aboutsummaryrefslogtreecommitdiffstats
path: root/buch/chapters
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--buch/chapters/110-elliptisch/Makefile.inc1
-rw-r--r--buch/chapters/110-elliptisch/chapter.tex1
-rw-r--r--buch/chapters/110-elliptisch/uebungsaufgaben/4.tex80
-rw-r--r--buch/chapters/110-elliptisch/uebungsaufgaben/5.tex58
-rw-r--r--buch/chapters/references.bib9
5 files changed, 149 insertions, 0 deletions
diff --git a/buch/chapters/110-elliptisch/Makefile.inc b/buch/chapters/110-elliptisch/Makefile.inc
index ef6ea51..4e2644c 100644
--- a/buch/chapters/110-elliptisch/Makefile.inc
+++ b/buch/chapters/110-elliptisch/Makefile.inc
@@ -15,4 +15,5 @@ CHAPTERFILES += \
chapters/110-elliptisch/uebungsaufgaben/2.tex \
chapters/110-elliptisch/uebungsaufgaben/3.tex \
chapters/110-elliptisch/uebungsaufgaben/4.tex \
+ chapters/110-elliptisch/uebungsaufgaben/5.tex \
chapters/110-elliptisch/chapter.tex
diff --git a/buch/chapters/110-elliptisch/chapter.tex b/buch/chapters/110-elliptisch/chapter.tex
index d65570b..21fc986 100644
--- a/buch/chapters/110-elliptisch/chapter.tex
+++ b/buch/chapters/110-elliptisch/chapter.tex
@@ -44,5 +44,6 @@ wieder hergestellt.
\uebungsaufgabe{2}
\uebungsaufgabe{3}
\uebungsaufgabe{4}
+\uebungsaufgabe{5}
\end{uebungsaufgaben}
diff --git a/buch/chapters/110-elliptisch/uebungsaufgaben/4.tex b/buch/chapters/110-elliptisch/uebungsaufgaben/4.tex
new file mode 100644
index 0000000..b48192d
--- /dev/null
+++ b/buch/chapters/110-elliptisch/uebungsaufgaben/4.tex
@@ -0,0 +1,80 @@
+\label{buch:elliptisch:aufgabe:4}
+Es ist bekannt, dass $\operatorname{sn}(K+iK', k) = 1/k$ gilt.
+Verwenden Sie den Algorithmus von Aufgabe~\ref{buch:elliptisch:aufgabe:3},
+um dies für $k=\frac12$ nachzurechnen.
+
+\begin{loesung}
+Zunächst müssen wir mit dem Algorithmus des arithmetisch-geometrischen
+Mittels
+\[
+K(k)
+\approx
+1.685750354812596
+\qquad\text{und}\qquad
+K(k')
+\approx
+2.156515647499643
+\]
+berechnen.
+Aus $k=\frac12$ kann man jetzt die Folgen $k_n$ und $u_n$ berechnen, die innert
+$N=5$ Iterationen konvergiert.
+\end{loesung}
+
+\begin{table}
+\centering
+\renewcommand{\tabcolsep}{5pt}
+\begin{tabular}{|>{$}c<{$}|>{$}c<{$}|>{$}c<{$}|>{$}c<{$}|}
+\hline
+ n & k_n & u_n & \operatorname{sn}(u_n,k_n)%
+\mathstrut\text{\vrule height12pt depth6pt width0pt}%
+\\
+\hline
+\mathstrut\text{\vrule height12pt depth0pt width0pt}%
+ 0 & 0.500000000000000 & 1.685750354812596 + 2.156515647499643i & 2.000000000000000 \\
+ 1 & 0.071796769724491 & 1.572826493259468 + 2.012056490946491i & 3.732050807568877 \\
+ 2 & 0.001292026239995 & 1.570796982340579 + 2.009460215619685i & 3.796651109009551 \\
+ 3 & 0.000000417333300 & 1.570796326794965 + 2.009459377005374i & 3.796672364209438 \\
+ 4 & 0.000000000000044 & 1.570796326794897 + 2.009459377005286i & 3.796672364211658 \\
+ N & 0.000000000000000 & 1.570796326794897 + 2.009459377005286i & 3.796672364211658%
+\mathstrut\text{\vrule height12pt depth6pt width0pt}%
+\\
+\hline
+\end{tabular}
+\caption{Berechnung von $\operatorname{sn}(K+iK',k)=1/k$ mit Hilfe der Landen-Transformation.
+Konvergenz der Folge $k_n$ ist bei $N=5$ eintegreten.
+\label{buch:elliptisch:aufgabe:4:table}}
+\end{table}
+
+\begin{loesung}
+Sie führt auf
+\[
+u_N
+=
+\frac{\pi}2 + 2.009459377005286i
+=
+\frac{\pi}2 + bi.
+\]
+Jetzt muss der Sinus von $u_N$ berechnet werden.
+Dazu verwenden wir die komplexe Darstellung:
+\[
+\sin u_N
+=
+\frac{e^{i\frac{\pi}2-b} - e^{-i\frac{\pi}2+b}}{2i}
+=
+\frac{ie^{-b}+ie^{b}}{2i}
+=
+\cosh b
+=
+3.796672364211658.
+\]
+
+Da der Wert $\operatorname{sn}(u_N,k_N) = \sin u_N$ reell ist, wird auch
+die daraus wie in Aufgabe~\ref{buch:elliptisch:aufgabe:3}
+konstruierte Folge $\operatorname{sn}(u_n,k_n)$ reell sein.
+Die Werte von $\operatorname{cn}(u_n,k_n)$ und $\operatorname{dn}(u_n,k_n)$
+werden für die Iterationsformeln~\eqref{buch:elliptisch:aufgabe:3:gauss}
+für $\operatorname{sn}(u_n,k_n)$ nicht benötigt.
+Die Berechnung ist in Tabelle~\ref{buch:elliptisch:aufgabe:4:table}
+zusammengefasst.
+Man liest ab, dass $\operatorname{sn}(K+iK',k)=2 = 1/k$, wie erwartet.
+\end{loesung}
diff --git a/buch/chapters/110-elliptisch/uebungsaufgaben/5.tex b/buch/chapters/110-elliptisch/uebungsaufgaben/5.tex
new file mode 100644
index 0000000..4a8c15c
--- /dev/null
+++ b/buch/chapters/110-elliptisch/uebungsaufgaben/5.tex
@@ -0,0 +1,58 @@
+\label{buch:elliptisch:aufgabe:5}
+Die sehr schnelle Konvergenz des arithmetisch-geometrische Mittels
+kann auch dazu ausgenutzt werden, eine grosse Zahl von Stellen der
+Kreiszahl $\pi$ zu berechnen.
+Almkvist und Berndt haben gezeigt \cite{buch:almkvist-berndt}, dass
+\[
+\pi
+=
+\frac{4 M(1,\sqrt{2}/2)^2}{
+\displaystyle 1-\sum_{n=1}^\infty 2^{n+1}(a_n^2-b_n^2)
+}
+\]
+Verwenden Sie diese Formel, um Approximationen von $\pi$ zu berechnen.
+
+\begin{loesung}
+\begin{table}
+\centering
+\begin{tabular}{|>{$}c<{$}|>{$}c<{$}|>{$}c<{$}|>{$}c<{$}|}
+\hline
+n & a_n & b_n & \pi_n%
+\mathstrut\text{\vrule height12pt depth6pt width0pt}\\
+\hline
+\mathstrut\text{\vrule height12pt depth0pt width0pt}%
+0 & 1.000000000000000 & 0.707106781186548 &
+\mathstrut\text{\vrule height12pt depth0pt width0pt}\\
+1 & 0.853553390593274 & 0.840896415253715 & 3.\underline{1}87672642712106 \\
+2 & 0.847224902923494 & 0.847201266746892 & 3.\underline{141}680293297648 \\
+3 & 0.847213084835193 & 0.847213084752765 & 3.\underline{141592653}895451 \\
+4 & 0.847213084793979 & 0.847213084793979 & 3.\underline{141592653589}822 \\
+5 & 0.847213084793979 & 0.847213084793979 & 3.\underline{141592653589}871 \\
+\hline
+\infty & & & 3.141592653589793%
+\mathstrut\text{\vrule height12pt depth6pt width0pt}\\
+\hline
+\end{tabular}
+\caption{Approximationen der Kreiszahl $\pi$ mit Hilfe des Algorithmus
+des arithmetisch-geometrischen Mittels.
+In nur 4 Schritten werden 12 Stellen Genauigkeit erreicht.
+\label{buch:elliptisch:aufgabe:5:table}}
+\end{table}
+Wir schreiben
+\[
+\pi_n
+=
+\frac{4 a_k^2}{
+\displaystyle
+1-\sum_{k=1}^\infty 2^{k+1}(a_k^2-b_k^2)
+}
+\]
+für die Approximationen von $\pi$,
+wobei $a_k$ und $b_k$ die Folgen der arithmetischen und geometrischen
+Mittel von $1$ und $\!\sqrt{2}/2$ sind.
+Die Tabelle~\ref{buch:elliptisch:aufgabe:5:table} zeigt die Resultat.
+In nur 4 Schritten können 12 Stellen Genauigkeit erreicht werden,
+dann beginnen jedoch bereits Rundungsfehler das Resultat zu beinträchtigen.
+Für die Berechnung einer grösseren Zahl von Stellen muss daher mit
+grösserer Präzision gerechnet werden.
+\end{loesung}
diff --git a/buch/chapters/references.bib b/buch/chapters/references.bib
index fbbbf30..e8f3494 100644
--- a/buch/chapters/references.bib
+++ b/buch/chapters/references.bib
@@ -146,3 +146,12 @@
year = 2010,
ISBN = { 978-1-4419-3090-3 }
}
+
+@article{buch:almkvist-berndt,
+ author = { Gert Almkvist und Bruce Berndt },
+ title = { Gauss, Landen, Ramanjujan, the Arithmetic-Geometric Mean, Ellipses $\pi$, and the {\em Ladies Diary} },
+ journal = { The American Mathematical Monthly },
+ volume = { 95 },
+ pages = { 585--608 },
+ year = 1988
+}