aboutsummaryrefslogtreecommitdiffstats
path: root/buch/chapters
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--buch/chapters/110-elliptisch/dglsol.tex494
-rw-r--r--buch/chapters/110-elliptisch/elltrigo.tex1012
-rw-r--r--buch/chapters/110-elliptisch/mathpendel.tex250
3 files changed, 1756 insertions, 0 deletions
diff --git a/buch/chapters/110-elliptisch/dglsol.tex b/buch/chapters/110-elliptisch/dglsol.tex
new file mode 100644
index 0000000..7eaab38
--- /dev/null
+++ b/buch/chapters/110-elliptisch/dglsol.tex
@@ -0,0 +1,494 @@
+%
+% dglsol.tex -- Lösung von Differentialgleichungen
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+
+%
+% Lösung von Differentialgleichungen
+%
+\subsection{Lösungen von Differentialgleichungen
+\label{buch:elliptisch:subsection:differentialgleichungen}}
+Die elliptischen Funktionen ermöglichen die Lösung gewisser nichtlinearer
+Differentialgleichungen in geschlossener Form.
+Ziel dieses Abschnitts ist, Differentialgleichungen der Form
+\(
+\dot{x}(t)^2
+=
+P(x(t))
+\)
+mit einem Polynom $P$ vierten Grades oder
+\(
+\ddot{x}(t)
+=
+p(x(t))
+\)
+mit einem Polynom dritten Grades als rechter Seite lösen zu können.
+
+%
+% Die Differentialgleichung der elliptischen Funktionen
+%
+\subsubsection{Die Differentialgleichungen der elliptischen Funktionen}
+Um Differentialgleichungen mit elliptischen Funktion lösen zu
+können, muss man als erstes die Differentialgleichungen derselben
+finden.
+Quadriert man die Ableitungsregel für $\operatorname{sn}(u,k)$, erhält
+man
+\[
+\biggl(\frac{d}{du}\operatorname{sn}(u,k)\biggr)^2
+=
+\operatorname{cn}(u,k)^2 \operatorname{dn}(u,k)^2.
+\]
+Die Funktionen auf der rechten Seite können durch $\operatorname{sn}(u,k)$
+ausgedrückt werden, dies führt auf die Differentialgleichung
+\begin{align*}
+\biggl(\frac{d}{du}\operatorname{sn}(u,k)\biggr)^2
+&=
+\bigl(
+1-\operatorname{sn}(u,k)^2
+\bigr)
+\bigl(
+1-k^2 \operatorname{sn}(u,k)^2
+\bigr)
+\\
+&=
+k^2\operatorname{sn}(u,k)^4
+-(1+k^2)
+\operatorname{sn}(u,k)^2
++1.
+\end{align*}
+Für die Funktion $\operatorname{cn}(u,k)$ ergibt die analoge Rechnung
+\begin{align*}
+\frac{d}{du}\operatorname{cn}(u,k)
+&=
+-\operatorname{sn}(u,k) \operatorname{dn}(u,k)
+\\
+\biggl(\frac{d}{du}\operatorname{cn}(u,k)\biggr)^2
+&=
+\operatorname{sn}(u,k)^2 \operatorname{dn}(u,k)^2
+\\
+&=
+\bigl(1-\operatorname{cn}(u,k)^2\bigr)
+\bigl(k^{\prime 2}+k^2 \operatorname{cn}(u,k)^2\bigr)
+\\
+&=
+-k^2\operatorname{cn}(u,k)^4
++
+(k^2-k^{\prime 2})\operatorname{cn}(u,k)^2
++
+k^{\prime 2}
+\intertext{und weiter für $\operatorname{dn}(u,k)$:}
+\frac{d}{du}\operatorname{dn}(u,k)
+&=
+-k^2\operatorname{sn}(u,k)\operatorname{cn}(u,k)
+\\
+\biggl(
+\frac{d}{du}\operatorname{dn}(u,k)
+\biggr)^2
+&=
+\bigl(k^2 \operatorname{sn}(u,k)^2\bigr)
+\bigl(k^2 \operatorname{cn}(u,k)^2\bigr)
+\\
+&=
+\bigl(
+1-\operatorname{dn}(u,k)^2
+\bigr)
+\bigl(
+\operatorname{dn}(u,k)^2-k^{\prime 2}
+\bigr)
+\\
+&=
+-\operatorname{dn}(u,k)^4
++
+(1+k^{\prime 2})\operatorname{dn}(u,k)^2
+-k^{\prime 2}.
+\end{align*}
+
+\begin{table}
+\centering
+\renewcommand{\arraystretch}{1.7}
+\begin{tabular}{|>{$}l<{$}|>{$}l<{$}|>{$}c<{$}|>{$}c<{$}|>{$}c<{$}|}
+\hline
+\text{Funktion $y=$}&\text{Differentialgleichung}&\alpha&\beta&\gamma\\
+\hline
+\operatorname{sn}(u,k)
+ & y'^2 = \phantom{-}(1-y^2)(1-k^2y^2)
+ &k^2&1+k^2&1
+\\
+\operatorname{cn}(u,k) &y'^2 = \phantom{-}(1-y^2)(k^{\prime2}+k^2y^2)
+ &-k^2 &k^2-k^{\prime 2}=2k^2-1&k^{\prime2}
+\\
+\operatorname{dn}(u,k)
+ & y'^2 = -(1-y^2)(k^{\prime 2}-y^2)
+ &-1 &1+k^{\prime 2}=2-k^2 &-k^{\prime2}
+\\
+\hline
+\end{tabular}
+\caption{Elliptische Funktionen als Lösungsfunktionen für verschiedene
+nichtlineare Differentialgleichungen der Art
+\eqref{buch:elliptisch:eqn:1storderdglell}.
+Die Vorzeichen der Koeffizienten $\alpha$, $\beta$ und $\gamma$
+entscheidet darüber, welche Funktion für die Lösung verwendet werden
+muss.
+\label{buch:elliptisch:tabelle:loesungsfunktionen}}
+\end{table}
+
+Die drei grundlegenden Jacobischen elliptischen Funktionen genügen also alle
+einer nichtlinearen Differentialgleichung erster Ordnung der selben Art.
+Das Quadrat der Ableitung ist ein Polynom vierten Grades der Funktion.
+Die Differentialgleichungen sind in der
+Tabelle~\ref{buch:elliptisch:tabelle:loesungsfunktionen} zusammengefasst.
+
+%
+% Differentialgleichung der abgeleiteten elliptischen Funktionen
+%
+\subsubsection{Die Differentialgleichung der abgeleiteten elliptischen
+Funktionen}
+Da auch die Ableitungen der abgeleiteten Jacobischen elliptischen
+Funktionen Produkte von genau zwei Funktionen sind, die sich wieder
+durch die ursprüngliche Funktion ausdrücken lassen, darf man erwarten,
+dass alle elliptischen Funktionen einer ähnlichen Differentialgleichung
+genügen.
+Um dies besser einzufangen, schreiben wir $\operatorname{pq}(u,k)$,
+wenn wir eine beliebige abgeleitete Jacobische elliptische Funktion.
+Für
+$\operatorname{pq}=\operatorname{sn}$
+$\operatorname{pq}=\operatorname{cn}$
+und
+$\operatorname{pq}=\operatorname{dn}$
+wissen wir bereits und erwarten für jede andere Funktion dass
+$\operatorname{pq}(u,k)$ auch, dass sie Lösung einer Differentialgleichung
+der Form
+\begin{equation}
+\operatorname{pq}'(u,k)^2
+=
+\alpha \operatorname{pq}(u,k)^4 + \beta \operatorname{pq}(u,k)^2 + \gamma
+\label{buch:elliptisch:eqn:1storderdglell}
+\end{equation}
+erfüllt,
+wobei wir mit $\operatorname{pq}'(u,k)$ die Ableitung von
+$\operatorname{pq}(u,k)$ nach dem ersten Argument meinen.
+Die Koeffizienten $\alpha$, $\beta$ und $\gamma$ hängen von $k$ ab,
+ihre Werte für die grundlegenden Jacobischen elliptischen
+sind in Tabelle~\ref{buch:elliptisch:table:differentialgleichungen}
+zusammengestellt.
+
+Die Koeffizienten müssen nicht für jede Funktion wieder neu bestimmt
+werden, denn für den Kehrwert einer Funktion lässt sich die
+Differentialgleichung aus der Differentialgleichung der ursprünglichen
+Funktion ermitteln.
+
+%
+% Differentialgleichung der Kehrwertfunktion
+%
+\subsubsection{Differentialgleichung für den Kehrwert einer elliptischen Funktion}
+Aus der Differentialgleichung~\eqref{buch:elliptisch:eqn:1storderdglell}
+für die Funktion $\operatorname{pq}(u,k)$ kann auch eine
+Differentialgleichung für den Kehrwert
+$\operatorname{qp}(u,k)=\operatorname{pq}(u,k)^{-1}$
+ableiten.
+Dazu rechnet man
+\[
+\operatorname{qp}'(u,k)
+=
+\frac{d}{du}\frac{1}{\operatorname{pq}(u,k)}
+=
+\frac{\operatorname{pq}'(u,k)}{\operatorname{pq}(u,k)^2}
+\qquad\Rightarrow\qquad
+\left\{
+\quad
+\begin{aligned}
+\operatorname{pq}(u,k)
+&=
+\frac{1}{\operatorname{qp}(u,k)}
+\\
+\operatorname{pq}'(u,k)
+&=
+\frac{\operatorname{qp}'(u,k)}{\operatorname{qp}(u,k)^2}
+\end{aligned}
+\right.
+\]
+und setzt in die Differentialgleichung ein:
+\begin{align*}
+\biggl(
+\frac{
+\operatorname{qp}'(u,k)
+}{
+\operatorname{qp}(u,k)
+}
+\biggr)^2
+&=
+\alpha \frac{1}{\operatorname{qp}(u,k)^4}
++
+\beta \frac{1}{\operatorname{qp}(u,k)^2}
++
+\gamma.
+\end{align*}
+Nach Multiplikation mit $\operatorname{qp}(u,k)^4$ erhält man den
+folgenden Satz.
+
+\begin{satz}
+Wenn die Jacobische elliptische Funktion $\operatorname{pq}(u,k)$
+der Differentialgleichung genügt, dann genügt der Kehrwert
+$\operatorname{qp}(u,k) = 1/\operatorname{pq}(u,k)$ der Differentialgleichung
+\begin{equation}
+(\operatorname{qp}'(u,k))^2
+=
+\gamma \operatorname{qp}(u,k)^4
++
+\beta \operatorname{qp}(u,k)^2
++
+\alpha
+\label{buch:elliptisch:eqn:kehrwertdgl}
+\end{equation}
+\end{satz}
+
+\begin{table}
+\centering
+\def\lfn#1{\multicolumn{1}{|l|}{#1}}
+\def\rfn#1{\multicolumn{1}{r|}{#1}}
+\renewcommand{\arraystretch}{1.3}
+\begin{tabular}{l|>{$}c<{$}>{$}c<{$}>{$}c<{$}|r}
+\cline{1-4}
+\lfn{Funktion}
+ & \alpha & \beta & \gamma &\\
+\hline
+\lfn{sn}& k^2 & -(1+k^2) & 1 &\rfn{ns}\\
+\lfn{cn}& -k^2 & -(1-2k^2) & 1-k^2 &\rfn{nc}\\
+\lfn{dn}& 1 & 2-k^2 & -(1-k^2) &\rfn{nd}\\
+\hline
+\lfn{sc}& 1-k^2 & 2-k^2 & 1 &\rfn{cs}\\
+\lfn{sd}&-k^2(1-k^2)&-(1-2k^2) & 1 &\rfn{ds}\\
+\lfn{cd}& k^2 &-(1+k^2) & 1 &\rfn{dc}\\
+\hline
+ & \gamma & \beta & \alpha &\rfn{Reziproke}\\
+\cline{2-5}
+\end{tabular}
+\caption{Koeffizienten der Differentialgleichungen für die Jacobischen
+elliptischen Funktionen.
+Der Kehrwert einer Funktion hat jeweils die Differentialgleichung der
+ursprünglichen Funktion, in der die Koeffizienten $\alpha$ und $\gamma$
+vertauscht worden sind.
+\label{buch:elliptisch:table:differentialgleichungen}}
+\end{table}
+
+%
+% Differentialgleichung zweiter Ordnung
+%
+\subsubsection{Differentialgleichung zweiter Ordnung}
+Leitet die Differentialgleichung~\eqref{buch:elliptisch:eqn:1storderdglell}
+man dies nochmals nach $u$ ab, erhält man die Differentialgleichung
+\[
+2\operatorname{pq}''(u,k)\operatorname{pq}'(u,k)
+=
+4\alpha \operatorname{pq}(u,k)^3\operatorname{pq}'(u,k) + 2\beta \operatorname{pq}'(u,k)\operatorname{pq}(u,k).
+\]
+Teilt man auf beiden Seiten durch $2\operatorname{pq}'(u,k)$,
+bleibt die nichtlineare
+Differentialgleichung
+\[
+\frac{d^2\operatorname{pq}}{du^2}
+=
+\beta \operatorname{pq} + 2\alpha \operatorname{pq}^3.
+\]
+Dies ist die Gleichung eines harmonischen Oszillators mit einer
+Anharmonizität der Form $2\alpha z^3$.
+
+
+
+%
+% Jacobischen elliptische Funktionen und elliptische Integrale
+%
+\subsubsection{Jacobische elliptische Funktionen als elliptische Integrale}
+Die in Tabelle~\ref{buch:elliptisch:tabelle:loesungsfunktionen}
+zusammengestellten Differentialgleichungen ermöglichen nun, den
+Zusammenhang zwischen den Funktionen
+$\operatorname{sn}(u,k)$, $\operatorname{cn}(u,k)$ und $\operatorname{dn}(u,k)$
+und den unvollständigen elliptischen Integralen herzustellen.
+Die Differentialgleichungen sind alle von der Form
+\begin{equation}
+\biggl(
+\frac{d y}{d u}
+\biggr)^2
+=
+p(u),
+\label{buch:elliptisch:eqn:allgdgl}
+\end{equation}
+wobei $p(u)$ ein Polynom vierten Grades in $y$ ist.
+Diese Differentialgleichung lässt sich mit Separation lösen.
+Dazu zieht man aus~\eqref{buch:elliptisch:eqn:allgdgl} die
+Wurzel
+\begin{align}
+\frac{dy}{du}
+=
+\sqrt{p(y)}
+\notag
+\intertext{und trennt die Variablen. Man erhält}
+\int\frac{dy}{\sqrt{p(y)}} = u+C.
+\label{buch:elliptisch:eqn:yintegral}
+\end{align}
+Solange $p(y)>0$ ist, ist der Integrand auf der linken Seite
+von~\eqref{buch:elliptisch:eqn:yintegral} ebenfalls positiv und
+das Integral ist eine monoton wachsende Funktion $F(y)$.
+Insbesondere ist $F(y)$ invertierbar.
+Die Lösung $y(u)$ der Differentialgleichung~\eqref{buch:elliptisch:eqn:allgdgl}
+ist daher
+\[
+y(u) = F^{-1}(u+C).
+\]
+Die Jacobischen elliptischen Funktionen sind daher inverse Funktionen
+der unvollständigen elliptischen Integrale.
+
+
+%
+% Differentialgleichung des anharmonischen Oszillators
+%
+\subsubsection{Differentialgleichung des anharmonischen Oszillators}
+Wir möchten die nichtlineare Differentialgleichung
+\begin{equation}
+\biggl(
+\frac{dx}{dt}
+\biggr)^2
+=
+Ax^4+Bx^2 + C
+\label{buch:elliptisch:eqn:allgdgl}
+\end{equation}
+mit Hilfe elliptischer Funktionen lösen.
+Wir nehmen also an, dass die gesuchte Lösung eine Funktion der Form
+\begin{equation}
+x(t) = a\operatorname{zn}(bt,k)
+\label{buch:elliptisch:eqn:loesungsansatz}
+\end{equation}
+ist.
+Die erste Ableitung von $x(t)$ ist
+\[
+\dot{x}(t)
+=
+a\operatorname{zn}'(bt,k).
+\]
+
+Indem wir diesen Lösungsansatz in die
+Differentialgleichung~\eqref{buch:elliptisch:eqn:allgdgl}
+einsetzen, erhalten wir
+\begin{equation}
+a^2b^2 \operatorname{zn}'(bt,k)^2
+=
+a^4A\operatorname{zn}(bt,k)^4
++
+a^2B\operatorname{zn}(bt,k)^2
++C
+\label{buch:elliptisch:eqn:dglx}
+\end{equation}
+Andererseits wissen wir, dass $\operatorname{zn}(u,k)$ einer
+Differentilgleichung der Form~\eqref{buch:elliptisch:eqn:1storderdglell}
+erfüllt.
+Wenn wir \eqref{buch:elliptisch:eqn:dglx} durch $a^2b^2$ teilen, können wir
+die rechte Seite von \eqref{buch:elliptisch:eqn:dglx} mit der rechten
+Seite von \eqref{buch:elliptisch:eqn:1storderdglell} vergleichen:
+\[
+\frac{a^2A}{b^2}\operatorname{zn}(bt,k)^4
++
+\frac{B}{b^2}\operatorname{zn}(bt,k)^2
++\frac{C}{a^2b^2}
+=
+\alpha\operatorname{zn}(bt,k)^4
++
+\beta\operatorname{zn}(bt,k)^2
++
+\gamma\operatorname{zn}(bt,k).
+\]
+Daraus ergeben sich die Gleichungen
+\begin{align}
+\alpha &= \frac{a^2A}{b^2},
+&
+\beta &= \frac{B}{b^2}
+&&\text{und}
+&
+\gamma &= \frac{C}{a^2b^2}
+\label{buch:elliptisch:eqn:koeffvergl}
+\intertext{oder aufgelöst nach den Koeffizienten der ursprünglichen
+Differentialgleichung}
+A&=\frac{\alpha b^2}{a^2}
+&
+B&=\beta b^2
+&&\text{und}&
+C &= \gamma a^2b^2
+\label{buch:elliptisch:eqn:koeffABC}
+\end{align}
+für die Koeffizienten der Differentialgleichung der zu verwendenden
+Funktion.
+
+Man beachte, dass nach \eqref{buch:elliptisch:eqn:koeffvergl} die
+Koeffizienten $A$, $B$ und $C$ die gleichen Vorzeichen haben wie
+$\alpha$, $\beta$ und $\gamma$, da in
+\eqref{buch:elliptisch:eqn:koeffvergl} nur mit Quadraten multipliziert
+wird, die immer positiv sind.
+Diese Vorzeichen bestimmen, welche der Funktionen gewählt werden muss.
+
+In den Differentialgleichungen für die elliptischen Funktionen gibt
+es nur den Parameter $k$, der angepasst werden kann.
+Es folgt, dass die Gleichungen
+\eqref{buch:elliptisch:eqn:koeffvergl}
+auch $a$ und $b$ bestimmen.
+Zum Beispiel folgt aus der letzten Gleichung, dass
+\[
+b = \pm\sqrt{\frac{B}{\beta}}.
+\]
+Damit folgt dann aus der zweiten
+\[
+a=\pm\sqrt{\frac{\beta C}{\gamma B}}.
+\]
+Die verbleibende Gleichung legt $k$ fest.
+Das folgende Beispiel illustriert das Vorgehen am Beispiel einer
+Gleichung, die Lösungsfunktion $\operatorname{sn}(u,k)$ verlangt.
+
+\begin{beispiel}
+Wir nehmen an, dass die Vorzeichen von $A$, $B$ und $C$ gemäss
+Tabelle~\ref{buch:elliptische:tabelle:loesungsfunktionen} verlangen,
+dass die Funktion $\operatorname{sn}(u,k)$ für die Lösung verwendet
+werden muss.
+Die Tabelle sagt dann auch, dass
+$\alpha=k^2$, $\beta=1$ und $\gamma=1$ gewählt werden müssen.
+Aus dem Koeffizientenvergleich~\eqref{buch:elliptisch:eqn:koeffvergl}
+folgt dann der Reihe nach
+\begin{align*}
+b&=\pm \sqrt{B}
+\\
+a&=\pm \sqrt{\frac{C}{B}}
+\\
+k^2
+&=
+\frac{AC}{B^2}.
+\end{align*}
+Man beachte, dass man $k^2$ durch Einsetzen von
+\eqref{buch:elliptisch:eqn:koeffABC}
+auch direkt aus den Koeffizienten $\alpha$, $\beta$ und $\gamma$
+erhalten kann, nämlich
+\[
+\frac{AC}{B^2}
+=
+\frac{\frac{\alpha b^2}{a^2} \gamma a^2b^2}{\beta^2 b^4}
+=
+\frac{\alpha\gamma}{\beta^2}.
+\qedhere
+\]
+\end{beispiel}
+
+Da alle Parameter im
+Lösungsansatz~\eqref{buch:elliptisch:eqn:loesungsansatz} bereits
+festgelegt sind stellt sich die Frage, woher man einen weiteren
+Parameter nehmen kann, mit dem Anfangsbedingungen erfüllen kann.
+Die Differentialgleichung~\eqref{buch:elliptisch:eqn:allgdgl} ist
+autonom, die Koeffizienten der rechten Seite der Differentialgleichung
+sind nicht von der Zeit abhängig.
+Damit ist eine zeitverschobene Funktion $x(t-t_0)$ ebenfalls eine
+Lösung der Differentialgleichung.
+Die allgmeine Lösung der
+Differentialgleichung~\eqref{buch:elliptisch:eqn:allgdgl} hat
+also die Form
+\[
+x(t) = a\operatorname{zn}(b(t-t_0)),
+\]
+wobei die Funktion $\operatorname{zn}(u,k)$ auf Grund der Vorzeichen
+von $A$, $B$ und $C$ gewählt werden müssen.
+
diff --git a/buch/chapters/110-elliptisch/elltrigo.tex b/buch/chapters/110-elliptisch/elltrigo.tex
new file mode 100644
index 0000000..d600243
--- /dev/null
+++ b/buch/chapters/110-elliptisch/elltrigo.tex
@@ -0,0 +1,1012 @@
+%
+% elltrigo.tex
+%
+% (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+
+%
+% elliptische Funktionen als Trigonometrie
+%
+\subsection{Elliptische Funktionen als Trigonometrie}
+\begin{figure}
+\centering
+\includegraphics{chapters/110-elliptisch/images/ellipse.pdf}
+\caption{Kreis und Ellipse zum Vergleich und zur Herleitung der
+elliptischen Funktionen von Jacobi als ``trigonometrische'' Funktionen
+auf einer Ellipse.
+\label{buch:elliptisch:fig:ellipse}}
+\end{figure}
+% based on Willliam Schwalm, Elliptic functions and elliptic integrals
+% https://youtu.be/DCXItCajCyo
+
+%
+% Geometrie einer Ellipse
+%
+\subsubsection{Geometrie einer Ellipse}
+Eine {\em Ellipse} ist die Menge der Punkte der Ebene, für die die Summe
+\index{Ellipse}%
+der Entfernungen von zwei festen Punkten $F_1$ und $F_2$,
+den {\em Brennpunkten}, konstant ist.
+\index{Brennpunkt}%
+In Abbildung~\ref{buch:elliptisch:fig:ellipse} eine Ellipse
+mit Brennpunkten in $F_1=(-e,0)$ und $F_2=(e,0)$ dargestellt,
+die durch die Punkte $(\pm a,0)$ und $(0,\pm b)$ auf den Achsen geht.
+Der Punkt $(a,0)$ hat die Entfernungen $a+e$ und $a-e$ von den beiden
+Brennpunkten, also die Entfernungssumme $a+e+a-e=2a$.
+Jeder andere Punkt auf der Ellipse muss ebenfalls diese Entfernungssumme
+haben, insbesondere auch der Punkt $(0,b)$.
+Seine Entfernung zu jedem Brennpunkt muss aus Symmetriegründen gleich gross,
+also $a$ sein.
+Aus dem Satz von Pythagoras liest man daher ab, dass
+\[
+b^2+e^2=a^2
+\qquad\Rightarrow\qquad
+e^2 = a^2-b^2
+\]
+sein muss.
+Die Strecke $e$ heisst auch {\em (lineare) Exzentrizität} der Ellipse.
+Das Verhältnis $\varepsilon= e/a$ heisst die {\em numerische Exzentrizität}
+der Ellipse.
+
+%
+% Die Ellipsengleichung
+%
+\subsubsection{Ellipsengleichung}
+Der Punkt $P=(x,y)$ auf der Ellipse hat die Entfernungen
+\begin{equation}
+\begin{aligned}
+\overline{PF_1}^2
+&=
+y^2 + (x+e)^2
+\\
+\overline{PF_2}^2
+&=
+y^2 + (x-e)^2
+\end{aligned}
+\label{buch:elliptisch:eqn:wurzelausdruecke}
+\end{equation}
+von den Brennpunkten, für die
+\begin{equation}
+\overline{PF_1}+\overline{PF_2}
+=
+2a
+\label{buch:elliptisch:eqn:pf1pf2a}
+\end{equation}
+gelten muss.
+Man kann nachrechnen, dass ein Punkt $P$, der die Gleichung
+\[
+\frac{x^2}{a^2} + \frac{y^2}{b^2}=1
+\]
+erfüllt, auch die Eigenschaft~\eqref{buch:elliptisch:eqn:pf1pf2a}
+erfüllt.
+Zur Vereinfachung setzen wir $l_1=\overline{PF_1}$ und $l_2=\overline{PF_2}$.
+$l_1$ und $l_2$ sind Wurzeln aus der rechten Seite von
+\eqref{buch:elliptisch:eqn:wurzelausdruecke}.
+Das Quadrat von $l_1+l_2$ ist
+\[
+l_1^2 + 2l_1l_2 + l_2^2 = 4a^2.
+\]
+Um die Wurzeln ganz zu eliminieren, bringt man das Produkt $l_1l_2$ alleine
+auf die rechte Seite und quadriert.
+Man muss also verifizieren, dass
+\[
+(l_1^2 + l_2^2 -4a^2)^2 = 4l_1^2l_2^2.
+\]
+In den entstehenden Ausdrücken muss man ausserdem $e=\sqrt{a^2-b^2}$ und
+\[
+y=b\sqrt{1-\frac{x^2}{a^2}}
+\]
+substituieren.
+Diese Rechnung führt man am einfachsten mit Hilfe eines
+Computeralgebraprogramms durch, welches obige Behauptung bestätigt.
+
+%
+% Normierung
+%
+\subsubsection{Normierung}
+Die trigonometrischen Funktionen sind definiert als Verhältnisse
+von Seiten rechtwinkliger Dreiecke.
+Dadurch, dass man den die Hypothenuse auf Länge $1$ normiert,
+kann man die Sinus- und Kosinus-Funktion als Koordinaten eines
+Punktes auf dem Einheitskreis interpretieren.
+
+Für die Koordinaten eines Punktes auf der Ellipse ist dies nicht so einfach,
+weil es nicht nur eine Ellipse gibt, sondern für jede numerische Exzentrizität
+mindestens eine mit Halbeachse $1$.
+Wir wählen die Ellipsen so, dass $a$ die grosse Halbachse ist, also $a>b$.
+Als Normierungsbedingung verwenden wir, dass $b=1$ sein soll, wie in
+Abbildung~\ref{buch:elliptisch:fig:jacobidef}.
+Dann ist $a=1/\varepsilon>1$.
+In dieser Normierung haben Punkte $(x,y)$ auf der Ellipse $y$-Koordinaten
+zwischen $-1$ und $1$ und $x$-Koordinaten zwischen $-a$ und $a$.
+
+Im Zusammenhang mit elliptischen Funktionen wird die numerische Exzentrizität
+$\varepsilon$ auch mit
+\[
+k
+=
+\varepsilon
+=
+\frac{e}{a}
+=
+\frac{\sqrt{a^2-b^2}}{a}
+=
+\frac{\sqrt{a^2-1}}{a},
+\]
+die Zahl $k$ heisst auch der {\em Modulus}.
+Man kann $a$ auch durch $k$ ausdrücken, durch Quadrieren und Umstellen
+findet man
+\[
+k^2a^2 = a^2-1
+\quad\Rightarrow\quad
+1=a^2(k^2-1)
+\quad\Rightarrow\quad
+a=\frac{1}{\sqrt{k^2-1}}.
+\]
+
+Die Gleichung der ``Einheitsellipse'' zu diesem Modulus ist
+\[
+\frac{x^2}{a^2}+y^2=1
+\qquad\text{oder}\qquad
+x^2(k^2-1) + y^2 = 1.
+\]
+
+%
+% Definition der elliptischen Funktionen
+%
+\begin{figure}
+\centering
+\includegraphics{chapters/110-elliptisch/images/jacobidef.pdf}
+\caption{Definition der elliptischen Funktionen als Trigonometrie
+an einer Ellipse mit Halbachsen $a$ und $1$.
+\label{buch:elliptisch:fig:jacobidef}}
+\end{figure}
+\subsubsection{Definition der elliptischen Funktionen}
+Die elliptischen Funktionen für einen Punkt $P$ auf der Ellipse mit Modulus $k$
+können jetzt als Verhältnisse der Koordinaten des Punktes definieren.
+Es stellt sich aber die Frage, was man als Argument verwenden soll.
+Es soll so etwas wie den Winkel $\varphi$ zwischen der $x$-Achse und dem
+Radiusvektor zum Punkt $P$
+darstellen, aber wir haben hier noch eine Wahlfreiheit, die wir später
+ausnützen möchten.
+Im Moment müssen wir die Frage noch nicht beantworten und nennen das
+noch unbestimmte Argument $u$.
+Wir kümmern uns später um die Frage, wie $u$ von $\varphi$ abhängt.
+
+Die Funktionen, die wir definieren wollen, hängen ausserdem auch
+vom Modulus ab.
+Falls der verwendete Modulus aus dem Zusammenhang klar ist, lassen
+wir das $k$-Argument weg.
+
+Die Punkte auf dem Einheitskreis haben alle den gleichen Abstand vom
+Nullpunkt, dies ist gleichzeitig die definierende Gleichung $r^2=x^2+y^2=1$
+des Kreises.
+Die Punkte auf der Ellipse erfüllen die Gleichung $x^2/a^2+y^2=1$,
+die Entfernung der Punkte $r=\sqrt{x^2+y^2}$ vom Nullpunkt variert aber.
+
+In Analogie zu den trigonometrischen Funktionen setzen wir jetzt für
+die Funktionen
+\[
+\begin{aligned}
+&\text{sinus amplitudinis:}&
+{\color{red}\operatorname{sn}(u,k)}&= y \\
+&\text{cosinus amplitudinis:}&
+{\color{blue}\operatorname{cn}(u,k)}&= \frac{x}{a} \\
+&\text{delta amplitudinis:}&
+{\color{darkgreen}\operatorname{dn}(u,k)}&=\frac{r}{a},
+\end{aligned}
+\]
+die auch in Abbildung~\ref{buch:elliptisch:fig:jacobidef}
+dargestellt sind.
+Aus der Gleichung der Ellipse folgt sofort, dass
+\[
+\operatorname{sn}(u,k)^2 + \operatorname{cn}(u,k)^2 = 1
+\]
+ist.
+Der Satz von Pythagoras kann verwendet werden, um die Entfernung zu
+berechnen, also gilt
+\begin{equation}
+r^2
+=
+a^2 \operatorname{dn}(u,k)^2
+=
+x^2 + y^2
+=
+a^2\operatorname{cn}(u,k)^2 + \operatorname{sn}(u,k)^2
+\quad
+\Rightarrow
+\quad
+a^2 \operatorname{dn}(u,k)^2
+=
+a^2\operatorname{cn}(u,k)^2 + \operatorname{sn}(u,k)^2.
+\label{buch:elliptisch:eqn:sncndnrelation}
+\end{equation}
+Ersetzt man
+$
+a^2\operatorname{cn}(u,k)^2
+=
+a^2-a^2\operatorname{sn}(u,k)^2
+$, ergibt sich
+\[
+a^2 \operatorname{dn}(u,k)^2
+=
+a^2-a^2\operatorname{sn}(u,k)^2
++
+\operatorname{sn}(u,k)^2
+\quad
+\Rightarrow
+\quad
+\operatorname{dn}(u,k)^2
++
+\frac{a^2-1}{a^2}\operatorname{sn}(u,k)^2
+=
+1,
+\]
+woraus sich die Identität
+\[
+\operatorname{dn}(u,k)^2 + k^2 \operatorname{sn}(u,k)^2 = 1
+\]
+ergibt.
+Ebenso kann man aus~\eqref{buch:elliptisch:eqn:sncndnrelation}
+die Funktion $\operatorname{cn}(u,k)$ eliminieren, was auf
+\[
+a^2\operatorname{dn}(u,k)^2
+=
+a^2\operatorname{cn}(u,k)^2
++1-\operatorname{cn}(u,k)^2
+=
+(a^2-1)\operatorname{cn}(u,k)^2
++1.
+\]
+Nach Division durch $a^2$ ergibt sich
+\begin{align*}
+\operatorname{dn}(u,k)^2
+-
+k^2\operatorname{cn}(u,k)^2
+&=
+\frac{1}{a^2}
+=
+\frac{a^2-a^2+1}{a^2}
+=
+1-k^2 =: k^{\prime 2}.
+\end{align*}
+Wir stellen die hiermit gefundenen Relationen zwischen den grundlegenden
+Jacobischen elliptischen Funktionen für später zusammen in den Formeln
+\begin{equation}
+\begin{aligned}
+\operatorname{sn}^2(u,k)
++
+\operatorname{cn}^2(u,k)
+&=
+1
+\\
+\operatorname{dn}^2(u,k) + k^2\operatorname{sn}^2(u,k)
+&=
+1
+\\
+\operatorname{dn}^2(u,k) -k^2\operatorname{cn}^2(u,k)
+&=
+k^{\prime 2}.
+\end{aligned}
+\label{buch:elliptisch:eqn:jacobi-relationen}
+\end{equation}
+zusammen.
+So wie es möglich ist, $\sin\alpha$ durch $\cos\alpha$ auszudrücken,
+ist es mit
+\eqref{buch:elliptisch:eqn:jacobi-relationen}
+jetzt auch möglich jede grundlegende elliptische Funktion durch
+jede anderen auszudrücken.
+Die Resultate sind in der Tabelle~\ref{buch:elliptisch:fig:jacobi-relationen}
+zusammengestellt.
+
+\begin{table}
+\centering
+\renewcommand{\arraystretch}{2.1}
+\begin{tabular}{|>{$\displaystyle}c<{$}|>{$\displaystyle}c<{$}>{$\displaystyle}c<{$}>{$\displaystyle}c<{$}|}
+\hline
+&\operatorname{sn}(u,k)
+&\operatorname{cn}(u,k)
+&\operatorname{dn}(u,k)\\
+\hline
+\operatorname{sn}(u,k)
+&\operatorname{sn}(u,k)
+&\sqrt{1-\operatorname{cn}^2(u,k)}
+&\frac1k\sqrt{1-\operatorname{dn}^2(u,k)}
+\\
+\operatorname{cn}(u,k)
+&\sqrt{1-\operatorname{sn}^2(u,k)}
+&\operatorname{cn}(u,k)
+&\frac{1}{k}\sqrt{\operatorname{dn}^2(u,k)-k^{\prime2}}
+\\
+\operatorname{dn}(u,k)
+&\sqrt{1-k^2\operatorname{sn}^2(u,k)}
+&\sqrt{k^{\prime2}+k^2\operatorname{cn}^2(u,k)}
+&\operatorname{dn}(u,k)
+\\
+\hline
+\end{tabular}
+\caption{Jede der Jacobischen elliptischen Funktionen lässt sich
+unter Verwendung der Relationen~\eqref{buch:elliptisch:eqn:jacobi-relationen}
+durch jede andere ausdrücken.
+\label{buch:elliptisch:fig:jacobi-relationen}}
+\end{table}
+
+%
+% Ableitungen der Jacobi-ellpitischen Funktionen
+%
+\subsubsection{Ableitung}
+Die trigonometrischen Funktionen sind deshalb so besonders nützlich
+für die Lösung von Schwingungsdifferentialgleichungen, weil sie die
+Beziehungen
+\[
+\frac{d}{d\varphi} \cos\varphi = -\sin\varphi
+\qquad\text{und}\qquad
+\frac{d}{d\varphi} \sin\varphi = \cos\varphi
+\]
+erfüllen.
+So einfach können die Beziehungen natürlich nicht sein, sonst würde sich
+durch Integration ja wieder nur die trigonometrischen Funktionen ergeben.
+Durch geschickte Wahl des Arguments $u$ kann man aber erreichen, dass
+sie ähnlich nützliche Beziehungen zwischen den Ableitungen ergeben.
+
+Gesucht ist jetzt also eine Wahl für das Argument $u$ zum Beispiel in
+Abhängigkeit von $\varphi$, dass sich einfache und nützliche
+Ableitungsformeln ergeben.
+Wir setzen daher $u(\varphi)$ voraus und beachten, dass $x$ und $y$
+ebenfalls von $\varphi$ abhängen, es ist
+$y=\sin\varphi$ und $x=a\cos\varphi$.
+Die Ableitungen von $x$ und $y$ nach $\varphi$ sind
+\begin{align*}
+\frac{dy}{d\varphi}
+&=
+\cos\varphi
+=
+\frac{1}{a} x
+=
+\operatorname{cn}(u,k)
+\\
+\frac{dx}{d\varphi}
+&=
+-a\sin\varphi
+=
+-a y
+=
+-a\operatorname{sn}(u,k).
+\end{align*}
+Daraus kann man jetzt die folgenden Ausdrücke für die Ableitungen der
+elliptischen Funktionen nach $\varphi$ ableiten:
+\begin{align*}
+\frac{d}{d\varphi} \operatorname{sn}(u,z)
+&=
+\frac{d}{d\varphi} y(\varphi)
+=
+\cos\varphi
+=
+\frac{x}{a}
+=
+\operatorname{cn}(u,k)
+&&\Rightarrow&
+\frac{d}{du}
+\operatorname{sn}(u,k)
+&=
+\operatorname{cn}(u,k) \frac{d\varphi}{du}
+\\
+\frac{d}{d\varphi} \operatorname{cn}(u,z)
+&=
+\frac{d}{d\varphi} \frac{x(\varphi)}{a}
+=
+-\sin\varphi
+=
+-\operatorname{sn}(u,k)
+&&\Rightarrow&
+\frac{d}{du}\operatorname{cn}(u,k)
+&=
+-\operatorname{sn}(u,k) \frac{d\varphi}{du}
+\\
+\frac{d}{d\varphi} \operatorname{dn}(u,z)
+&=
+\frac{1}{a}\frac{dr}{d\varphi}
+=
+\frac{1}{a}\frac{d\sqrt{x^2+y^2}}{d\varphi}
+%\\
+%&
+\rlap{$\displaystyle\mathstrut
+=
+\frac{x}{ar} \frac{dx}{d\varphi}
++
+\frac{y}{ar} \frac{dy}{d\varphi}
+%\\
+%&
+=
+\frac{x}{ar} (-a\operatorname{sn}(u,k))
++
+\frac{y}{ar} \operatorname{cn}(u,k)
+$}
+\\
+&
+\rlap{$\displaystyle\mathstrut
+=
+\frac{x}{ar}(-ay)
++
+\frac{y}{ar} \frac{x}{a}
+%\rlap{$\displaystyle
+=
+\frac{xy(-1+\frac{1}{a^2})}{r}
+%$}
+%\\
+%&
+=
+-\frac{xy(a^2-1)}{a^2r}
+$}
+\\
+&=
+-\frac{a^2-1}{ar}
+\operatorname{cn}(u,k) \operatorname{sn}(u,k)
+%\\
+%&
+\rlap{$\displaystyle\mathstrut
+=
+-k^2
+\frac{a}{r}
+\operatorname{cn}(u,k) \operatorname{sn}(u,k)
+$}
+\\
+&=
+-k^2\frac{\operatorname{cn}(u,k)\operatorname{sn}(u,k)}{\operatorname{dn}(u,k)}
+&&\Rightarrow&
+\frac{d}{du} \operatorname{dn}(u,k)
+&=
+-k^2\frac{\operatorname{cn}(u,k)
+\operatorname{sn}(u,k)}{\operatorname{dn}(u,k)}
+\frac{d\varphi}{du}.
+\end{align*}
+Die einfachsten Beziehungen ergeben sich offenbar, wenn man $u$ so
+wählt, dass
+\[
+\frac{d\varphi}{du}
+=
+\operatorname{dn}(u,k)
+=
+\frac{r}{a}.
+\]
+Damit haben wir die grundlegenden Ableitungsregeln
+
+\begin{satz}
+\label{buch:elliptisch:satz:ableitungen}
+Die Jacobischen elliptischen Funktionen haben die Ableitungen
+\begin{equation}
+\begin{aligned}
+\frac{d}{du}\operatorname{sn}(u,k)
+&=
+\phantom{-}\operatorname{cn}(u,k)\operatorname{dn}(u,k)
+\\
+\frac{d}{du}\operatorname{cn}(u,k)
+&=
+-\operatorname{sn}(u,k)\operatorname{dn}(u,k)
+\\
+\frac{d}{du}\operatorname{dn}(u,k)
+&=
+-k^2\operatorname{sn}(u,k)\operatorname{cn}(u,k).
+\end{aligned}
+\label{buch:elliptisch:eqn:ableitungsregeln}
+\end{equation}
+\end{satz}
+
+%
+% Der Grenzfall $k=1$
+%
+\subsubsection{Der Grenzwert $k\to1$}
+\begin{figure}
+\centering
+\includegraphics{chapters/110-elliptisch/images/sncnlimit.pdf}
+\caption{Grenzfälle der Jacobischen elliptischen Funktionen
+für die Werte $0$ und $1$ des Parameters $k$.
+\label{buch:elliptisch:fig:sncnlimit}}
+\end{figure}
+Für $k=1$ ist $k^{\prime2}=1-k^2=$ und es folgt aus den
+Relationen~\eqref{buch:elliptisch:eqn:jacobi-relationen}
+\[
+\operatorname{cn}^2(u,k)
+-
+k^2
+\operatorname{dn}^2(u,k)
+=
+k^{\prime2}
+=
+0
+\qquad\Rightarrow\qquad
+\operatorname{cn}^2(u,1)
+=
+\operatorname{dn}^2(u,1),
+\]
+die beiden Funktionen
+$\operatorname{cn}(u,k)$
+und
+$\operatorname{dn}(u,k)$
+fallen also zusammen.
+Die Ableitungsregeln werden dadurch vereinfacht:
+\begin{align*}
+\operatorname{sn}'(u,1)
+&=
+\operatorname{cn}(u,1)
+\operatorname{dn}(u,1)
+=
+\operatorname{cn}^2(u,1)
+=
+1-\operatorname{sn}^2(u,1)
+&&\Rightarrow& y'&=1-y^2
+\\
+\operatorname{cn}'(u,1)
+&=
+-
+\operatorname{sn}(u,1)
+\operatorname{dn}(u,1)
+=
+-
+\operatorname{sn}(u,1)\operatorname{cn}(u,1)
+&&\Rightarrow&
+\frac{z'}{z}&=(\log z)' = -y
+\end{align*}
+Die erste Differentialgleichung für $y$ lässt sich separieren, man findet
+die Lösung
+\[
+\frac{y'}{1-y^2}
+=
+1
+\quad\Rightarrow\quad
+\int \frac{dy}{1-y^2} = \int \,du
+\quad\Rightarrow\quad
+\operatorname{artanh}(y) = u
+\quad\Rightarrow\quad
+\operatorname{sn}(u,1)=\tanh u.
+\]
+Damit kann man jetzt auch $z$ berechnen:
+\begin{align*}
+(\log \operatorname{cn}(u,1))'
+&=
+\tanh u
+&&\Rightarrow&
+\log\operatorname{cn}(u,1)
+&=
+-\int\tanh u\,du
+=
+-\log\cosh u
+\\
+&
+&&\Rightarrow&
+\operatorname{cn}(u,1)
+&=
+\frac{1}{\cosh u}
+=
+\operatorname{sech}u.
+\end{align*}
+Die Grenzfunktionen sind in Abbildung~\ref{buch:elliptisch:fig:sncnlimit}
+dargestellt.
+
+%
+% Das Argument u
+%
+\subsubsection{Das Argument $u$}
+Die Gleichung
+\begin{equation}
+\frac{d\varphi}{du}
+=
+\operatorname{dn}(u,k)
+\label{buch:elliptisch:eqn:uableitung}
+\end{equation}
+ermöglicht, $\varphi$ in Abhängigkeit von $u$ zu berechnen, ohne jedoch
+die geometrische Bedeutung zu klären.
+Das beginnt bereits damit, dass der Winkel $\varphi$ nicht nicht der
+Polarwinkel des Punktes $P$ in Abbildung~\ref{buch:elliptisch:fig:jacobidef}
+ist, diesen nennen wir $\vartheta$.
+Der Zusammenhang zwischen $\varphi$ und $\vartheta$ ist
+\begin{equation}
+\frac1{a}\tan\varphi = \tan\vartheta
+\label{buch:elliptisch:eqn:phitheta}
+\end{equation}
+
+Um die geometrische Bedeutung besser zu verstehen, nehmen wir jetzt an,
+dass die Ellipse mit einem Parameter $t$ parametrisiert ist, dass also
+$\varphi(t)$, $\vartheta(t)$ und $u(t)$ Funktionen von $t$ sind.
+Die Ableitung von~\eqref{buch:elliptisch:eqn:phitheta} ist
+\[
+\frac1{a}\cdot \frac{1}{\cos^2\varphi}\cdot \dot{\varphi}
+=
+\frac{1}{\cos^2\vartheta}\cdot \dot{\vartheta}.
+\]
+Daraus kann die Ableitung von $\vartheta$ nach $\varphi$ bestimmt
+werden, sie ist
+\[
+\frac{d\vartheta}{d\varphi}
+=
+\frac{\dot{\vartheta}}{\dot{\varphi}}
+=
+\frac{1}{a}
+\cdot
+\frac{\cos^2\vartheta}{\cos^2\varphi}
+=
+\frac{1}{a}
+\cdot
+\frac{(x/r)^2}{(x/a)^2}
+=
+\frac{1}{a}\cdot
+\frac{a^2}{r^2}
+=
+\frac{1}{a}\cdot\frac{1}{\operatorname{dn}^2(u,k)}.
+\]
+Damit kann man jetzt mit Hilfe von~\eqref{buch:elliptisch:eqn:uableitung}
+Die Ableitung von $\vartheta$ nach $u$ ermitteln, sie ist
+\[
+\frac{d\vartheta}{du}
+=
+\frac{d\vartheta}{d\varphi}
+\cdot
+\frac{d\varphi}{du}
+=
+\frac{1}{a}\cdot\frac{1}{\operatorname{dn}^2(u,k)}
+\cdot
+\operatorname{dn}(u,k)
+=
+\frac{1}{a}
+\cdot
+\frac{1}{\operatorname{dn}(u,k)}
+=
+\frac{1}{a}
+\cdot\frac{a}{r}
+=
+\frac{1}{r},
+\]
+wobei wir auch die Definition der Funktion $\operatorname{dn}(u,k)$
+verwendet haben.
+
+In der Parametrisierung mit dem Parameter $t$ kann man jetzt die Ableitung
+von $u$ nach $t$ berechnen als
+\[
+\frac{du}{dt}
+=
+\frac{du}{d\vartheta}
+\frac{d\vartheta}{dt}
+=
+r
+\dot{\vartheta}.
+\]
+Darin ist $\dot{\vartheta}$ die Winkelgeschwindigkeit des Punktes um
+das Zentrum $O$ und $r$ ist die aktuelle Entfernung des Punktes $P$
+von $O$.
+$r\dot{\vartheta}$ ist also die Geschwindigkeitskomponenten des Punktes
+$P$ senkrecht auf den aktuellen Radiusvektor.
+Der Parameter $u$, der zum Punkt $P$ gehört, ist also das Integral
+\[
+u(P) = \int_0^P r\,d\vartheta.
+\]
+Für einen Kreis ist die Geschwindigkeit von $P$ immer senkrecht
+auf dem Radiusvektor und der Radius ist konstant, so dass
+$u(P)=\vartheta(P)$ ist.
+
+%
+% Die abgeleiteten elliptischen Funktionen
+%
+\begin{figure}
+\centering
+\includegraphics[width=\textwidth]{chapters/110-elliptisch/images/jacobi12.pdf}
+\caption{Die Verhältnisse der Funktionen
+$\operatorname{sn}(u,k)$,
+$\operatorname{cn}(u,k)$
+udn
+$\operatorname{dn}(u,k)$
+geben Anlass zu neun weitere Funktionen, die sich mit Hilfe
+des Strahlensatzes geometrisch interpretieren lassen.
+\label{buch:elliptisch:fig:jacobi12}}
+\end{figure}
+\begin{table}
+\centering
+\renewcommand{\arraystretch}{2.5}
+\begin{tabular}{|>{$\displaystyle}c<{$}|>{$\displaystyle}c<{$}>{$\displaystyle}c<{$}>{$\displaystyle}c<{$}>{$\displaystyle}c<{$}|}
+\hline
+\cdot &
+\frac{1}{1} &
+\frac{1}{\operatorname{sn}(u,k)} &
+\frac{1}{\operatorname{cn}(u,k)} &
+\frac{1}{\operatorname{dn}(u,k)}
+\\[5pt]
+\hline
+1&
+&%\operatorname{nn}(u,k)=\frac{1}{1} &
+\operatorname{ns}(u,k)=\frac{1}{\operatorname{sn}(u,k)} &
+\operatorname{nc}(u,k)=\frac{1}{\operatorname{cn}(u,k)} &
+\operatorname{nd}(u,k)=\frac{1}{\operatorname{dn}(u,k)}
+\\
+\operatorname{sn}(u,k) &
+\operatorname{sn}(u,k)=\frac{\operatorname{sn}(u,k)}{1}&
+&%\operatorname{ss}(u,k)=\frac{\operatorname{sn}(u,k)}{\operatorname{sn}(u,k)}&
+\operatorname{sc}(u,k)=\frac{\operatorname{sn}(u,k)}{\operatorname{cn}(u,k)}&
+\operatorname{sd}(u,k)=\frac{\operatorname{sn}(u,k)}{\operatorname{dn}(u,k)}
+\\
+\operatorname{cn}(u,k) &
+\operatorname{cn}(u,k)=\frac{\operatorname{cn}(u,k)}{1} &
+\operatorname{cs}(u,k)=\frac{\operatorname{cn}(u,k)}{\operatorname{sn}(u,k)}&
+&%\operatorname{cc}(u,k)=\frac{\operatorname{cn}(u,k)}{\operatorname{cn}(u,k)}&
+\operatorname{cd}(u,k)=\frac{\operatorname{cn}(u,k)}{\operatorname{dn}(u,k)}
+\\
+\operatorname{dn}(u,k) &
+\operatorname{dn}(u,k)=\frac{\operatorname{dn}(u,k)}{1} &
+\operatorname{ds}(u,k)=\frac{\operatorname{dn}(u,k)}{\operatorname{sn}(u,k)}&
+\operatorname{dc}(u,k)=\frac{\operatorname{dn}(u,k)}{\operatorname{cn}(u,k)}&
+%\operatorname{dd}(u,k)=\frac{\operatorname{dn}(u,k)}{\operatorname{dn}(u,k)}
+\\[5pt]
+\hline
+\end{tabular}
+\caption{Zusammenstellung der abgeleiteten Jacobischen elliptischen
+Funktionen in hinteren drei Spalten als Quotienten der grundlegenden
+Jacobischen elliptischen Funktionen.
+Die erste Spalte zum Nenner $1$ enthält die grundlegenden
+Jacobischen elliptischen Funktionen.
+\label{buch:elliptisch:table:abgeleitetjacobi}}
+\end{table}
+
+%
+% Die abgeleiteten elliptischen Funktionen
+%
+\subsubsection{Die abgeleiteten elliptischen Funktionen}
+Zusätzlich zu den grundlegenden Jacobischen elliptischen Funktioenn
+lassen sich weitere elliptische Funktionen bilden, die unglücklicherweise
+die {\em abgeleiteten elliptischen Funktionen} genannt werden.
+Ähnlich wie die trigonometrischen Funktionen $\tan\alpha$, $\cot\alpha$,
+$\sec\alpha$ und $\csc\alpha$ als Quotienten von $\sin\alpha$ und
+$\cos\alpha$ definiert sind, sind die abgeleiteten elliptischen Funktionen
+die in Tabelle~\ref{buch:elliptisch:table:abgeleitetjacobi} zusammengestellten
+Quotienten der grundlegenden Jacobischen elliptischen Funktionen.
+Die Bezeichnungskonvention ist, dass die Funktion $\operatorname{pq}(u,k)$
+ein Quotient ist, dessen Zähler durch den Buchstaben p bestimmt ist,
+der Nenner durch den Buchstaben q.
+Der Buchstabe n steht für eine $1$, die Buchstaben s, c und d stehen für
+die Anfangsbuchstaben der grundlegenden Jacobischen elliptischen
+Funktionen.
+Meint man irgend eine der Jacobischen elliptischen Funktionen, schreibt
+man manchmal auch $\operatorname{zn}(u,k)$.
+
+In Abbildung~\ref{buch:elliptisch:fig:jacobi12} sind die Quotienten auch
+geometrisch interpretiert.
+Der Wert der Funktion $\operatorname{nq}(u,k)$ ist die auf dem Strahl
+mit Polarwinkel $\varphi$ abgetragene Länge bis zu den vertikalen
+Geraden, die den verschiedenen möglichen Nennern entsprechen.
+Entsprechend ist der Wert der Funktion $\operatorname{dq}(u,k)$ die
+Länge auf dem Strahl mit Polarwinkel $\vartheta$.
+
+Die Relationen~\ref{buch:elliptisch:eqn:jacobi-relationen}
+ermöglichen, jede Funktion $\operatorname{zn}(u,k)$ durch jede
+andere auszudrücken.
+Die schiere Anzahl solcher Beziehungen macht es unmöglich, sie
+übersichtlich in einer Tabelle zusammenzustellen, daher soll hier
+nur an einem Beispiel das Vorgehen gezeigt werden:
+
+\begin{beispiel}
+Die Funktion $\operatorname{sc}(u,k)$ soll durch $\operatorname{cd}(u,k)$
+ausgedrückt werden.
+Zunächst ist
+\[
+\operatorname{sc}(u,k)
+=
+\frac{\operatorname{sn}(u,k)}{\operatorname{cn}(u,k)}
+\]
+nach Definition.
+Im Resultat sollen nur noch $\operatorname{cn}(u,k)$ und
+$\operatorname{dn}(u,k)$ vorkommen.
+Daher eliminieren wir zunächst die Funktion $\operatorname{sn}(u,k)$
+mit Hilfe von \eqref{buch:elliptisch:eqn:jacobi-relationen} und erhalten
+\begin{equation}
+\operatorname{sc}(u,k)
+=
+\frac{\sqrt{1-\operatorname{cn}^2(u,k)}}{\operatorname{cn}(u,k)}.
+\label{buch:elliptisch:eqn:allgausdruecken}
+\end{equation}
+Nun genügt es, die Funktion $\operatorname{cn}(u,k)$ durch
+$\operatorname{cd}(u,k)$ auszudrücken.
+Aus der Definition und der
+dritten Relation in \eqref{buch:elliptisch:eqn:jacobi-relationen}
+erhält man
+\begin{align*}
+\operatorname{cd}^2(u,k)
+&=
+\frac{\operatorname{cn}^2(u,k)}{\operatorname{dn}^2(u,k)}
+=
+\frac{\operatorname{cn}^2(u,k)}{k^{\prime2}+k^2\operatorname{cn}^2(u,k)}
+\\
+\Rightarrow
+\qquad
+k^{\prime 2}
+\operatorname{cd}^2(u,k)
++
+k^2\operatorname{cd}^2(u,k)\operatorname{cn}^2(u,k)
+&=
+\operatorname{cn}^2(u,k)
+\\
+\operatorname{cn}^2(u,k)
+-
+k^2\operatorname{cd}^2(u,k)\operatorname{cn}^2(u,k)
+&=
+k^{\prime 2}
+\operatorname{cd}^2(u,k)
+\\
+\operatorname{cn}^2(u,k)
+&=
+\frac{
+k^{\prime 2}
+\operatorname{cd}^2(u,k)
+}{
+1 - k^2\operatorname{cd}^2(u,k)
+}
+\end{align*}
+Für den Zähler brauchen wir $1-\operatorname{cn}^2(u,k)$, also
+\[
+1-\operatorname{cn}^2(u,k)
+=
+\frac{
+1
+-
+k^2\operatorname{cd}^2(u,k)
+-
+k^{\prime 2}
+\operatorname{cd}^2(u,k)
+}{
+1
+-
+k^2\operatorname{cd}^2(u,k)
+}
+=
+\frac{1-\operatorname{cd}^2(u,k)}{1-k^2\operatorname{cd}^2(u,k)}
+\]
+Einsetzen in~\eqref{buch:elliptisch:eqn:allgausdruecken} gibt
+\begin{align*}
+\operatorname{sc}(u,k)
+&=
+\frac{
+\sqrt{1-\operatorname{cd}^2(u,k)}
+}{\sqrt{1-k^2\operatorname{cd}^2(u,k)}}
+\cdot
+\frac{
+\sqrt{1 - k^2\operatorname{cd}^2(u,k)}
+}{
+k'
+\operatorname{cd}(u,k)
+}
+=
+\frac{
+\sqrt{1-\operatorname{cd}^2(u,k)}
+}{
+k'
+\operatorname{cd}(u,k)
+}.
+\qedhere
+\end{align*}
+\end{beispiel}
+
+\subsubsection{Ableitung der abgeleiteten elliptischen Funktionen}
+Aus den Ableitungen der grundlegenden Jacobischen elliptischen Funktionen
+können mit der Quotientenregel nun auch beliebige Ableitungen der
+abgeleiteten Jacobischen elliptischen Funktionen gefunden werden.
+Als Beispiel berechnen wir die Ableitung von $\operatorname{sc}(u,k)$.
+Sie ist
+\begin{align*}
+\frac{d}{du}
+\operatorname{sc}(u,k)
+&=
+\frac{d}{du}
+\frac{\operatorname{sn}(u,k)}{\operatorname{cn}(u,k)}
+=
+\frac{
+\operatorname{sn}'(u,k)\operatorname{cn}(u,k)
+-
+\operatorname{sn}(u,k)\operatorname{cn}'(u,k)}{
+\operatorname{cn}^2(u,k)
+}
+\\
+&=
+\frac{
+\operatorname{cn}^2(u,k)\operatorname{dn}(u,k)
++
+\operatorname{sn}^2(u,k)\operatorname{dn}(u,k)
+}{
+\operatorname{cn}^2(u,k)
+}
+=
+\frac{(
+\operatorname{sn}^2(u,k)
++
+\operatorname{cn}^2(u,k)
+)\operatorname{dn}(u,k)}{
+\operatorname{cn}^2(u,k)
+}
+\\
+&=
+\frac{1}{\operatorname{cn}(u,k)}
+\cdot
+\frac{\operatorname{dn}(u,k)}{\operatorname{cn}(u,k)}
+=
+\operatorname{nc}(u,k)
+\operatorname{dc}(u,k).
+\end{align*}
+Man beachte, dass das Quadrat der Nennerfunktion im Resultat
+der Quotientenregel zur Folge hat, dass die
+beiden Funktionen im Resultat beide den gleichen Nenner haben wie
+die Funktion, die abgeleitet wird.
+
+Mit etwas Fleiss kann man nach diesem Muster alle Ableitungen
+\begin{equation}
+%\small
+\begin{aligned}
+\operatorname{sn}'(u,k)
+&=
+\phantom{-}
+\operatorname{cn}(u,k)\,\operatorname{dn}(u,k)
+&&\qquad&
+\operatorname{ns}'(u,k)
+&=
+-
+\operatorname{cs}(u,k)\,\operatorname{ds}(u,k)
+\\
+\operatorname{cn}'(u,k)
+&=
+-
+\operatorname{sn}(u,k)\,\operatorname{dn}(u,k)
+&&&
+\operatorname{nc}'(u,k)
+&=
+\phantom{-}
+\operatorname{sc}(u,k)\,\operatorname{dc}(u,k)
+\\
+\operatorname{dn}'(u,k)
+&=
+-k^2
+\operatorname{sn}(u,k)\,\operatorname{cn}(u,k)
+&&&
+\operatorname{nd}'(u,k)
+&=
+\phantom{-}
+k^2
+\operatorname{sd}(u,k)\,\operatorname{cd}(u,k)
+\\
+\operatorname{sc}'(u,k)
+&=
+\phantom{-}
+\operatorname{dc}(u,k)\,\operatorname{nc}(u,k)
+&&&
+\operatorname{cs}'(u,k)
+&=
+-
+\operatorname{ds}(u,k)\,\operatorname{ns}(u,k)
+\\
+\operatorname{cd}'(u,k)
+&=
+-k^{\prime2}
+\operatorname{sd}(u,k)\,\operatorname{nd}(u,k)
+&&&
+\operatorname{dc}'(u,k)
+&=
+\phantom{-}
+k^{\prime2}
+\operatorname{dc}(u,k)\,\operatorname{nc}(u,k)
+\\
+\operatorname{ds}'(d,k)
+&=
+-
+\operatorname{cs}(u,k)\,\operatorname{ns}(u,k)
+&&&
+\operatorname{sd}'(d,k)
+&=
+\phantom{-}
+\operatorname{cd}(u,k)\,\operatorname{nd}(u,k)
+\end{aligned}
+\label{buch:elliptisch:eqn:alleableitungen}
+\end{equation}
+finden.
+Man beachte, dass in jeder Identität alle Funktionen den gleichen
+zweiten Buchstaben haben.
+
+\subsubsection{TODO}
+XXX algebraische Beziehungen \\
+XXX Additionstheoreme \\
+XXX Perioden
+% use https://math.stackexchange.com/questions/3013692/how-to-show-that-jacobi-sine-function-is-doubly-periodic
+
+
diff --git a/buch/chapters/110-elliptisch/mathpendel.tex b/buch/chapters/110-elliptisch/mathpendel.tex
new file mode 100644
index 0000000..d61bcf6
--- /dev/null
+++ b/buch/chapters/110-elliptisch/mathpendel.tex
@@ -0,0 +1,250 @@
+%
+% mathpendel.tex -- Das mathematische Pendel
+%
+% (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+
+\subsection{Das mathematische Pendel
+\label{buch:elliptisch:subsection:mathpendel}}
+\begin{figure}
+\centering
+\includegraphics{chapters/110-elliptisch/images/pendel.pdf}
+\caption{Mathematisches Pendel
+\label{buch:elliptisch:fig:mathpendel}}
+\end{figure}
+Das in Abbildung~\ref{buch:elliptisch:fig:mathpendel} dargestellte
+Mathematische Pendel besteht aus einem Massepunkt der Masse $m$
+im Punkt $P$,
+der über eine masselose Stange der Länge $l$ mit dem Drehpunkt $O$
+verbunden ist.
+Das Pendel bewegt sich unter dem Einfluss der Schwerebeschleunigung $g$.
+
+Das Trägheitsmoment des Massepunktes um den Drehpunkt $O$ ist
+\(
+I=ml^2
+\).
+Das Drehmoment der Schwerkraft ist
+\(M=gl\sin\vartheta\).
+Die Bewegungsgleichung wird daher
+\[
+\begin{aligned}
+\frac{d}{dt} I\dot{\vartheta}
+&=
+M
+=
+gl\sin\vartheta
+\\
+ml^2\ddot{\vartheta}
+&=
+gl\sin\vartheta
+&&\Rightarrow&
+\ddot{\vartheta}
+&=\frac{g}{l}\sin\vartheta
+\end{aligned}
+\]
+Dies ist eine nichtlineare Differentialgleichung zweiter Ordnung, die
+wir nicht unmittelbar mit den Differentialgleichungen erster Ordnung
+der elliptischen Funktionen vergleichen können.
+
+Die Differentialgleichungen erster Ordnung der elliptischen Funktionen
+enthalten das Quadrat der ersten Ableitung.
+In unserem Fall entspricht das einer Gleichung, die $\dot{\vartheta}^2$
+enthält.
+Der Energieerhaltungssatz kann uns eine solche Gleichung geben.
+Die Summe von kinetischer und potentieller Energie muss konstant sein.
+Dies führt auf
+\[
+E_{\text{kinetisch}}
++
+E_{\text{potentiell}}
+=
+\frac12I\dot{\vartheta}^2
++
+mgl(1-\cos\vartheta)
+=
+\frac12ml^2\dot{\vartheta}^2
++
+mgl(1-\cos\vartheta)
+=
+E
+\]
+Durch Auflösen nach $\dot{\vartheta}$ kann man jetzt die
+Differentialgleichung
+\[
+\dot{\vartheta}^2
+=
+-
+\frac{2g}{l}(1-\cos\vartheta)
++\frac{2E}{ml^2}
+\]
+finden.
+In erster Näherung, d.h. wenn man die rechte Seite bis zu vierten
+Potenzen in eine Taylor-Reihe in $\vartheta$ entwickelt, ist dies
+tatsächlich eine Differentialgleichung der Art, wie wir sie für
+elliptische Funktionen gefunden haben, wir möchten aber eine exakte
+Lösung konstruieren.
+
+Die maximale Energie für eine Bewegung, bei der sich das Pendel gerade
+über den höchsten Punkt hinweg zu bewegen vermag, ist
+$E=2lmg$.
+Falls $E<2mgl$ ist, erwarten wir Schwingungslösungen, bei denen
+der Winkel $\vartheta$ immer im offenen Interval $(-\pi,\pi)$
+bleibt.
+Für $E>2mgl$ wird sich das Pendel im Kreis bewegen, für sehr grosse
+Energie ist die kinetische Energie dominant, die Verlangsamung im
+höchsten Punkt wird immer weniger ausgeprägt sein.
+
+%
+% Koordinatentransformation auf elliptische Funktionen
+%
+\subsubsection{Koordinatentransformation auf elliptische Funktionen}
+Wir verwenden als neue Variable
+\[
+y = \sin\frac{\vartheta}2
+\]
+mit der Ableitung
+\[
+\dot{y}=\frac12\cos\frac{\vartheta}{2}\cdot \dot{\vartheta}.
+\]
+Man beachte, dass $y$ nicht eine Koordinate in
+Abbildung~\ref{buch:elliptisch:fig:mathpendel} ist.
+
+Aus den Halbwinkelformeln finden wir
+\[
+\cos\vartheta
+=
+1-2\sin^2 \frac{\vartheta}2
+=
+1-2y^2.
+\]
+Dies können wir zusammen mit der
+Identität $\cos^2\vartheta/2 = 1-\sin^2\vartheta/2 = 1-y^2$
+in die Energiegleichung einsetzen und erhalten
+\[
+\frac12ml^2\dot{\vartheta}^2 + mgly^2 = E
+\qquad\Rightarrow\qquad
+\frac14 \dot{\vartheta}^2 = \frac{E}{2ml^2} - \frac{g}{2l}y^2.
+\]
+Der konstante Term auf der rechten Seite ist grösser oder kleiner als
+$1$ je nachdem, ob das Pendel sich im Kreis bewegt oder nicht.
+
+Durch Multiplizieren mit $\cos^2\frac{\vartheta}{2}=1-y^2$
+erhalten wir auf der linken Seite einen Ausdruck, den wir
+als Funktion von $\dot{y}$ ausdrücken können.
+Wir erhalten
+\begin{align*}
+\frac14
+\cos^2\frac{\vartheta}2
+\cdot
+\dot{\vartheta}^2
+&=
+\frac14
+(1-y^2)
+\biggl(\frac{E}{2ml^2} -\frac{g}{2l}y^2\biggr)
+\\
+\dot{y}^2
+&=
+\frac{1}{4}
+(1-y^2)
+\biggl(\frac{E}{2ml^2} -\frac{g}{2l}y^2\biggr)
+\end{align*}
+Die letzte Gleichung hat die Form einer Differentialgleichung
+für elliptische Funktionen.
+Welche Funktion verwendet werden muss, hängt von der Grösse der
+Koeffizienten in der zweiten Klammer ab.
+Die Tabelle~\ref{buch:elliptisch:tabelle:loesungsfunktionen}
+zeigt, dass in der zweiten Klammer jeweils einer der Terme
+$1$ sein muss.
+
+%
+% Der Fall E < 2mgl
+%
+\subsubsection{Der Fall $E<2mgl$}
+\begin{figure}
+\centering
+\includegraphics[width=\textwidth]{chapters/110-elliptisch/images/jacobiplots.pdf}
+\caption{%
+Abhängigkeit der elliptischen Funktionen von $u$ für
+verschiedene Werte von $k^2=m$.
+Für $m=0$ ist $\operatorname{sn}(u,0)=\sin u$,
+$\operatorname{cn}(u,0)=\cos u$ und $\operatorname{dn}(u,0)=1$, diese
+sind in allen Plots in einer helleren Farbe eingezeichnet.
+Für kleine Werte von $m$ weichen die elliptischen Funktionen nur wenig
+von den trigonometrischen Funktionen ab,
+es ist aber klar erkennbar, dass die anharmonischen Terme in der
+Differentialgleichung die Periode mit steigender Amplitude verlängern.
+Sehr grosse Werte von $m$ nahe bei $1$ entsprechen der Situation, dass
+die Energie des Pendels fast ausreicht, dass es den höchsten Punkt
+erreichen kann, was es für $m$ macht.
+\label{buch:elliptisch:fig:jacobiplots}}
+\end{figure}
+
+
+Wir verwenden als neue Variable
+\[
+y = \sin\frac{\vartheta}2
+\]
+mit der Ableitung
+\[
+\dot{y}=\frac12\cos\frac{\vartheta}{2}\cdot \dot{\vartheta}.
+\]
+Man beachte, dass $y$ nicht eine Koordinate in
+Abbildung~\ref{buch:elliptisch:fig:mathpendel} ist.
+
+Aus den Halbwinkelformeln finden wir
+\[
+\cos\vartheta
+=
+1-2\sin^2 \frac{\vartheta}2
+=
+1-2y^2.
+\]
+Dies können wir zusammen mit der
+Identität $\cos^2\vartheta/2 = 1-\sin^2\vartheta/2 = 1-y^2$
+in die Energiegleichung einsetzen und erhalten
+\[
+\frac12ml^2\dot{\vartheta}^2 + mgly^2 = E.
+\]
+Durch Multiplizieren mit $\cos^2\frac{\vartheta}{2}=1-y^2$
+erhalten wir auf der linken Seite einen Ausdruck, den wir
+als Funktion von $\dot{y}$ ausdrücken können.
+Wir erhalten
+\begin{align*}
+\frac12ml^2
+\cos^2\frac{\vartheta}2
+\dot{\vartheta}^2
+&=
+(1-y^2)
+(E -mgly^2)
+\\
+\frac{1}{4}\cos^2\frac{\vartheta}{2}\dot{\vartheta}^2
+&=
+\frac{1}{2}
+(1-y^2)
+\biggl(\frac{E}{ml^2} -\frac{g}{l}y^2\biggr)
+\\
+\dot{y}^2
+&=
+\frac{E}{2ml^2}
+(1-y^2)\biggl(
+1-\frac{2gml}{E}y^2
+\biggr).
+\end{align*}
+Dies ist genau die Form der Differentialgleichung für die elliptische
+Funktion $\operatorname{sn}(u,k)$
+mit $k^2 = 2gml/E< 1$.
+
+%%
+%% Der Fall E > 2mgl
+%%
+%\subsection{Der Fall $E > 2mgl$}
+%In diesem Fall hat das Pendel im höchsten Punkte immer noch genügend
+%kinetische Energie, so dass es sich im Kreise dreht.
+%Indem wir die Gleichung
+
+
+%\subsection{Soliton-Lösungen der Sinus-Gordon-Gleichung}
+
+%\subsection{Nichtlineare Differentialgleichung vierter Ordnung}
+%XXX Möbius-Transformation \\
+%XXX Reduktion auf die Differentialgleichung elliptischer Funktionen