aboutsummaryrefslogtreecommitdiffstats
path: root/buch/chapters/110-elliptisch/mathpendel.tex
diff options
context:
space:
mode:
Diffstat (limited to 'buch/chapters/110-elliptisch/mathpendel.tex')
-rw-r--r--buch/chapters/110-elliptisch/mathpendel.tex325
1 files changed, 325 insertions, 0 deletions
diff --git a/buch/chapters/110-elliptisch/mathpendel.tex b/buch/chapters/110-elliptisch/mathpendel.tex
new file mode 100644
index 0000000..e029ffd
--- /dev/null
+++ b/buch/chapters/110-elliptisch/mathpendel.tex
@@ -0,0 +1,325 @@
+%
+% mathpendel.tex -- Das mathematische Pendel
+%
+% (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+
+\subsection{Das mathematische Pendel
+\label{buch:elliptisch:subsection:mathpendel}}
+\begin{figure}
+\centering
+\includegraphics{chapters/110-elliptisch/images/pendel.pdf}
+\caption{Mathematisches Pendel
+\label{buch:elliptisch:fig:mathpendel}}
+\end{figure}
+Das in Abbildung~\ref{buch:elliptisch:fig:mathpendel} dargestellte
+Mathematische Pendel besteht aus einem Massepunkt der Masse $m$
+im Punkt $P$,
+der über eine masselose Stange der Länge $l$ mit dem Drehpunkt $O$
+verbunden ist.
+Das Pendel bewegt sich unter dem Einfluss der Schwerebeschleunigung $g$.
+
+Das Trägheitsmoment des Massepunktes um den Drehpunkt $O$ ist
+\(
+I=ml^2
+\).
+Das Drehmoment der Schwerkraft ist
+\(M=gl\sin\vartheta\).
+Die Bewegungsgleichung wird daher
+\[
+\begin{aligned}
+\frac{d}{dt} I\dot{\vartheta}
+&=
+M
+=
+gl\sin\vartheta
+\\
+ml^2\ddot{\vartheta}
+&=
+gl\sin\vartheta
+&&\Rightarrow&
+\ddot{\vartheta}
+&=\frac{g}{l}\sin\vartheta
+\end{aligned}
+\]
+Dies ist eine nichtlineare Differentialgleichung zweiter Ordnung, die
+wir nicht unmittelbar mit den Differentialgleichungen erster Ordnung
+der elliptischen Funktionen vergleichen können.
+
+Die Differentialgleichungen erster Ordnung der elliptischen Funktionen
+enthalten das Quadrat der ersten Ableitung.
+In unserem Fall entspricht das einer Gleichung, die $\dot{\vartheta}^2$
+enthält.
+Der Energieerhaltungssatz kann uns eine solche Gleichung geben.
+Die Summe von kinetischer und potentieller Energie muss konstant sein.
+Dies führt auf
+\begin{equation}
+E_{\text{kinetisch}}
++
+E_{\text{potentiell}}
+=
+\frac12I\dot{\vartheta}^2
++
+mgl(1-\cos\vartheta)
+=
+\frac12ml^2\dot{\vartheta}^2
++
+mgl(1-\cos\vartheta)
+=
+E.
+\label{buch:elliptisch:mathpendel:energiegleichung}
+\end{equation}
+Durch Auflösen nach $\dot{\vartheta}$ kann man jetzt die
+Differentialgleichung
+\[
+\dot{\vartheta}^2
+=
+-
+\frac{2g}{l}(1-\cos\vartheta)
++\frac{2E}{ml^2}
+\]
+finden.
+In erster Näherung, d.h. wenn man die rechte Seite bis zu vierten
+Potenzen in eine Taylor-Reihe in $\vartheta$ entwickelt, ist dies
+tatsächlich eine Differentialgleichung der Art, wie wir sie für
+elliptische Funktionen gefunden haben, wir möchten aber eine exakte
+Lösung konstruieren.
+
+Die maximale Energie für eine Bewegung, bei der sich das Pendel gerade
+über den höchsten Punkt hinweg zu bewegen vermag, ist
+$E=2lmg$.
+Falls $E<2mgl$ ist, erwarten wir Schwingungslösungen, bei denen
+der Winkel $\vartheta$ immer im offenen Interval $(-\pi,\pi)$
+bleibt.
+Für $E>2mgl$ wird sich das Pendel im Kreis bewegen, für sehr grosse
+Energie ist die kinetische Energie dominant, die Verlangsamung im
+höchsten Punkt wird immer weniger ausgeprägt sein.
+
+
+%
+% Koordinatentransformation auf elliptische Funktionen
+%
+\subsubsection{Koordinatentransformation auf elliptische Funktionen}
+Wir verwenden als neue Variable
+\begin{align}
+y
+&=
+\sin\frac{\vartheta}2
+&&\Rightarrow&
+\cos^2\frac{\vartheta}2
+&=
+1-y^2.
+\label{buch:elliptisch:mathpendel:ydef}
+\intertext{Die Ableitung ist}
+\dot{y}
+&=
+\frac12\cos\frac{\vartheta}{2}\cdot \dot{\vartheta}
+&&\Rightarrow&
+\dot{y}^2
+&=
+\frac14\cos^2\frac{\vartheta}2\cdot\dot{\vartheta}^2.
+\label{buch:elliptisch:mathpendel:yabl}
+\intertext{%
+Man beachte, dass die Koordinate senkrecht zur $x$-Achse in
+Abbildung~\ref{buch:elliptisch:fig:mathpendel} die Auslenkung
+$l\sin\vartheta$ ist, $y$ ist also nicht die Auslenkung senkrecht
+zur $x$-Achse!
+Aus den Halbwinkelformeln finden wir ausserdem
+}
+\cos\vartheta
+&=
+1-2\sin^2 \frac{\vartheta}2
+=
+1-2y^2
+&&\Rightarrow&
+1-\cos\vartheta
+&=
+2y^2.
+\label{buch:elliptisch:mathpendel:halbwinkel}
+\end{align}
+Die Grösse $1-\cos\vartheta$ haben wir in der Energiegleichung
+\eqref{buch:elliptisch:mathpendel:energiegleichung}
+bereits angetroffen.
+
+Die Identitäten
+\eqref{buch:elliptisch:mathpendel:halbwinkel}
+%und
+%\eqref{buch:elliptisch:mathpendel:ydef}
+können wir jetzt in die
+Energiegleichung~\eqref{buch:elliptisch:mathpendel:energiegleichung}
+einsetzen und erhalten
+\begin{align}
+\frac12ml^2\dot{\vartheta}^2 + 2mgly^2
+&=
+E
+\intertext{und nach Division durch $2ml^2$}
+\frac14 \dot{\vartheta}^2
+&=
+\frac{E}{2ml^2} - \frac{g}{l}y^2.
+\label{buch:elliptisch:mathpendel:thetadgl}
+\end{align}
+%Der konstante Term auf der rechten Seite ist grösser oder kleiner als
+%$1$ je nachdem, ob das Pendel sich im Kreis bewegt oder nicht.
+Durch Multiplizieren mit der rechten Gleichung von
+\eqref{buch:elliptisch:mathpendel:ydef}
+erhalten wir auf der linken Seite einen Ausdruck, den wir
+mit Hilfe von \eqref{buch:elliptisch:mathpendel:yabl}
+als Funktion von $\dot{y}$ ausdrücken können.
+Wir erhalten
+\begin{align}
+\underbrace{\frac14
+\cos^2\frac{\vartheta}2
+\cdot
+\dot{\vartheta}^2}_{\displaystyle=\dot{y}^2}
+&=
+(1-y^2)
+\biggl(\frac{E}{2ml^2} -\frac{g}{l}y^2\biggr)
+\notag
+\\
+\dot{y}^2
+&=
+(1-y^2)
+\biggl(\frac{E}{2ml^2} -\frac{g}{l}y^2\biggr)
+\label{buch:elliptisch:mathpendel:ydgl}
+\end{align}
+Die letzte Gleichung hat die Form einer Differentialgleichung
+für elliptische Funktionen.
+Welche Funktion verwendet werden muss, hängt von der relativen
+Grösse der Koeffizienten in der zweiten Klammer ab.
+
+%
+% Zeittransformation zur Elimination des konstanten Faktors
+%
+\subsubsection{Zeittransformation}
+Die Gleichung~\eqref{buch:elliptisch:mathpendel:ydgl} kann auch in
+die Form
+\begin{equation}
+\frac{2ml^2}{E}\dot{y}^2
+=
+(1-y^2)\biggl(1-\frac{2mgl}{E}y^2\biggr)
+\label{buch:elliptisch:mathpendel:ydgl2}
+\end{equation}
+gebracht werden.
+Der konstante Faktor auf der linken Seite kann wie in der Diskussion
+des anharmonischen Oszillators durch eine lineare
+Transformation der Zeit zum Verschwinden gebracht werden.
+Dazu setzt man $z(t) = y(bt)$ und bekommt
+\[
+\frac{d}{dt}z(t)
+=
+\frac{d}{dt}y(bt) \frac{d\,bt}{dt}
+=
+b\,\dot{y}(bt).
+\]
+Die Zeit muss also mit dem Faktor $\sqrt{2ml^2/E}$ skaliert werden.
+
+%
+% Nullstellen der rechten Seite der Differentialgleichung
+%
+\subsubsection{Nullstellen der rechten Seite}
+Die rechte Seite von \eqref{buch:elliptisch:mathpendel:ydgl2}
+hat die beiden Nullstellen $1$ und
+\begin{equation}
+y_0=\sqrt{\frac{E}{2mgl}}.
+\label{buch:elliptisch:mathpendel:y0}
+\end{equation}
+Die Differentialgleichung kann damit als
+\begin{equation}
+\dot{y}^2
+=
+(1-y^2)\biggl(1-\frac{1}{y_0^2}y^2\biggr)
+\label{buch:elliptisch:mathpendel:y0dgl}
+\end{equation}
+geschrieben werden.
+Da die linke Seite $\ge 0$ sein muss, muss
+\(
+y\le \min(1,y_0)
+\)
+sein.
+Damit ergeben sich zwei Fälle.
+Wenn $y_0<1$ ist, dann schwingt das Pendel.
+Der Fall $y_0>1$ entspricht einer Bewegung, bei der das Pendel
+um den Punkt $O$ rotiert.
+In den folgenden zwei Abschnitten werden die beiden Fälle ausführlicher
+diskutiert.
+
+
+\begin{figure}
+\centering
+\includegraphics[width=\textwidth]{chapters/110-elliptisch/images/jacobiplots.pdf}
+\caption{%
+Abhängigkeit der elliptischen Funktionen von $u$ für
+verschiedene Werte von $k^2=m$.
+Für $m=0$ ist $\operatorname{sn}(u,0)=\sin u$,
+$\operatorname{cn}(u,0)=\cos u$ und $\operatorname{dn}(u,0)=1$, diese
+sind in allen Plots in einer helleren Farbe eingezeichnet.
+Für kleine Werte von $m$ weichen die elliptischen Funktionen nur wenig
+von den trigonometrischen Funktionen ab,
+es ist aber klar erkennbar, dass die anharmonischen Terme in der
+Differentialgleichung die Periode mit steigender Amplitude verlängern.
+Sehr grosse Werte von $m$ nahe bei $1$ entsprechen der Situation, dass
+die Energie des Pendels fast ausreicht, dass es den höchsten Punkt
+erreichen kann, was es für $m$ macht.
+\label{buch:elliptisch:fig:jacobiplots}}
+\end{figure}
+
+\subsubsection{Der Fall $E>2mgl$}
+In diesem Fall ist die zweite Nullstelle $y_0>1$ oder $1/y_0^2 < 1$.
+Die Differentialgleichung~\eqref{buch:elliptisch:mathpendel:y0dgl}
+sieht ganz ähnlich aus wie die Differentialgleichung der
+Funktion $\operatorname{sn}(u,k)$, tatsächlich wird sie zur
+Differentialgleichung von $\operatorname{sn}(u,k)$ wenn man
+\[
+k^2
+=
+1/y_0^2
+=
+\frac{2mgl}{E}
+\]
+wählt.
+In diesem Fall ist also $y=\operatorname{sn}(u,1/y_0)$ eine Lösung
+der Differentialgleichung, wobei $u$ eine lineare Funktion der Zeit
+ist.
+
+Wenn $y_0 \gg 1$ ist, dann ist $k\approx 0$ und die Bewegung ist
+entspricht einer gleichförmigen Kreisbewegung.
+Je näher $y_0$ an $1$ liegt, desto näher an $1$ ist auch $k$ und
+desto grösser wird die Verlangsamung der Bewgung in der Nähe des
+Scheitels, das Pendel verweilt sehr lange.
+Dies äussert sich in Abbildung~\ref{buch:elliptisch:fig:jacobiplots}
+durch die lange Verweildauer der Funktion nahe der Extrema.
+
+%
+% Der Fall E < 2mgl
+%
+\subsubsection{Der Fall $E<2mgl$}
+In diesem Fall ist $y_0<1$ und die
+Differentialgleichung~\eqref{buch:elliptisch:mathpendel:y0dgl}
+sieht zwar immer noch wie eine Differentialgleichung für
+$\operatorname{sn}(u,k)$ aus, aber die Lage der Nullstellen
+der rechten Seite ist verkehrt.
+Indem wir $y=y_0z$ schreiben, erhalten wir
+\begin{equation}
+\dot{y}^2
+=
+y_0^2 \dot{z}^2
+=
+(1-y_0^2z^2)(1-z^2).
+\end{equation}
+Wieder kann durch eine lineare Transformation der Zeit der Faktor $y_0^2$
+auf der linken Seite zum Verschwinden gebracht werden, es bleibt
+die Differentialgleichung der Funktion $\operatorname{sn}(u,k)$
+mit $k=y_0$.
+Daraus liest man ab, dass $y_0\operatorname{sn}(u,k)$ die Bewegung
+des Pendels im oszillatorischen Fall beschreibt, wobei $u$ wieder
+eine lineare Funktion der Zeit ist.
+
+Wenn $y_0\ll 1$ ist, dann ist auch $k$ sehr klein und die lineare
+Näherung ist sehr gut, das Pendel verhält sich wie ein harmonischer
+Oszillator mit einer Sinus-Schwingung als Lösung.
+Für $y_0=k$ nahe an $1$ dagegen erreicht die Schwingung fast den
+die maximale Höhe und wird dort sehr langsam.
+Dies äussert sich in Abbildung~
+Dies äussert sich in Abbildung~\ref{buch:elliptisch:fig:jacobiplots}
+wiederum durch die lange Verweildauer der Funktion nahe der Extrema.
+