diff options
Diffstat (limited to 'buch/papers/dreieck/teil1.tex')
-rw-r--r-- | buch/papers/dreieck/teil1.tex | 411 |
1 files changed, 1 insertions, 410 deletions
diff --git a/buch/papers/dreieck/teil1.tex b/buch/papers/dreieck/teil1.tex index 5e7090b..4abe2e1 100644 --- a/buch/papers/dreieck/teil1.tex +++ b/buch/papers/dreieck/teil1.tex @@ -5,416 +5,7 @@ % \section{Ordnungsstatistik und Beta-Funktion \label{dreieck:section:ordnungsstatistik}} -\rhead{Ordnungsstatistik und Beta-Funktion} -In diesem Abschnitt ist $X$ eine Zufallsvariable mit der Verteilungsfunktion -$F_X(x)$, und $X_i$, $1\le i\le n$ sei ein Stichprobe von unabhängigen -Zufallsvariablen, die wie $X$ verteilt sind. -Ziel ist, die Verteilungsfunktion und die Wahrscheinlichkeitsdichte -des grössten, zweitgrössten, $k$-t-grössten Wertes in der Stichprobe -zu finden. -Wir schreiben $[n]=\{1,\dots,n\}$ für die Menge der natürlichen -Zahlen von zwischen $1$ und $n$. +\rhead{} -\subsection{Verteilung von $\operatorname{max}(X_1,\dots,X_n)$ und -$\operatorname{min}(X_1,\dots,X_n)$ -\label{dreieck:subsection:minmax}} -Die Verteilungsfunktion von $\operatorname{max}(X_1,\dots,X_n)$ hat -den Wert -\begin{align*} -F_{\operatorname{max}(X_1,\dots,X_n)}(x) -&= -P(\operatorname{max}(X_1,\dots,X_n) \le x) -\\ -&= -P(X_1\le x\wedge \dots \wedge X_n\le x) -\\ -&= -P(X_1\le x) \cdot \ldots \cdot P(X_n\le x) -\\ -&= -P(X\le x)^n -= -F_X(x)^n. -\end{align*} -Für die Gleichverteilung ist -\[ -F_{\text{equi}}(x) -= -\begin{cases} -0&\qquad x< 0 -\\ -x&\qquad 0\le x\le 1 -\\ -1&\qquad 1<x. -\end{cases} -\] -In diesem Fall ist Verteilung des Maximums -\[ -F_{\operatorname{max}(X_1,\dots,X_n)}(x) -= -\begin{cases} -0&\qquad x<0\\ -x^n&\qquad 0\le x\le 1\\ -1&\qquad 1 < x. -\end{cases} -\] -Mit der zugehörigen Wahrscheinlichkeitsdichte -\[ -\varphi_{\operatorname{max}(X_1,\dots,X_n)} -= -\frac{d}{dx} -F_{\operatorname{max}(X_1,\dots,X_n)}(x) -= -\begin{cases} -nx^{n-1}&\qquad 0\le x\le 1\\ -0 &\qquad \text{sonst} -\end{cases} -\] -kann man zum Beispiel den Erwartungswert -\[ -E(\operatorname{max}(X_1,\dots,X_n)) -= -\int_{-\infty}^\infty -x -\varphi_{\operatorname{X_1,\dots,X_n}}(x) -\,dx -= -\int_{0}^1 x\cdot nx^{n-1}\,dt -= -\biggl[ -\frac{n}{n+1}x^{n+1} -\biggr]_0^1 -= -\frac{n}{n+1} -\] -berechnen. - -Ganz analog kann man auch die Verteilungsfunktion von -$\operatorname{min}(X_1,\dots,X_n)$ bestimmen. -Sie ist -\begin{align*} -F_{\operatorname{min}(X_1,\dots,X_n)}(x) -&= -P(x\le X_1\vee \dots \vee x\le X_n) -\\ -&= -1- -P(x > X_1\wedge \dots \wedge x > X_n) -\\ -&= -1- -(1-P(x\le X_1)) \cdot\ldots\cdot (1-P(x\le X_n)) -\\ -&= -1-(1-F_X(x))^n, -\end{align*} -Im Speziellen für im Intervall $[0,1]$ gleichverteilte $X_i$ ist die -Verteilungsfunktion des Minimums -\[ -F_{\operatorname{min}(X_1,\dots,X_n)}(x) -= -\begin{cases} -0 &\qquad x<0 \\ -1-(1-x)^n&\qquad 0\le x\le 1\\ -1 &\qquad 1 < x -\end{cases} -\] -mit Wahrscheinlichkeitsdichte -\[ -\varphi_{\operatorname{min}(X_1,\dots,X_n)} -= -\frac{d}{dx} -F_{\operatorname{min}(X_1,\dots,X_n)} -= -\begin{cases} -n(1-x)^{n-1}&\qquad 0\le x\le 1\\ -0 &\qquad \text{sonst} -\end{cases} -\] -und Erwartungswert -\begin{align*} -E(\operatorname{min}(X_1,\dots,X_n) -&= -\int_{-\infty}^\infty x\varphi_{\operatorname{min}(X_1,\dots,X_n)}(x)\,dx -= -\int_0^1 x\cdot n(1-x)^{n-1}\,dx -\\ -&= -\bigl[ -x(1-x)^n \bigr]_0^1 + \int_0^1 (1-x)^n\,dx -= -\biggl[ -- -\frac{1}{n+1} -(1-x)^{n+1} -\biggr]_0^1 -= -\frac{1}{n+1}. -\end{align*} -Es ergibt sich daraus als natürlich Verallgemeinerung die Frage nach -der Verteilung des zweitegrössten oder zweitkleinsten Wertes unter den -Werten $X_i$. - -\subsection{Der $k$-t-grösste Wert} -Sie wieder $X_i$ eine Stichprobe von $n$ unabhängigen wie $X$ verteilten -Zufallsvariablen. -Diese werden jetzt der Grösse nach sortiert, die sortierten Werte werden -mit -\[ -X_{1:n} \le X_{2:n} \le \dots \le X_{(n-1):n} \le X_{n:n} -\] -bezeichnet. -Die Grössen $X_{k:n}$ sind Zufallsvariablen, sie heissen die $k$-ten -Ordnungsstatistiken. -Die in Abschnitt~\ref{dreieck:subsection:minmax} behandelten Zufallsvariablen -$\operatorname{min}(X_1,\dots,X_n)$ -und -$\operatorname{max}(X_1,\dots,X_n)$ -sind die Fälle -\begin{align*} -X_{1:n} &= \operatorname{min}(X_1,\dots,X_n) \\ -X_{n:n} &= \operatorname{max}(X_1,\dots,X_n). -\end{align*} - -Um den Wert der Verteilungsfunktion von $X_{k:n}$ zu berechnen, müssen wir -die Wahrscheinlichkeit bestimmen, dass $k$ der $n$ Werte $X_i$ $x$ nicht -übersteigen. -Der $k$-te Wert $X_{k:n}$ übersteigt genau dann $x$ nicht, wenn -mindestens $k$ der Zufallswerte $X_i$ $x$ nicht übersteigen, also -\[ -P(X_{k:n} \le x) -= -P\left( -|\{i\in[n]\,|\, X_i\le x\}| \ge k -\right). -\] - -Das Ereignis $\{X_i\le x\}$ ist eine Bernoulli-Experiment, welches mit -Wahrscheinlichkeit $F_X(x)$ eintritt. -Die Anzahl der Zufallsvariablen $X_i$, die $x$ übertreffen, ist also -Binomialverteilt mit $p=F_X(x)$. -Damit haben wir gefunden, dass mit Wahrscheinlichkeit -\begin{equation} -F_{X_{k:n}}(x) -= -P(X_{k:n}\le x) -= -\sum_{i=k}^n \binom{n}{i}F_X(x)^i (1-F_X(x))^{n-i} -\label{dreieck:eqn:FXkn} -\end{equation} -mindestens $k$ der Zufallsvariablen den Wert $x$ überschreiten. - -\subsubsection{Wahrscheinlichkeitsdichte der Ordnungsstatistik} -Die Wahrscheinlichkeitsdichte der Ordnungsstatistik kann durch Ableitung -von \eqref{dreieck:eqn:FXkn} gefunden, werden, sie ist -\begin{align*} -\varphi_{X_{k:n}}(x) -&= -\frac{d}{dx} -F_{X_{k:n}}(x) -\\ -&= -\sum_{i=k}^n -\binom{n}{i} -\bigl( -iF_X(x)^{i-1}\varphi_X(x) (1-F_X(x))^{n-i} -- -F_X(x)^k -(n-i) -(1-F_X(x))^{n-i-1} -\varphi_X(x) -\bigr) -\\ -&= -\sum_{i=k}^n -\binom{n}{i} -\varphi_X(x) -F_X(x)^{i-1}(1-F_X(x))^{n-i-1} -\bigl( -iF_X(x)-(n-i)(1-F_X(x)) -\bigr) -\\ -&= -\varphi_X(x) -\biggl( -\sum_{i=k}^n i\binom{n}{i} F_X(x)^{i-1}(1-F_X(x))^{n-i} -- -\sum_{j=k}^n (n-j)\binom{n}{j} F_X(x)^{j}(1-F_X(x))^{n-j-1} -\biggr) -\\ -&= -\varphi_X(x) -\biggl( -\sum_{i=k}^n i\binom{n}{i} F_X(x)^{i-1}(1-F_X(x))^{n-i} -- -\sum_{i=k+1}^{n+1} (n-i+1)\binom{n}{i-1} F_X(x)^{i-1}(1-F_X(x))^{n-i} -\biggr) -\\ -&= -\varphi_X(x) -\biggl( -k\binom{n}{k}F_X(x)^{k-1}(1-F_X(x))^{n-k} -+ -\sum_{i=k+1}^{n+1} -\left( -i\binom{n}{i} -- -(n-i+1)\binom{n}{i-1} -\right) -F_X(x)^{i-1}(1-F_X(x))^{n-i} -\biggr) -\end{align*} -Mit den wohlbekannten Identitäten für die Binomialkoeffizienten -\begin{align*} -i\binom{n}{i} -- -(n-i+1)\binom{n}{i-1} -&= -n\binom{n-1}{i-1} -- -n -\binom{n-1}{i-1} -= -0 -\end{align*} -folgt jetzt -\begin{align*} -\varphi_{X_{k:n}}(x) -&= -\varphi_X(x)k\binom{n}{k} F_X(x)^{k-1}(1-F_X(x))^{n-k}(x). -\intertext{Im Speziellen für gleichverteilte Zufallsvariablen $X_i$ ist -} -\varphi_{X_{k:n}}(x) -&= -k\binom{n}{k} x^{k-1}(1-x)^{n-k}. -\end{align*} -Dies ist die Wahrscheinlichkeitsdichte einer Betaverteilung -\[ -\beta(k,n-k+1)(x) -= -\frac{1}{B(k,n-k+1)} -x^{k-1}(1-x)^{n-k}. -\] -Tatsächlich ist die Normierungskonstante -\begin{align} -\frac{1}{B(k,n-k+1)} -&= -\frac{\Gamma(n+1)}{\Gamma(k)\Gamma(n-k+1)} -= -\frac{n!}{(k-1)!(n-k)!}. -\label{dreieck:betaverteilung:normierung1} -\end{align} -Andererseits ist -\[ -k\binom{n}{k} -= -k\frac{n!}{k!(n-k)!} -= -\frac{n!}{(k-1)!(n-k)!}, -\] -in Übereinstimmung mit~\eqref{dreieck:betaverteilung:normierung1}. -Die Verteilungsfunktion und die Wahrscheinlichkeitsdichte der -Ordnungsstatistik sind in Abbildung~\ref{dreieck:fig:order} dargestellt. - -\begin{figure} -\centering -\includegraphics{papers/dreieck/images/order.pdf} -\caption{Verteilungsfunktion und Wahrscheinlichkeitsdichte der -Ordnungsstatistiken $X_{k:n}$ einer gleichverteilung Zuvallsvariable -mit $n=10$. -\label{dreieck:fig:order}} -\end{figure} - -\subsubsection{Erwartungswert} -Mit der Wahrscheinlichkeitsdichte kann man jetzt auch den Erwartungswerte -der $k$-ten Ordnungsstatistik bestimmen. -Die Rechnung ergibt: -\begin{align*} -E(X_{k:n}) -&= -\int_0^1 x\cdot k\binom{n}{k} x^{k-1}(1-x)^{n-k}\,dx -= -k -\binom{n}{k} -\int_0^1 -x^{k}(1-x)^{n-k}\,dx. -\intertext{Dies ist das Beta-Integral} -&= -k\binom{n}{k} -B(k+1,n-k+1) -\intertext{welches man durch Gamma-Funktionen bzw.~durch Fakultäten wie in} -&= -k\frac{n!}{k!(n-k)!} -\frac{\Gamma(k+1)\Gamma(n-k+1)}{n+2} -= -k\frac{n!}{k!(n-k)!} -\frac{k!(n-k)!}{(n+1)!} -= -\frac{k}{n+1} -\end{align*} -ausdrücken kann. -Die Erwartungswerte haben also regelmässige Abstände, sie sind in -Abbildung~\ref{dreieck:fig:order} als blaue vertikale Linien eingezeichnet. - -\subsubsection{Varianz} -Auch die Varianz lässt sich einfach berechnen, dazu muss zunächst -der Erwartungswert von $X_{k:n}^2$ bestimmt werden. -Er ist -\begin{align*} -E(X_{k:n}^2) -&= -\int_0^1 x^2\cdot k\binom{n}{k} x^{k-1}(1-x)^{n-k}\,dx -= -k -\binom{n}{k} -\int_0^1 -x^{k+1}(1-x)^{n-k}\,dx. -\intertext{Auch dies ist ein Beta-Integral, nämlich} -&= -k\binom{n}{k} -B(k+2,n-k+1) -= -k\frac{n!}{k!(n-k)!} -\frac{(k+1)!(n-k)!}{(n+2)!} -= -\frac{k(k+1)}{(n+1)(n+2)}. -\end{align*} -Die Varianz wird damit -\begin{align} -\operatorname{var}(X_{k:n}) -&= -E(X_{k:n}^2) - E(X_{k:n})^2 -\notag -\\ -& -= -\frac{k(k+1)}{(n+1)(n+2)}-\frac{k^2}{(n+1)^2} -= -\frac{k(k+1)(n+1)-k^2(n+2)}{(n+1)^2(n+2)} -= -\frac{k(n-k+1)}{(n+1)^2(n+2)}. -\label{dreieck:eqn:ordnungsstatistik:varianz} -\end{align} -In Abbildung~\ref{dreieck:fig:order} ist die Varianz der -Ordnungsstatistik $X_{k:n}$ für $k=7$ und $n=10$ als oranges -Rechteck dargestellt. - -\begin{figure} -\centering -\includegraphics[width=0.84\textwidth]{papers/dreieck/images/beta.pdf} -\caption{Wahrscheinlichkeitsdichte der Beta-Verteilung -$\beta(a,b,x)$ -für verschiedene Werte der Parameter $a$ und $b$. -Die Werte des Parameters für einen Graphen einer Beta-Verteilung -sind als Punkt im kleinen Quadrat rechts -im Graphen als Punkt mit der gleichen Farbe dargestellt. -\label{dreieck:fig:betaverteilungn}} -\end{figure} - -Die Formel~\eqref{dreieck:eqn:ordnungsstatistik:varianz} -besagt auch, dass die Varianz der proportional ist zu $k((n+1)-k)$. -Dieser Ausdruck ist am grössten für $k=(n+1)/2$, die Varianz ist -also grösser für die ``mittleren'' Ordnungstatistiken als für die -extremen $X_{1:n}=\operatorname{min}(X_1,\dots,X_n)$ und -$X_{n:n}=\operatorname{max}(X_1,\dots,X_n)$. |