diff options
Diffstat (limited to '')
-rw-r--r-- | buch/chapters/010-potenzen/tschebyscheff.tex | 3 | ||||
-rw-r--r-- | buch/chapters/070-orthogonalitaet/gaussquadratur.tex | 2 | ||||
-rw-r--r-- | buch/chapters/070-orthogonalitaet/orthogonal.tex | 1 | ||||
-rw-r--r-- | buch/chapters/070-orthogonalitaet/sturm.tex | 4 |
4 files changed, 6 insertions, 4 deletions
diff --git a/buch/chapters/010-potenzen/tschebyscheff.tex b/buch/chapters/010-potenzen/tschebyscheff.tex index ccc2e97..6d21a68 100644 --- a/buch/chapters/010-potenzen/tschebyscheff.tex +++ b/buch/chapters/010-potenzen/tschebyscheff.tex @@ -102,7 +102,7 @@ die Sütztstellen so zu wählen, dass $l(x)$ kleine Funktionswerte hat. Stützstellen in gleichen Abständen erweisen sich dafür als ungeeignet, da $l(x)$ nahe $x_0$ und $x_n$ sehr stark oszilliert. -\subsection{Definition der Tschebyscheff-Polynome} +\subsection{Definition der Tschebyscheff-Polynome \label{sub:definiton_der_tschebyscheff-Polynome}} \begin{figure} \centering \includegraphics[width=\textwidth]{chapters/010-potenzen/images/lissajous.pdf} @@ -199,6 +199,7 @@ T_0(x)=1. \end{equation} Damit können die Tschebyscheff-Polynome sehr effizient berechnet werden: \begin{equation} +\label{eq:tschebyscheff-polynome} \begin{aligned} T_0(x) &=1 diff --git a/buch/chapters/070-orthogonalitaet/gaussquadratur.tex b/buch/chapters/070-orthogonalitaet/gaussquadratur.tex index a5af7d2..c7dfb31 100644 --- a/buch/chapters/070-orthogonalitaet/gaussquadratur.tex +++ b/buch/chapters/070-orthogonalitaet/gaussquadratur.tex @@ -20,7 +20,7 @@ Ein solches Polynom $p(x)$ hat $n+1$ Koeffizienten, die aus dem linearen Gleichungssystem der $n+1$ Gleichungen $p(x_i)=f(x_i)$ ermittelt werden können. -Das Interpolationspolynom $p(x)$ lässt sich abera uch direkt +Das Interpolationspolynom $p(x)$ lässt sich aber auch direkt angeben. Dazu konstruiert man zuerst die Polynome \[ diff --git a/buch/chapters/070-orthogonalitaet/orthogonal.tex b/buch/chapters/070-orthogonalitaet/orthogonal.tex index df04514..793b78d 100644 --- a/buch/chapters/070-orthogonalitaet/orthogonal.tex +++ b/buch/chapters/070-orthogonalitaet/orthogonal.tex @@ -641,6 +641,7 @@ H_w f\colon(a,b) \to \mathbb{R} \;\bigg|\; \int_a^b |f(x)|^2 w(x)\,dx +<\infty \biggr\}. \] Die Funktionen $f\in H_w$ haben folgende Eigenschaften diff --git a/buch/chapters/070-orthogonalitaet/sturm.tex b/buch/chapters/070-orthogonalitaet/sturm.tex index 742ec0a..80bd5f4 100644 --- a/buch/chapters/070-orthogonalitaet/sturm.tex +++ b/buch/chapters/070-orthogonalitaet/sturm.tex @@ -15,7 +15,7 @@ Skalarproduktes selbstadjungierten Operators erkannt wurden. % % Differentialgleichungen % -\subsection{Differentialgleichung} +\subsection{Differentialgleichung \label{sub:differentailgleichung}} Das klassische Sturm-Liouville-Problem ist das folgende Eigenwertproblem. Gesucht sind Lösungen der Differentialgleichung \begin{equation} @@ -405,7 +405,7 @@ L % % Beispiele % -\subsection{Beispiele} +\subsection{Beispiele\label{sub:beispiele_sturm_liouville_problem}} Die meisten der früher vorgestellten Funktionenfamilien stellen sich als Lösungen eines geeigneten Sturm-Liouville-Problems heraus. Alle Eigenschaften aus der Sturm-Liouville-Theorie gelten daher |