aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers/ellfilter/elliptic.tex
diff options
context:
space:
mode:
Diffstat (limited to 'buch/papers/ellfilter/elliptic.tex')
-rw-r--r--buch/papers/ellfilter/elliptic.tex100
1 files changed, 100 insertions, 0 deletions
diff --git a/buch/papers/ellfilter/elliptic.tex b/buch/papers/ellfilter/elliptic.tex
new file mode 100644
index 0000000..67bcca0
--- /dev/null
+++ b/buch/papers/ellfilter/elliptic.tex
@@ -0,0 +1,100 @@
+\section{Elliptische rationale Funktionen}
+
+Kommen wir nun zum eigentlichen Teil dieses Papers, den elliptischen rationalen Funktionen \cite{ellfilter:bib:orfanidis}
+\begin{align}
+ R_N(\xi, w) &= \cd \left(N~f_1(\xi)~\cd^{-1}(w, 1/\xi), f_2(\xi)\right) \label{ellfilter:eq:elliptic}\\
+ &= \cd \left(N~\frac{K_1}{K}~\cd^{-1}(w, k), k_1\right) , \quad k= 1/\xi, k_1 = 1/f(\xi) \\
+ &= \cd \left(N~K_1~z , k_1 \right), \quad w= \cd(z K, k)
+\end{align}
+Beim Betrachten dieser Definition, fällt die Ähnlichkeit zur trigonometrische Darstellung der Tsche\-byschef-Polynome \eqref{ellfilter:eq:chebychef_polynomials} auf.
+Anstelle vom Kosinus kommt hier die $\cd$-Funktion zum Einsatz.
+Die Ordnungszahl $N$ kommt auch als Faktor for.
+Zusätzlich werden noch zwei verschiedene elliptische Moduli $k$ und $k_1$ gebraucht.
+Bei $k = k_1 = 0$ wird der $\cd$ zum Kosinus und wir erhalten in diesem Spezialfall die Tschebyschef-Polynome.
+
+Durch das Konzept vom fundamentalen Rechteck, siehe Abbildung \ref{buch:elliptisch:fig:ellall} können für alle inversen Jacobi elliptischen Funktionen die Positionen der Null- und Polstellen anhand eines Diagramms ermittelt werden.
+Die $\cd^{-1}(w, k)$-Funktion ist um $K$ verschoben zur $\sn^{-1}(w, k)$-Funktion, wie ersichtlich in Abbildung \ref{ellfilter:fig:cd}.
+\begin{figure}
+ \centering
+ \input{papers/ellfilter/tikz/cd.tikz.tex}
+ \caption{
+ $z$-Ebene der Funktion $z = \cd^{-1}(w, k)$.
+ Die Funktion ist in der realen Achse $4K$-periodisch und in der imaginären Achse $2jK^\prime$-periodisch.
+ }
+ \label{ellfilter:fig:cd}
+\end{figure}
+Auffallend an der $w = \cd(z, k)$-Funktion ist, dass sich $w$ auf der reellen Achse wie der Kosinus immer zwischen $-1$ und $1$ bewegt, während bei $\mathrm{Im(z) = K^\prime}$ die Werte zwischen $\pm 1/k$ und $\pm \infty$ verlaufen.
+Die Idee des elliptischen Filter ist es, diese zwei Equirippel-Zonen abzufahren, wie ersichtlich in Abbildung \ref{ellfilter:fig:cd2}, welche Analog zu Abbildung \ref{ellfilter:fig:arccos2} gesehen werden kann.
+\begin{figure}
+ \centering
+ \input{papers/ellfilter/tikz/cd2.tikz.tex}
+ \caption{
+ $z_1=N\frac{K_1}{K}\cd^{-1}(w, k)$-Ebene der elliptischen rationalen Funktionen.
+ Je grösser die Ordnung $N$ gewählt wird, desto mehr Nullstellen werden passiert.
+ Als Vereinfachung ist die Funktion nur für $w>0$ dargestellt.
+ }
+ \label{ellfilter:fig:cd2}
+\end{figure}
+Das elliptische Filter hat im Gegensatz zum Tschebyscheff-Filter drei Zonen.
+Im Durchlassbereich werden wie beim Tschebyscheff-Filter die Nullstellen durchlaufen.
+Statt dass $z_1$ für alle $w>1$ in die imaginäre Richtung geht, bewegen wir uns im Sperrbereich wieder in reeller Richtung, wo Pole durchlaufen werden.
+Aus dieser Sicht kann der Sperrbereich vom Tschebyscheff-Filter als unendlich langer Übergangsbereich angesehen werden.
+% Falls es möglich ist diese Werte abzufahren im Stil der Tschebyscheff-Polynome, kann ein Filter gebaut werden, dass Equirippel-Verhalten im Durchlass- und Sperrbereich aufweist.
+Da sich die Funktion im Übergangsbereich nur zur nächsten Reihe bewegt, ist der Übergangsbereich monoton steigend.
+Theoretisch könnte eine gleiches Durchlass- und Sperrbereichverhalten erreicht werden, wenn die Funktion auf eine andere Reihe ansteigen würde.
+Dies würde jedoch zu Oszillationen zwischen $1$ und $1/k$ im Übergangsbereich führen.
+Abbildung \ref{ellfilter:fig:elliptic_freq} zeigt eine elliptisch rationale Funktion und die Frequenzantwort des daraus resultierenden Filters.
+\begin{figure}
+ \centering
+ \input{papers/ellfilter/python/elliptic.pgf}
+ \caption{$F_N$ und die resultierende Frequenzantwort eines elliptischen Filters.}
+ \label{ellfilter:fig:elliptic_freq}
+\end{figure}
+
+\subsection{Gradgleichung}
+
+Damit die Pol- und Nullstellen genau in dieser Konstellation durchfahren werden, müssen die elliptischen Moduli des inneren und äusseren $\cd$ aufeinander abgestimmt werden.
+In der reellen Richtung müssen sich die Periodizitäten $K$ und $K_1$ um den Faktor $N$ unterscheiden, während die imagiäre Periodizitäten $K^\prime$ und $K^\prime_1$ gleich bleiben müssen.
+Zur Erinnerung, $K$ und $K^\prime$ sind durch elliptische Integrale definiert und vom Modul $k$ abhängig wie ersichtlich in Abbildung \ref{ellfilter:fig:kprime}.
+\begin{figure}
+ \centering
+ \input{papers/ellfilter/python/k.pgf}
+ \caption{Die Periodizitäten in realer und imaginärer Richtung in Abhängigkeit vom elliptischen Modul $k$.}
+ \label{ellfilter:fig:kprime}
+\end{figure}
+$K$ und $K^\prime$ sind durch die Ortskurve $K + jK^\prime$ aneinander gebunden und benötigen den Zusatzfaktor $K_1/K$ in \eqref{ellfilter:eq:elliptic}, um die genanten Forderungen einzuhalten.
+Abbildung \ref{ellfilter:fig:degree_eq} zeigt das Problem geometrisch auf, wobei zwei Punkte $K+jK^\prime$ und $K_1+jK_1^\prime$ auf der Ortskurve gesucht sind.
+\begin{figure}
+ \centering
+ \input{papers/ellfilter/tikz/elliptic_transform2.tikz}
+ \caption{Die Gradgleichung als geometrisches Problem ($N=3$).}
+ \label{ellfilter:fig:degree_eq}
+\end{figure}
+Algebraisch kann so die Gradgleichung
+\begin{equation}
+ N \frac{K^\prime}{K} = \frac{K^\prime_1}{K_1}
+\end{equation}
+aufgestellt werden, dessen Lösung ist gegeben durch
+\begin{equation} %TODO check
+k_1 = k^N \prod_{i=1}^L \sn^4 \Bigg( \frac{2i - 1}{N} K, k \Bigg),
+\quad \text{wobei} \quad
+N = 2L+r.
+\end{equation}
+Die Herleitung ist sehr umfassend und wird in \cite{ellfilter:bib:orfanidis} im Detail angeschaut.
+
+% \begin{figure}
+% \centering
+% \input{papers/ellfilter/tikz/elliptic_transform1.tikz}
+% \caption{Die Gradgleichung als geometrisches Problem.}
+% \end{figure}
+
+\subsection{Schlussfolgerung}
+
+Die elliptischen Filter können als direkte Erweiterung der Tschebyscheff-Filter verstanden werden.
+Bei den Tschebyscheff-Polynomen haben wir gesehen, dass die Trigonometrische Formel zu einfachen Polynomen umgewandelt werden kann.
+Im elliptischen Fall entstehen so rationale Funktionen mit Nullstellen und auch Pole.
+Somit entstehen bei den elliptischen rationalen Funktionen, wie es der name auch deutet, rationale Funktionen, also ein Bruch von zwei Polynomen.
+
+% Da Transformationen einer rationalen Funktionen mit Grundrechenarten, wie es in \eqref{ellfilter:eq:h_omega} der Fall ist, immer noch rationale Funktionen ergeben, stellt dies kein Problem für die Implementierung dar.
+
+