Länge des rechten Blattes der Lemniskate wird mit $\varpi$ bezeichnet
-und hat den numerischen Wert
+komplementäre Bogenlänge $t$ definieren, nämlich die Bogenlänge
+zwischen dem Punkt $(x(r), y(r))$ und dem Scheitelpunkt $S=(1,0)$.
+Dies ist der Parameter der Parametrisierung
+\eqref{buch:elliptisch:lemniskate:bogenlaenge}
+des vorangegangenen Abschnittes.
+Die Bogenlänge zwischen $O=(0,0)$ und $S=(1,0)$ wurde in
+\eqref{buch:elliptisch:eqn:varpi} bereits bereichnet,
+sie ist $\varpi/2$.
+Damit folgt für die beiden Parameter $s$ und $t$ die Beziehung
+$t = \varpi/2 - s$.
+
+\subsubsection{Der lemniskatische Kosinus}
+\begin{figure}
+\centering
+\includegraphics[width=\textwidth]{chapters/110-elliptisch/images/slcl.pdf}
+\caption{
+Lemniskatischer Sinus und Kosinus sowie Sinus und Kosinus
+mit derart skaliertem Argument, dass die Funktionen die
+gleichen Nullstellen haben.
+\label{buch:elliptisch:figure:slcl}}
+\end{figure}
+Der {\em lemniskatische Kosinus} ist daher
+$\operatorname{cl}(s) = \operatorname{sl}(\varpi/2-s)$.
+Graphen des lemniskatische Sinus und Kosinus sind in
+Abbildung~\ref{buch:elliptisch:figure:slcl} dargestellt.
+
+Die Parametrisierung~\eqref{buch:elliptisch:lemniskate:bogenlaenge}
+ist eine Bogenlängenparametrisierung der Standard-Lemniskate.
+Man kann sie verwenden, um $r(t)$ zu berechnen.
+Es ist
\[
-\varphi
+r(t)^2
=
-2\int_0^1\sqrt{\frac{1}{1-t^4}}\,dt
+x(t)^2 + y(t)^2
=
-2.6220575542.
+\operatorname{cn}(\!\sqrt{2}t,k)^2
+\biggl(
+\operatorname{dn}(\!\sqrt{2}t,k)^2
++
+\frac12
+\operatorname{sn}(\!\sqrt{2}t,k)^2
+\biggr)
+=
+\operatorname{cn}(\!\sqrt{2}t,k)^2.
\]
-Lemniskatenbogens zwischen dem Nullpunkt und $(1,0)$ hat die Länge
-$\varpi/2$.
+Die Wurzel ist
+\[
+r(t)
+=
+\operatorname{cn}(\!\sqrt{2}t,{\textstyle\frac{1}{\!\sqrt{2}}})
+.
+\]
+Der lemniskatische Sinus wurde aber in Abhängigkeit von
+$s=\varpi/2-t$ mittels
+\[
+\operatorname{sl}s
+=
+r(s)
+=
+\operatorname{cn}(\!\sqrt{2}(\varpi/2-s),k)^2
+\]
+definiert.
+Der lemniskatische Kosinus ist definiert als der lemniskatische Sinus
+\index{lemniskatischer Kosinus}%
+\index{Kosinus, lemniskatischer}%
+der komplementären Bogenlänge, also
+\[
+\operatorname{cl}(s)
+=
+\operatorname{sl}(\varpi/2-s)
+=
+\operatorname{cn}(\!\sqrt{2}s,k)^2.
+\]
+Die Funktion $\operatorname{sl}(s)$ und $\operatorname{cl}(s)$ sind
+in Abbildung~\ref{buch:elliptisch:figure:slcl} dargestellt.
+Sie sind beide $2\varpi$-periodisch.
+Die Abbildung zeigt ausserdem die Funktionen $\sin (\pi s/\varpi)$
+und $\cos(\pi s/\varpi)$, die ebenfalls $2\varpi$-periodisch sind.
+
+Die Darstellung des lemniskatischen Sinus und Kosinus durch die
+Jacobische elliptische Funktion $\operatorname{cn}(\!\sqrt{2}s,k)$
+zeigt einmal mehr den Nutzen der Jacobischen elliptischen Funktionen.
+
-Der {\em lemniskatische Kosinus} von $s$ ist derjenige Radiuswert $r$,
-für den der Lemniskatenbogen zwischen $(x(r), y(r))$ und $(1,0)$
-die Länge $s$ hat.
-XXX Algebraische Beziehungen \\
-XXX Ableitungen \\