aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers/0f1
diff options
context:
space:
mode:
Diffstat (limited to 'buch/papers/0f1')
-rw-r--r--buch/papers/0f1/images/konvergenzAiry.pdfbin0 -> 15785 bytes
-rw-r--r--buch/papers/0f1/images/konvergenzNegativ.pdfbin0 -> 18524 bytes
-rw-r--r--buch/papers/0f1/images/konvergenzPositiv.pdfbin0 -> 18253 bytes
-rw-r--r--buch/papers/0f1/images/stabilitaet.pdfbin0 -> 19612 bytes
-rw-r--r--buch/papers/0f1/listings/kettenbruchIterativ.c27
-rw-r--r--buch/papers/0f1/listings/kettenbruchRekursion.c53
-rw-r--r--buch/papers/0f1/listings/potenzreihe.c69
-rw-r--r--buch/papers/0f1/main.tex60
-rw-r--r--buch/papers/0f1/references.bib104
-rw-r--r--buch/papers/0f1/teil0.tex37
-rw-r--r--buch/papers/0f1/teil1.tex155
-rw-r--r--buch/papers/0f1/teil2.tex256
-rw-r--r--buch/papers/0f1/teil3.tex99
13 files changed, 640 insertions, 220 deletions
diff --git a/buch/papers/0f1/images/konvergenzAiry.pdf b/buch/papers/0f1/images/konvergenzAiry.pdf
new file mode 100644
index 0000000..206cd3a
--- /dev/null
+++ b/buch/papers/0f1/images/konvergenzAiry.pdf
Binary files differ
diff --git a/buch/papers/0f1/images/konvergenzNegativ.pdf b/buch/papers/0f1/images/konvergenzNegativ.pdf
new file mode 100644
index 0000000..07d2a44
--- /dev/null
+++ b/buch/papers/0f1/images/konvergenzNegativ.pdf
Binary files differ
diff --git a/buch/papers/0f1/images/konvergenzPositiv.pdf b/buch/papers/0f1/images/konvergenzPositiv.pdf
new file mode 100644
index 0000000..8e1e7e4
--- /dev/null
+++ b/buch/papers/0f1/images/konvergenzPositiv.pdf
Binary files differ
diff --git a/buch/papers/0f1/images/stabilitaet.pdf b/buch/papers/0f1/images/stabilitaet.pdf
new file mode 100644
index 0000000..13dea39
--- /dev/null
+++ b/buch/papers/0f1/images/stabilitaet.pdf
Binary files differ
diff --git a/buch/papers/0f1/listings/kettenbruchIterativ.c b/buch/papers/0f1/listings/kettenbruchIterativ.c
new file mode 100644
index 0000000..3caaf43
--- /dev/null
+++ b/buch/papers/0f1/listings/kettenbruchIterativ.c
@@ -0,0 +1,27 @@
+/**
+ * @brief Calculates the Hypergeometric Function 0F1(;c;z)
+ * @param c in 0F1(;c;z)
+ * @param z in 0F1(;c;z)
+ * @param k number of itertions (precision)
+ * @return Result
+ */
+static double fractionIter0f1(const double c, const double z, unsigned int k)
+{
+ //declaration
+ double a = 0.0;
+ double b = 0.0;
+ double abk = 0.0;
+ double temp = 0.0;
+
+ for (; k > 0; --k)
+ {
+ abk = z / (k * ((k - 1) + c)); //abk = ak, bk
+
+ a = k > 1 ? (1 + abk) : 1; //a0, a1
+ b = k > 1 ? -abk : abk; //b1
+
+ temp = b / (a + temp); //bk / (ak + last result)
+ }
+
+ return a + temp; //a0 + temp
+} \ No newline at end of file
diff --git a/buch/papers/0f1/listings/kettenbruchRekursion.c b/buch/papers/0f1/listings/kettenbruchRekursion.c
new file mode 100644
index 0000000..d897b8f
--- /dev/null
+++ b/buch/papers/0f1/listings/kettenbruchRekursion.c
@@ -0,0 +1,53 @@
+/**
+ * @brief Calculates the Hypergeometric Function 0F1(;b;z)
+ * @param b0 in 0F1(;b0;z)
+ * @param z in 0F1(;b0;z)
+ * @param n number of itertions (precision)
+ * @return Result
+ */
+static double fractionRekursion0f1(const double c, const double z, unsigned int n)
+{
+ //declaration
+ double a = 0.0;
+ double b = 0.0;
+ double Ak = 0.0;
+ double Bk = 0.0;
+ double Ak_1 = 0.0;
+ double Bk_1 = 0.0;
+ double Ak_2 = 0.0;
+ double Bk_2 = 0.0;
+
+ for (unsigned int k = 0; k <= n; ++k)
+ {
+ if (k == 0)
+ {
+ a = 1.0; //a0
+ //recursion fomula for A0, B0
+ Ak = a;
+ Bk = 1.0;
+ }
+ else if (k == 1)
+ {
+ a = 1.0; //a1
+ b = z/c; //b1
+ //recursion fomula for A1, B1
+ Ak = a * Ak_1 + b * 1.0;
+ Bk = a * Bk_1;
+ }
+ else
+ {
+ a = 1 + (z / (k * ((k - 1) + c)));//ak
+ b = -(z / (k * ((k - 1) + c))); //bk
+ //recursion fomula for Ak, Bk
+ Ak = a * Ak_1 + b * Ak_2;
+ Bk = a * Bk_1 + b * Bk_2;
+ }
+ //save old values
+ Ak_2 = Ak_1;
+ Bk_2 = Bk_1;
+ Ak_1 = Ak;
+ Bk_1 = Bk;
+ }
+ //approximation fraction
+ return Ak/Bk;
+}
diff --git a/buch/papers/0f1/listings/potenzreihe.c b/buch/papers/0f1/listings/potenzreihe.c
new file mode 100644
index 0000000..23fdfea
--- /dev/null
+++ b/buch/papers/0f1/listings/potenzreihe.c
@@ -0,0 +1,69 @@
+#include <math.h>
+
+/**
+ * @brief Calculates pochhammer
+ * @param (a+n-1)!
+ * @return Result
+ */
+static double pochhammer(const double x, double n)
+{
+ double temp = x;
+
+ if (n > 0)
+ {
+ while (n > 1)
+ {
+ temp *= (x + n - 1);
+ --n;
+ }
+
+ return temp;
+ }
+ else
+ {
+ return 1;
+ }
+}
+
+/**
+ * @brief Calculates the Factorial
+ * @param n!
+ * @return Result
+ */
+static double fac(int n)
+{
+ double temp = n;
+
+ if (n > 0)
+ {
+ while (n > 1)
+ {
+ --n;
+ temp *= n;
+ }
+ return temp;
+ }
+ else
+ {
+ return 1;
+ }
+}
+
+/**
+ * @brief Calculates the Hypergeometric Function 0F1(;b;z)
+ * @param c in 0F1(;c;z)
+ * @param z in 0F1(;c;z)
+ * @param n number of itertions (precision)
+ * @return Result
+ */
+static double powerseries(const double c, const double z, unsigned int n)
+{
+ double temp = 0.0;
+
+ for (unsigned int k = 0; k < n; ++k)
+ {
+ temp += pow(z, k) / (factorial(k) * pochhammer(c, k));
+ }
+
+ return temp;
+} \ No newline at end of file
diff --git a/buch/papers/0f1/main.tex b/buch/papers/0f1/main.tex
index 264ad56..0b1020f 100644
--- a/buch/papers/0f1/main.tex
+++ b/buch/papers/0f1/main.tex
@@ -1,36 +1,24 @@
-%
-% main.tex -- Paper zum Thema <0f1>
-%
-% (c) 2020 Hochschule Rapperswil
-%
-\chapter{Thema\label{chapter:0f1}}
-\lhead{Thema}
-\begin{refsection}
-\chapterauthor{Hans Muster}
-
-Ein paar Hinweise für die korrekte Formatierung des Textes
-\begin{itemize}
-\item
-Absätze werden gebildet, indem man eine Leerzeile einfügt.
-Die Verwendung von \verb+\\+ ist nur in Tabellen und Arrays gestattet.
-\item
-Die explizite Platzierung von Bildern ist nicht erlaubt, entsprechende
-Optionen werden gelöscht.
-Verwenden Sie Labels und Verweise, um auf Bilder hinzuweisen.
-\item
-Beginnen Sie jeden Satz auf einer neuen Zeile.
-Damit ermöglichen Sie dem Versionsverwaltungssysteme, Änderungen
-in verschiedenen Sätzen von verschiedenen Autoren ohne Konflikt
-anzuwenden.
-\item
-Bilden Sie auch für Formeln kurze Zeilen, einerseits der besseren
-Übersicht wegen, aber auch um GIT die Arbeit zu erleichtern.
-\end{itemize}
-
-\input{papers/0f1/teil0.tex}
-\input{papers/0f1/teil1.tex}
-\input{papers/0f1/teil2.tex}
-\input{papers/0f1/teil3.tex}
-
-\printbibliography[heading=subbibliography]
-\end{refsection}
+%
+% main.tex -- Paper zum Thema <0f1>
+%
+% (c) 2020 Hochschule Rapperswil
+%
+%
+
+
+
+\chapter{Algorithmus zur Berechnung von $\mathstrut_0F_1$\label{chapter:0f1}}
+\lhead{Algorithmus zur Berechnung von $\mathstrut_0F_1$}
+\begin{refsection}
+\chapterauthor{Fabian Dünki}
+
+
+
+
+\input{papers/0f1/teil0.tex}
+\input{papers/0f1/teil1.tex}
+\input{papers/0f1/teil2.tex}
+\input{papers/0f1/teil3.tex}
+
+\printbibliography[heading=subbibliography]
+\end{refsection}
diff --git a/buch/papers/0f1/references.bib b/buch/papers/0f1/references.bib
index fb9cd8b..47555da 100644
--- a/buch/papers/0f1/references.bib
+++ b/buch/papers/0f1/references.bib
@@ -4,32 +4,82 @@
% (c) 2020 Autor, Hochschule Rapperswil
%
-@online{0f1:bibtex,
- title = {BibTeX},
- url = {https://de.wikipedia.org/wiki/BibTeX},
- date = {2020-02-06},
- year = {2020},
- month = {2},
- day = {6}
-}
-
-@book{0f1:numerical-analysis,
- title = {Numerical Analysis},
- author = {David Kincaid and Ward Cheney},
- publisher = {American Mathematical Society},
- year = {2002},
- isbn = {978-8-8218-4788-6},
- inseries = {Pure and applied undegraduate texts},
- volume = {2}
-}
-
-@article{0f1:mendezmueller,
- author = { Tabea Méndez and Andreas Müller },
- title = { Noncommutative harmonic analysis and image registration },
- journal = { Appl. Comput. Harmon. Anal.},
- year = 2019,
- volume = 47,
- pages = {607--627},
- url = {https://doi.org/10.1016/j.acha.2017.11.004}
+@online{0f1:library-gsl,
+ title = {GNU Scientific Library},
+ url ={https://www.gnu.org/software/gsl/},
+ date = {2022-07-07},
+ year = {2022},
+ month = {7},
+ day = {7}
}
+@online{0f1:wiki-airyFunktion,
+ title = {Airy-Funktion},
+ url ={https://de.wikipedia.org/wiki/Airy-Funktion},
+ date = {2022-07-07},
+ year = {2022},
+ month = {7},
+ day = {7}
+}
+
+@online{0f1:wiki-kettenbruch,
+ title = {Kettenbruch},
+ url ={https://de.wikipedia.org/wiki/Kettenbruch},
+ date = {2022-07-07},
+ year = {2022},
+ month = {7},
+ day = {25}
+}
+
+@online{0f1:double,
+ title = {C - Data Types},
+ url ={https://www.tutorialspoint.com/cprogramming/c_data_types.htm},
+ date = {2022-07-07},
+ year = {2022},
+ month = {7},
+ day = {7}
+}
+
+@online{0f1:wolfram-0f1,
+ title = {Hypergeometric 0F1},
+ url ={https://functions.wolfram.com/webMathematica/FunctionEvaluation.jsp?name=Hypergeometric0F1},
+ date = {2022-07-07},
+ year = {2022},
+ month = {7},
+ day = {7}
+}
+
+@online{0f1:wiki-fraction,
+ title = {Gauss continued fraction},
+ url ={https://en.wikipedia.org/wiki/Gauss%27s_continued_fraction},
+ date = {2022-07-07},
+ year = {2022},
+ month = {7},
+ day = {7}
+}
+
+@online{0f1:code,
+ title = {Vollständiger C-Code},
+ url ={https://github.com/AndreasFMueller/SeminarSpezielleFunktionen/tree/master/buch/papers/0f1/listings},
+ date = {2022-07-07},
+ year = {2022},
+ month = {7},
+ day = {7}
+}
+
+@book{0f1:SeminarNumerik,
+ title = {Mathematisches Seminar Numerik},
+ author = {Andreas Müller et al},
+ publisher = {Andreas Müller},
+ year = {2022},
+}
+
+@article{0f1:kettenbrueche,
+ author = { Benjamin Bouhafs-Keller },
+ title = { Kettenbrüche },
+ journal = { Mathematisches Seminar Numerik },
+ year = 2020,
+ volume = 13,
+ pages = {363--376},
+ url = {https://github.com/AndreasFMueller/SeminarNumerik}
+}
diff --git a/buch/papers/0f1/teil0.tex b/buch/papers/0f1/teil0.tex
index 9087808..335cf92 100644
--- a/buch/papers/0f1/teil0.tex
+++ b/buch/papers/0f1/teil0.tex
@@ -1,22 +1,15 @@
-%
-% einleitung.tex -- Beispiel-File für die Einleitung
-%
-% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
-%
-\section{Teil 0\label{0f1:section:teil0}}
-\rhead{Teil 0}
-Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam
-nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam
-erat, sed diam voluptua \cite{0f1:bibtex}.
-At vero eos et accusam et justo duo dolores et ea rebum.
-Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum
-dolor sit amet.
-
-Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam
-nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam
-erat, sed diam voluptua.
-At vero eos et accusam et justo duo dolores et ea rebum. Stet clita
-kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit
-amet.
-
-
+%
+% einleitung.tex -- Einleitung
+%
+% (c) 2022 Fabian Dünki, Hochschule Rapperswil
+%
+\section{Ausgangslage\label{0f1:section:ausgangslage}}
+\rhead{Ausgangslage}
+Die hypergeometrische Funktion $\mathstrut_0F_1$ wird in vielen Funktionen als Basisfunktion benutzt,
+zum Beispiel um die Airy-Funktion zu berechnen.
+In der GNU Scientific Library \cite{0f1:library-gsl}
+ist die Funktion $\mathstrut_0F_1$ vorhanden.
+Allerdings wirft die Funktion bei negativen Übergabewerten wie zum Beispiel \verb+gsl_sf_hyperg_0F1(1, -1)+ eine Exception.
+Bei genauerer Untersuchung hat sich gezeigt, dass die Funktion je nach Betriebssystem funktioniert oder eben nicht.
+So kann die Funktion unter Windows fehlerfrei aufgerufen werden, beim Mac OS und Linux sind negative Übergabeparameter im Moment nicht möglich.
+Ziel dieser Arbeit war es zu evaluieren, ob es mit einfachen mathematischen Operationen möglich ist, die hypergeometrische Funktion $\mathstrut_0F_1$ zu implementieren.
diff --git a/buch/papers/0f1/teil1.tex b/buch/papers/0f1/teil1.tex
index aca84d2..8d00f95 100644
--- a/buch/papers/0f1/teil1.tex
+++ b/buch/papers/0f1/teil1.tex
@@ -1,55 +1,100 @@
-%
-% teil1.tex -- Beispiel-File für das Paper
-%
-% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
-%
-\section{Teil 1
-\label{0f1:section:teil1}}
-\rhead{Problemstellung}
-Sed ut perspiciatis unde omnis iste natus error sit voluptatem
-accusantium doloremque laudantium, totam rem aperiam, eaque ipsa
-quae ab illo inventore veritatis et quasi architecto beatae vitae
-dicta sunt explicabo.
-Nemo enim ipsam voluptatem quia voluptas sit aspernatur aut odit
-aut fugit, sed quia consequuntur magni dolores eos qui ratione
-voluptatem sequi nesciunt
-\begin{equation}
-\int_a^b x^2\, dx
-=
-\left[ \frac13 x^3 \right]_a^b
-=
-\frac{b^3-a^3}3.
-\label{0f1:equation1}
-\end{equation}
-Neque porro quisquam est, qui dolorem ipsum quia dolor sit amet,
-consectetur, adipisci velit, sed quia non numquam eius modi tempora
-incidunt ut labore et dolore magnam aliquam quaerat voluptatem.
-
-Ut enim ad minima veniam, quis nostrum exercitationem ullam corporis
-suscipit laboriosam, nisi ut aliquid ex ea commodi consequatur?
-Quis autem vel eum iure reprehenderit qui in ea voluptate velit
-esse quam nihil molestiae consequatur, vel illum qui dolorem eum
-fugiat quo voluptas nulla pariatur?
-
-\subsection{De finibus bonorum et malorum
-\label{0f1:subsection:finibus}}
-At vero eos et accusamus et iusto odio dignissimos ducimus qui
-blanditiis praesentium voluptatum deleniti atque corrupti quos
-dolores et quas molestias excepturi sint occaecati cupiditate non
-provident, similique sunt in culpa qui officia deserunt mollitia
-animi, id est laborum et dolorum fuga \eqref{000tempmlate:equation1}.
-
-Et harum quidem rerum facilis est et expedita distinctio
-\ref{0f1:section:loesung}.
-Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil
-impedit quo minus id quod maxime placeat facere possimus, omnis
-voluptas assumenda est, omnis dolor repellendus
-\ref{0f1:section:folgerung}.
-Temporibus autem quibusdam et aut officiis debitis aut rerum
-necessitatibus saepe eveniet ut et voluptates repudiandae sint et
-molestiae non recusandae.
-Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis
-voluptatibus maiores alias consequatur aut perferendis doloribus
-asperiores repellat.
-
-
+%
+% teil1.tex -- Mathematischer Hintergrund
+%
+% (c) 2022 Fabian Dünki, Hochschule Rapperswil
+%
+\section{Mathematischer Hintergrund
+\label{0f1:section:mathHintergrund}}
+\rhead{Mathematischer Hintergrund}
+Basierend auf den Herleitungen des Abschnittes \ref{buch:rekursion:section:hypergeometrische-funktion} werden im nachfolgenden Abschnitt nochmals die Resultate beschrieben.
+
+\subsection{Hypergeometrische Funktion
+\label{0f1:subsection:hypergeometrisch}}
+Als Grundlage der umgesetzten Algorithmen dient die hypergeometrische Funktion $\mathstrut_0F_1$. Diese ist ein Speziallfall der allgemein definierten Funktion $\mathstrut_pF_q$.
+
+\begin{definition}
+ \label{0f1:math:qFp:def}
+ Die hypergeometrische Funktion
+ $\mathstrut_pF_q$ ist definiert durch die Reihe
+ \[
+ \mathstrut_pF_q
+ \biggl(
+ \begin{matrix}
+ a_1,\dots,a_p\\
+ b_1,\dots,b_q
+ \end{matrix}
+ ;
+ x
+ \biggr)
+ =
+ \mathstrut_pF_q(a_1,\dots,a_p;b_1,\dots,b_q;x)
+ =
+ \sum_{k=0}^\infty
+ \frac{(a_1)_k\cdots(a_p)_k}{(b_1)_k\cdots(b_q)_k}\frac{x^k}{k!}.
+ \]
+\end{definition}
+
+Angewendet auf die Funktion $\mathstrut_pF_q$ ergibt sich für $\mathstrut_0F_1$:
+
+\begin{equation}
+ \label{0f1:math:0f1:eq}
+ \mathstrut_0F_1
+ \biggl(
+ \begin{matrix}
+ \text{---}
+ \\\
+ b_1
+ \end{matrix}
+ ;
+ x
+ \biggr)
+ =
+ \mathstrut_0F_1(;b_1;x)
+ =
+ \sum_{k=0}^\infty
+ \frac{x^k}{(b_1)_k \cdot k!}.
+\end{equation}
+
+
+
+
+\subsection{Airy-Funktion
+\label{0f1:subsection:airy}}
+Die Funktion $\operatorname{Ai}(x)$ und die verwandte Funktion $\operatorname{Bi}(x)$ werden als Airy-Funktion bezeichnet. Sie werden zur Lösung verschiedener physikalischer Probleme benutzt, wie zum Beispiel zur Lösung der Schrödinger-Gleichung \cite{0f1:wiki-airyFunktion}.
+
+\begin{definition}
+ \label{0f1:airy:differentialgleichung:def}
+ Die Differentialgleichung
+ $y'' - xy = 0$
+ heisst die {\em Airy-Differentialgleichung}.
+\end{definition}
+
+Die Airy-Funktion lässt sich auf verschiedene Arten darstellen.
+Als hypergeometrische Funktion berechnet, ergeben sich wie in Abschnitt \ref{buch:differentialgleichungen:section:hypergeometrisch} hergeleitet, folgende Lösungen der Airy-Differentialgleichung zu den Anfangsbedingungen $\operatorname{Ai}(0)=1$ und $\operatorname{Ai}'(0)=0$, sowie $\operatorname{Bi}(0)=0$ und $\operatorname{Bi}'(0)=1$:
+
+\begin{align}
+\label{0f1:airy:hypergeometrisch:eq}
+\operatorname{Ai}(x)
+=&
+\sum_{k=0}^\infty
+\frac{1}{(\frac23)_k} \frac{1}{k!}\biggl(\frac{x^3}{9}\biggr)^k
+=
+\mathstrut_0F_1\biggl(
+\begin{matrix}\text{---}\\\frac23\end{matrix};\frac{x^3}{9}
+\biggr).
+\\
+\operatorname{Bi}(x)
+=&
+\sum_{k=0}^\infty
+\frac{1}{(\frac43)_k} \frac{1}{k!}\biggl(\frac{x^3}{9}\biggr)^k
+=
+x\cdot\mathstrut_0F_1\biggl(
+\begin{matrix}\text{---}\\\frac43\end{matrix};
+\frac{x^3}{9}
+\biggr).
+\qedhere
+\end{align}
+
+Um die Stabilität der Algorithmen zu $\mathstrut_0F_1$ zu überprüfen, wird in dieser Arbeit die Airy Funktion $\operatorname{Ai}(x)$ benutzt.
+
+
diff --git a/buch/papers/0f1/teil2.tex b/buch/papers/0f1/teil2.tex
index 804d11b..fdcb0fc 100644
--- a/buch/papers/0f1/teil2.tex
+++ b/buch/papers/0f1/teil2.tex
@@ -1,40 +1,216 @@
-%
-% teil2.tex -- Beispiel-File für teil2
-%
-% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
-%
-\section{Teil 2
-\label{0f1:section:teil2}}
-\rhead{Teil 2}
-Sed ut perspiciatis unde omnis iste natus error sit voluptatem
-accusantium doloremque laudantium, totam rem aperiam, eaque ipsa
-quae ab illo inventore veritatis et quasi architecto beatae vitae
-dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas sit
-aspernatur aut odit aut fugit, sed quia consequuntur magni dolores
-eos qui ratione voluptatem sequi nesciunt. Neque porro quisquam
-est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci
-velit, sed quia non numquam eius modi tempora incidunt ut labore
-et dolore magnam aliquam quaerat voluptatem. Ut enim ad minima
-veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam,
-nisi ut aliquid ex ea commodi consequatur? Quis autem vel eum iure
-reprehenderit qui in ea voluptate velit esse quam nihil molestiae
-consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla
-pariatur?
-
-\subsection{De finibus bonorum et malorum
-\label{0f1:subsection:bonorum}}
-At vero eos et accusamus et iusto odio dignissimos ducimus qui
-blanditiis praesentium voluptatum deleniti atque corrupti quos
-dolores et quas molestias excepturi sint occaecati cupiditate non
-provident, similique sunt in culpa qui officia deserunt mollitia
-animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis
-est et expedita distinctio. Nam libero tempore, cum soluta nobis
-est eligendi optio cumque nihil impedit quo minus id quod maxime
-placeat facere possimus, omnis voluptas assumenda est, omnis dolor
-repellendus. Temporibus autem quibusdam et aut officiis debitis aut
-rerum necessitatibus saepe eveniet ut et voluptates repudiandae
-sint et molestiae non recusandae. Itaque earum rerum hic tenetur a
-sapiente delectus, ut aut reiciendis voluptatibus maiores alias
-consequatur aut perferendis doloribus asperiores repellat.
-
-
+%
+% teil2.tex -- Umsetzung in C Programmen
+%
+% (c) 2022 Fabian Dünki, Hochschule Rapperswil
+%
+\section{Umsetzung
+\label{0f1:section:teil2}}
+\rhead{Umsetzung}
+Zur Umsetzung wurden drei verschiedene Ansätze gewählt, die in vollständiger Form auf Github \cite{0f1:code} zu finden sind. Dabei wurde der Schwerpunkt auf die Funktionalität und eine gute Lesbarkeit des Codes gelegt.
+Die Unterprogramme wurde jeweils, wie die GNU Scientific Library, in C geschrieben. Die Zwischenresultate wurden vom Hauptprogramm in einem CSV-File gespeichert. Anschliessen wurde mit der Matplot-Library in Python die Resultate geplottet.
+
+\subsection{Potenzreihe
+\label{0f1:subsection:potenzreihe}}
+Die naheliegendste Lösung ist die Programmierung der Potenzreihe
+
+\begin{align}
+ \label{0f1:umsetzung:0f1:eq}
+ \mathstrut_0F_1(;c;z)
+ &=
+ \sum_{k=0}^\infty
+ \frac{z^k}{(c)_k \cdot k!}
+ &=
+ \frac{1}{c}
+ +\frac{z^1}{(c+1) \cdot 1}
+ + \cdots
+ + \frac{z^{20}}{c(c+1)(c+2)\cdots(c+19) \cdot 2.4 \cdot 10^{18}}.
+\end{align}
+
+\lstinputlisting[style=C,float,caption={Potenzreihe.},label={0f1:listing:potenzreihe}, firstline=59]{papers/0f1/listings/potenzreihe.c}
+
+\subsection{Kettenbruch
+\label{0f1:subsection:kettenbruch}}
+Eine weitere Variante zur Berechnung von $\mathstrut_0F_1(;c;z)$ ist die Umsetzung als Kettenbruch.
+Der Vorteil einer Umsetzung als Kettenbruch gegenüber der Potenzreihe ist die schnellere Konvergenz.
+
+\subsubsection{Grundlage}
+Ein endlicher Kettenbruch \cite{0f1:wiki-kettenbruch} ist ein Bruch der Form
+\begin{equation*}
+a_0 + \cfrac{b_1}{a_1+\cfrac{b_2}{a_2+\cfrac{b_3}{a_3+\cdots}}},
+\end{equation*}
+in welchem $a_0, a_1,\dots,a_n$ und $b_1,b_2,\dots,b_n$ ganze Zahlen sind.
+
+\subsubsection{Rekursionsbeziehungen und Kettenbrüche}
+Wenn es eine Relation analytischer Funktion $f_i(z)$ hat, dann gibt es einen Kettenbruch für das Verhältnis $\frac{f_i(z)}{f_{i-1}(z)}$ \cite{0f1:wiki-fraction}.
+Nimmt man die Gleichung
+\begin{equation*}
+ f_{i-1} - f_i = k_i z f_{i+1},
+\end{equation*}
+wo $f_i$ analytische Funktionen sind und $i > 0$ ist, sowie $k_i$ konstant.
+Ergibt sich der Zusammenhang
+\begin{equation*}
+ \cfrac{f_i}{f_{i-1}} = \cfrac{1}{1+k_iz\cfrac{f_{i+1}}{f_i}}.
+\end{equation*}
+Geht man einen Schritt weiter und nimmt für $g_i = \frac{f_i}{f_{i-1}}$ an, kommt man zur Formel
+\begin{equation*}
+ g_i = \cfrac{1}{1+k_izg_{i+1}}.
+\end{equation*}
+Setzt man dies nun für $g_1$ in den Bruch ein, ergibt sich
+\begin{equation*}
+ g_1 = \cfrac{f_1}{f_0} = \cfrac{1}{1+k_izg_2} = \cfrac{1}{1+\cfrac{k_1z}{1+k_2zg_3}} = \cdots
+\end{equation*}
+Repetiert man dies unendlich, erhält man einen Kettenbruch in der Form:
+\begin{equation}
+ \label{0f1:math:rekursion:eq}
+ \cfrac{f_1}{f_0} = \cfrac{1}{1+\cfrac{k_1z}{1+\cfrac{k_2z}{1+\cfrac{k_3z}{\cdots}}}}.
+\end{equation}
+
+\subsubsection{Rekursion für $\mathstrut_0F_1$}
+Angewendet auf die Potenzreihe
+\begin{equation}
+ \label{0f1:math:potenzreihe:0f1:eq}
+ \mathstrut_0F_1(;c;z) = 1 + \frac{z}{c\cdot1!} + \frac{z^2}{c(c+1)\cdot2!} + \frac{z^3}{c(c+1)(c+2)\cdot3!} + \cdots
+\end{equation}
+kann durch Substitution bewiesen werden, dass
+\begin{equation*}
+ \mathstrut_0F_1(;c-1;z) - \mathstrut_0F_1(;c;z) = \frac{z}{c(c-1)} \cdot \mathstrut_0F_1(;c+1;z)
+\end{equation*}
+eine Relation dazu ist.
+Wenn man für $f_i$ und $k_i$ die Annahme
+\begin{align*}
+ f_i =& \mathstrut_0F_1(;c+i;z)\\
+ k_i =& \frac{1}{(c+i)(c+i-1)}
+\end{align*}
+trifft und in die Formel \eqref{0f1:math:rekursion:eq} einsetzt, erhält man:
+\begin{equation*}
+ \cfrac{\mathstrut_0F_1(;c+1;z)}{\mathstrut_0F_1(;c;z)} = \cfrac{1}{1+\cfrac{\cfrac{z}{c(c+1)}}{1+\cfrac{\cfrac{z}{(c+1)(c+2)}}{1+\cfrac{\cfrac{z}{(c+2)(c+3)}}{\cdots}}}}.
+\end{equation*}
+
+\subsubsection{Algorithmus}
+Da mit obigen Formeln nur ein Verhältnis zwischen $ \frac{\mathstrut_0F_1(;c+1;z)}{\mathstrut_0F_1(;c;z)}$ berechnet wurde, braucht es weitere Relationen um $\mathstrut_0F_1(;c;z)$ zu erhalten.
+So ergeben ähnliche Relationen nach Wolfram Alpha \cite{0f1:wolfram-0f1} den Kettenbruch
+\begin{equation}
+ \label{0f1:math:kettenbruch:0f1:eq}
+ \mathstrut_0F_1(;c;z) = 1 + \cfrac{\cfrac{z}{c}}{1+\cfrac{-\cfrac{z}{2(c+1)}}{1+\cfrac{z}{2(c+1)}+\cfrac{-\cfrac{z}{3(c+2)}}{1+\cfrac{z}{5(c+4)} + \cdots}}},
+\end{equation}
+der als Code (Listing \ref{0f1:listing:kettenbruchIterativ}) umgesetzt wurde.
+
+
+\lstinputlisting[style=C,float,caption={Iterativ umgesetzter Kettenbruch.},label={0f1:listing:kettenbruchIterativ}, firstline=8]{papers/0f1/listings/kettenbruchIterativ.c}
+
+\subsection{Rekursionsformel
+\label{0f1:subsection:rekursionsformel}}
+Wesentlich stabiler zur Berechnung eines Kettenbruches ist die Rekursionsformel. Nachfolgend wird die verkürzte Herleitung vom Kettenbruch zur Rekursionsformel aufgezeigt. Eine vollständige Schritt für Schritt Herleitung ist im Seminarbuch Numerik, im Kapitel Kettenbrüche \cite{0f1:kettenbrueche} zu finden.
+
+\subsubsection{Herleitung}
+Ein Näherungsbruch in der Form
+\begin{align*}
+ \cfrac{A_k}{B_k} = a_k + \cfrac{b_{k + 1}}{a_{k + 1} + \cfrac{p}{q}}
+\end{align*}
+lässt sich zu
+\begin{align*}
+ \cfrac{A_k}{B_k} = \cfrac{b_{k+1}}{a_{k+1} + \cfrac{p}{q}} = \frac{b_{k+1} \cdot q}{a_{k+1} \cdot q + p}
+\end{align*}
+umformen.
+Dies lässt sich auch durch die Matrizenschreibweise
+\begin{equation*}
+ \begin{pmatrix}
+ A_k\\
+ B_k
+ \end{pmatrix}
+ = \begin{pmatrix}
+ b_{k+1} \cdot q\\
+ a_{k+1} \cdot q + p
+ \end{pmatrix}
+ =\begin{pmatrix}
+ 0& b_{k+1}\\
+ 1& a_{k+1}
+ \end{pmatrix}
+ \begin{pmatrix}
+ p \\
+ q
+ \end{pmatrix}.
+ %\label{0f1:math:rekursionsformel:herleitung}
+\end{equation*}
+ausdrücken.
+Wendet man dies nun auf den Kettenbruch in der Form
+\begin{equation*}
+ \frac{A_k}{B_k} = a_0 + \cfrac{b_1}{a_1+\cfrac{b_2}{a_2+\cfrac{\cdots}{\cdots+\cfrac{b_{k-1}}{a_{k-1} + \cfrac{b_k}{a_k}}}}}
+\end{equation*}
+an, ergibt sich die Matrixdarstellungen:
+
+\begin{align*}
+ \begin{pmatrix}
+ A_k\\
+ B_k
+ \end{pmatrix}
+ &=
+ \begin{pmatrix}
+ 1& a_0\\
+ 0& 1
+ \end{pmatrix}
+ \begin{pmatrix}
+ 0& b_1\\
+ 1& a_1
+ \end{pmatrix}
+ \cdots
+ \begin{pmatrix}
+ 0& b_{k-1}\\
+ 1& a_{k-1}
+ \end{pmatrix}
+ \begin{pmatrix}
+ b_k\\
+ a_k
+ \end{pmatrix}.
+\end{align*}
+Nach vollständiger Induktion ergibt sich für den Schritt $k$, die Matrix
+\begin{equation}
+ \label{0f1:math:matrix:ende:eq}
+ \begin{pmatrix}
+ A_{k}\\
+ B_{k}
+ \end{pmatrix}
+ =
+ \begin{pmatrix}
+ A_{k-2}& A_{k-1}\\
+ B_{k-2}& B_{k-1}
+ \end{pmatrix}
+ \begin{pmatrix}
+ b_k\\
+ a_k
+ \end{pmatrix}.
+\end{equation}
+Und schlussendlich kann der Näherungsbruch
+\[
+\frac{A_k}{B_k}
+\]
+berechnet werden.
+
+
+\subsubsection{Algorithmus}
+Die Berechnung von $A_k, B_k$ gemäss \eqref{0f1:math:matrix:ende:eq} kann man auch ohne die Matrizenschreibweise \cite{0f1:kettenbrueche} aufschreiben:
+\begin{itemize}
+\item Startbedingungen:
+\begin{align*}
+A_{-1} &= 0 & A_0 &= a_0 \\
+B_{-1} &= 1 & B_0 &= 1
+\end{align*}
+\item Schritt $k\to k+1$:
+\[
+\begin{aligned}
+\label{0f1:math:loesung:eq}
+k &\rightarrow k + 1:
+&
+A_{k+1} &= A_{k-1} \cdot b_k + A_k \cdot a_k \\
+&&
+B_{k+1} &= B_{k-1} \cdot b_k + B_k \cdot a_k
+\end{aligned}
+\]
+\item
+Näherungsbruch: \qquad$\displaystyle\frac{A_k}{B_k}$.
+\end{itemize}
+
+Ein grosser Vorteil dieser Umsetzung als Rekursionsformel \eqref{0f1:listing:kettenbruchRekursion} ist, dass im Vergleich zum Code (Listing \ref{0f1:listing:kettenbruchIterativ}) eine Division gespart werden kann und somit weniger Rundungsfehler entstehen können.
+
+%Code
+\lstinputlisting[style=C,float,caption={Rekursionsformel für Kettenbruch.},label={0f1:listing:kettenbruchRekursion}, firstline=8]{papers/0f1/listings/kettenbruchRekursion.c} \ No newline at end of file
diff --git a/buch/papers/0f1/teil3.tex b/buch/papers/0f1/teil3.tex
index 25472cb..147668a 100644
--- a/buch/papers/0f1/teil3.tex
+++ b/buch/papers/0f1/teil3.tex
@@ -1,40 +1,59 @@
-%
-% teil3.tex -- Beispiel-File für Teil 3
-%
-% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
-%
-\section{Teil 3
-\label{0f1:section:teil3}}
-\rhead{Teil 3}
-Sed ut perspiciatis unde omnis iste natus error sit voluptatem
-accusantium doloremque laudantium, totam rem aperiam, eaque ipsa
-quae ab illo inventore veritatis et quasi architecto beatae vitae
-dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas sit
-aspernatur aut odit aut fugit, sed quia consequuntur magni dolores
-eos qui ratione voluptatem sequi nesciunt. Neque porro quisquam
-est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci
-velit, sed quia non numquam eius modi tempora incidunt ut labore
-et dolore magnam aliquam quaerat voluptatem. Ut enim ad minima
-veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam,
-nisi ut aliquid ex ea commodi consequatur? Quis autem vel eum iure
-reprehenderit qui in ea voluptate velit esse quam nihil molestiae
-consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla
-pariatur?
-
-\subsection{De finibus bonorum et malorum
-\label{0f1:subsection:malorum}}
-At vero eos et accusamus et iusto odio dignissimos ducimus qui
-blanditiis praesentium voluptatum deleniti atque corrupti quos
-dolores et quas molestias excepturi sint occaecati cupiditate non
-provident, similique sunt in culpa qui officia deserunt mollitia
-animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis
-est et expedita distinctio. Nam libero tempore, cum soluta nobis
-est eligendi optio cumque nihil impedit quo minus id quod maxime
-placeat facere possimus, omnis voluptas assumenda est, omnis dolor
-repellendus. Temporibus autem quibusdam et aut officiis debitis aut
-rerum necessitatibus saepe eveniet ut et voluptates repudiandae
-sint et molestiae non recusandae. Itaque earum rerum hic tenetur a
-sapiente delectus, ut aut reiciendis voluptatibus maiores alias
-consequatur aut perferendis doloribus asperiores repellat.
-
-
+%
+% teil3.tex -- Resultate und Ausblick
+%
+% (c) 2022 Fabian Dünki, Hochschule Rapperswil
+%
+\section{Auswertung
+\label{0f1:section:teil3}}
+\rhead{Resultate}
+Im Verlauf dieser Arbeit hat sich gezeigt,
+das einen einfachen mathematischen Algorithmus zu implementieren gar nicht so einfach ist.
+So haben alle drei umgesetzten Ansätze Probleme mit grossen negativen $z$ in der Funktion $\mathstrut_0F_1(;c;z)$.
+Ebenso kann festgestellt werden, dass je grösser der Wert $z$ in $\mathstrut_0F_1(;c;z)$ wird, desto mehr weichen die berechneten Resultate von den Erwarteten \cite{0f1:wolfram-0f1} ab.
+
+\subsection{Konvergenz
+\label{0f1:subsection:konvergenz}}
+Es zeigt sich in Abbildung \ref{0f1:ausblick:plot:airy:konvergenz}, dass nach drei Iterationen ($k = 3$) die Funktionen genaue Resultate im Bereich von $-2$ bis $2$ liefert. Ebenso kann festgestellt werden, dass der Kettenbruch schneller konvergiert und im positiven Bereich mit der Referenzfunktion $\operatorname{Ai}(x)$ übereinstimmt. Da die Rekursionsformel eine Abwandlung des Kettenbruches ist, verhalten sich die Funktionen in diesem Fall gleich.
+
+Erst wenn mehrerer Iterationen gerechnet werden, ist wie in Abbildung \ref{0f1:ausblick:plot:konvergenz:positiv} dargestellt, der Kettenbruch den anderen zwei Algorithmen bezüglich Konvergenz überlegen. Bei der Rekursionsformel muss beachtet werden, dass sie zwar erst nach 35 Approximationen gänzlich konvergiert, allerdings nach 27 Iterationen sich nicht mehr gross verändert.
+
+Ist $z$ negativ, wie in Abbildung \ref{0f1:ausblick:plot:konvergenz:negativ}, führt dies aufgrund des Vorzeichens zu alternierenden Termen. So steigt bei allen Algorithmen zuerst die Differenz zum erwarteten Endwert. Erst nach genügend Iterationen sind die Terme so klein, dass sie das Endresultat nicht mehr signifikant beeinflussen. Während die Potenzreihe zusammen mit dem Kettenbruch nach 34 Approximationen konvergiert, braucht die Rekursionsformel noch zwei Iterationen mehr.
+
+
+\subsection{Stabilität
+\label{0f1:subsection:Stabilitaet}}
+Verändert sich der Wert von $z$ in $\mathstrut_0F_1(;c;z)$ gegen grössere positive Werte, wie zum Beispiel $c = 800$ liefert die Kettenbruch-Funktion (Listing \ref{0f1:listing:kettenbruchIterativ}) \verb+inf+ zurück. Dies könnte durch ein Abbruchkriterien abgefangen werden. Allerdings würde das bei grossen Werten zulasten der Genauigkeit gehen. Trotzdem könnte, je nach Anwendung, auf ein paar Nachkommastellen verzichtet werden.
+
+Wohingegen die Potenzreihe (Listing \ref{0f1:listing:potenzreihe}) das Problem hat, dass je mehr Terme berechnet werden, desto schneller wächst die Fakultät im Nenner. Dies führt zu einer Bereichsüberschreitung des \verb+double+ Bereiches \cite{0f1:double}, der spätesten ab $k=167$ eintritt. Schlussendlich gibt das Unterprogramm das Resultat \verb+-nan(ind)+ zurück.
+Die Rekursionformel \eqref{0f1:listing:kettenbruchRekursion} liefert für sehr grosse positive Werte die genausten Ergebnisse, verglichen mit der GNU Scientific Library. Wie schon vermutet ist die Rekursionsformel, im positivem Bereich, der stabilste Algorithmus. Um die Konvergenz zu gewährleisten, muss wie in Abbildung \ref{0f1:ausblick:plot:konvergenz:positiv} dargestellt, die Iterationstiefe $k$ genug gross gewählt werden.
+
+Im negativem Bereich sind alle gewählten und umgesetzten Ansätze instabil. Grund dafür ist die Potenz von $z$, was zum Phänomen der Auslöschung \cite{0f1:SeminarNumerik} führt. Schön zu beobachten ist dies in der Abbildung \ref{0f1:ausblick:plot:airy:stabilitaet} mit der Airy-Funktion als Test. So sind nach Abbildung \ref{0f1:ausblick:plot:airy:stabilitaet} die Potenzreihe, der Kettenbruch, als auch die Rekursionsformel, bis ungefähr $\frac{-15^3}{9}$ stabil. Dies macht auch Sinn, da alle Algorithmen auf der gleichen mathematischen Grundlage basieren. Danach verhält sich allerdings die Instabilität unterschiedlich. Diese programmiertechnischen Unterschiede sind auch in Abbildung \ref{0f1:ausblick:plot:konvergenz:positiv} und \ref{0f1:ausblick:plot:konvergenz:negativ} festzustellen.
+
+\begin{figure}
+ \centering
+ \includegraphics[width=0.8\textwidth]{papers/0f1/images/konvergenzAiry.pdf}
+ \caption{Konvergenz nach drei Iterationen, dargestellt anhand der Airy Funktion zu den Anfangsbedingungen $\operatorname{Ai}(0)=1$ und $\operatorname{Ai}'(0)=0$.
+ \label{0f1:ausblick:plot:airy:konvergenz}}
+\end{figure}
+
+\begin{figure}
+ \centering
+ \includegraphics[width=0.8\textwidth]{papers/0f1/images/konvergenzPositiv.pdf}
+ \caption{Konvergenz mit positivem $z$; Logarithmisch dargestellter absoluter Fehler.
+ \label{0f1:ausblick:plot:konvergenz:positiv}}
+\end{figure}
+
+\begin{figure}
+ \centering
+ \includegraphics[width=0.8\textwidth]{papers/0f1/images/konvergenzNegativ.pdf}
+ \caption{Konvergenz mit negativem $z$; Logarithmisch dargestellter absoluter Fehler.
+ \label{0f1:ausblick:plot:konvergenz:negativ}}
+\end{figure}
+
+\begin{figure}
+ \centering
+ \includegraphics[width=1\textwidth]{papers/0f1/images/stabilitaet.pdf}
+ \caption{Stabilität der drei Algorithmen verglichen mit der Referenz Funktion $\operatorname{Ai}(x)$.
+ \label{0f1:ausblick:plot:airy:stabilitaet}}
+\end{figure}
+