aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers/ellfilter/main.tex
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--buch/papers/ellfilter/main.tex494
1 files changed, 475 insertions, 19 deletions
diff --git a/buch/papers/ellfilter/main.tex b/buch/papers/ellfilter/main.tex
index 26aaec1..e9d6aba 100644
--- a/buch/papers/ellfilter/main.tex
+++ b/buch/papers/ellfilter/main.tex
@@ -8,29 +8,485 @@
\begin{refsection}
\chapterauthor{Nicolas Tobler}
-Ein paar Hinweise für die korrekte Formatierung des Textes
-\begin{itemize}
-\item
-Absätze werden gebildet, indem man eine Leerzeile einfügt.
-Die Verwendung von \verb+\\+ ist nur in Tabellen und Arrays gestattet.
-\item
-Die explizite Platzierung von Bildern ist nicht erlaubt, entsprechende
-Optionen werden gelöscht.
-Verwenden Sie Labels und Verweise, um auf Bilder hinzuweisen.
-\item
-Beginnen Sie jeden Satz auf einer neuen Zeile.
-Damit ermöglichen Sie dem Versionsverwaltungssysteme, Änderungen
-in verschiedenen Sätzen von verschiedenen Autoren ohne Konflikt
-anzuwenden.
-\item
-Bilden Sie auch für Formeln kurze Zeilen, einerseits der besseren
-Übersicht wegen, aber auch um GIT die Arbeit zu erleichtern.
-\end{itemize}
+
+\section{Einleitung}
+
+% Lineare filter
+
+% Filter, Signalverarbeitung
+
+
+Der womöglich wichtigste Filtertyp ist das Tiefpassfilter.
+Dieses soll im Durchlassbereich unter der Grenzfrequenz $\Omega_p$ unverstärkt durchlassen und alle anderen Frequenzen vollständig auslöschen.
+
+% Bei der Implementierung von Filtern
+
+In der Elektrotechnik führen Schaltungen mit linearen Bauelementen wie Kondensatoren, Spulen und Widerständen immer zu linearen zeitinvarianten Systemen (LTI-System von englich \textit{time-invariant system}).
+Die Übertragungsfunktion im Frequenzbereich $|H(\Omega)|$ eines solchen Systems ist dabei immer eine rationale Funktion, also eine Division von zwei Polynomen.
+Die Polynome habe dabei immer reelle oder komplex-konjugierte Nullstellen.
+
+
+\begin{equation} \label{ellfilter:eq:h_omega}
+ | H(\Omega)|^2 = \frac{1}{1 + \varepsilon_p^2 F_N^2(w)}, \quad w=\frac{\Omega}{\Omega_p}
+\end{equation}
+
+$\Omega = 2 \pi f$ ist die analoge Frequenz
+
+
+% Linear filter
+Damit das Filter implementierbar und stabil ist, muss $H(\Omega)^2$ eine rationale Funktion sein, deren Nullstellen und Pole auf der linken Halbebene liegen.
+
+$N \in \mathbb{N} $ gibt dabei die Ordnung des Filters vor, also die maximale Anzahl Pole oder Nullstellen.
+
+Damit ein Filter die Passband Kondition erfüllt muss $|F_N(w)| \leq 1 \forall |w| \leq 1$ und für $|w| \geq 1$ sollte die Funktion möglichst schnell divergieren.
+Eine einfaches Polynom, dass das erfüllt, erhalten wir wenn $F_N(w) = w^N$.
+Tatsächlich erhalten wir damit das Butterworth Filter, wie in Abbildung \ref{ellfilter:fig:butterworth} ersichtlich.
+\begin{figure}
+ \centering
+ \input{papers/ellfilter/python/F_N_butterworth.pgf}
+ \caption{$F_N$ für Butterworth filter. Der grüne Bereich definiert die erlaubten Werte für alle $F_N$-Funktionen.}
+ \label{ellfilter:fig:butterworth}
+\end{figure}
+
+wenn $F_N(w)$ eine rationale Funktion ist, ist auch $H(\Omega)$ eine rationale Funktion und daher ein lineares Filter. %proof?
+
+\begin{align}
+ F_N(w) & =
+ \begin{cases}
+ w^N & \text{Butterworth} \\
+ T_N(w) & \text{Tschebyscheff, Typ 1} \\
+ [k_1 T_N (k^{-1} w^{-1})]^{-1} & \text{Tschebyscheff, Typ 2} \\
+ R_N(w, \xi) & \text{Elliptisch (Cauer)} \\
+ \end{cases}
+\end{align}
+
+Mit der Ausnahme vom Butterworth filter sind alle Filter nach speziellen Funktionen benannt.
+Alle diese Filter sind optimal für unterschiedliche Anwendungsgebiete.
+Das Butterworth-Filter, zum Beispiel, ist maximal flach im Durchlassbereich.
+Das Tschebyscheff-1 Filter sind maximal steil für eine definierte Welligkeit im Durchlassbereich, währendem es im Sperrbereich monoton abfallend ist.
+Es scheint so als sind gewisse Eigenschaften dieser speziellen Funktionen verantwortlich für die Optimalität dieser Filter.
+
+\section{Tschebyscheff-Filter}
+
+Als Einstieg betrachent Wir das Tschebyscheff-Filter, welches sehr verwand ist mit dem elliptischen Filter.
+Genauer ausgedrückt sind die Tschebyscheff-1 und -2 Filter Spezialfälle davon.
+
+Der Name des Filters deutet schon an, dass die Tschebyscheff-Polynome $T_N$ für das Filter relevant sind:
+\begin{align}
+ T_{0}(x)&=1\\
+ T_{1}(x)&=x\\
+ T_{2}(x)&=2x^{2}-1\\
+ T_{3}(x)&=4x^{3}-3x\\
+ T_{n+1}(x)&=2x~T_{n}(x)-T_{n-1}(x).
+\end{align}
+Bemerkenswert ist, dass die Polynome im Intervall $[-1, 1]$ mit der trigonometrischen Funktion
+\begin{align} \label{ellfilter:eq:chebychef_polynomials}
+ T_N(w) &= \cos \left( N \cos^{-1}(w) \right) \\
+ &= \cos \left(N~z \right), \quad w= \cos(z)
+\end{align}
+übereinstimmt.
+Der Zusammenhang lässt sich mit den Doppel- und Mehrfachwinkelfunktionen der trigonometrischen Funktionen erklären.
+Abbildung \ref{ellfilter:fig:chebychef_polynomials} zeigt einige Tschebyscheff-Polynome.
+\begin{figure}
+ \centering
+ \input{papers/ellfilter/python/F_N_chebychev2.pgf}
+ \caption{Die Tschebyscheff-Polynome $C_N$.}
+ \label{ellfilter:fig:chebychef_polynomials}
+\end{figure}
+Da der Kosinus begrenzt zwischen $-1$ und $1$ ist, sind auch die Tschebyscheff-Polynome begrenzt.
+Geht man aber über das Intervall $[-1, 1]$ hinaus, divergieren die Funktionen mit zunehmender Ordnung immer steiler gegen $\pm \infty$.
+Diese Eigenschaft ist sehr nützlich für ein Filter.
+Wenn wir die Tschebyscheff-Polynome quadrieren, passen sie perfekt in die Voraussetzungen für Filterfunktionen, wie es Abbildung \ref{ellfiter:fig:chebychef} demonstriert.
+\begin{figure}
+ \centering
+ \input{papers/ellfilter/python/F_N_chebychev.pgf}
+ \caption{Die Tschebyscheff-Polynome füllen den erlaubten Bereich besser, und erhalten dadurch eine steilere Flanke im Sperrbereich.}
+ \label{ellfiter:fig:chebychef}
+\end{figure}
+
+
+Die analytische Fortsetzung von \eqref{ellfilter:eq:chebychef_polynomials} über das Intervall $[-1,1]$ hinaus stimmt mit den Polynomen überein, wie es zu erwarten ist.
+Die genauere Betrachtung wird uns dann helfen die elliptischen Filter besser zu verstehen.
+
+Starten wir mit der Funktion, die als erstes auf $w$ angewendet wird, dem Arcuscosinus.
+Die invertierte Funktion des Kosinus kann als definites Integral dargestellt werden:
+\begin{align}
+ \cos^{-1}(x)
+ &=
+ \int_{x}^{1}
+ \frac{
+ dz
+ }{
+ \sqrt{
+ 1-z^2
+ }
+ }\\
+ &=
+ \int_{0}^{x}
+ \frac{
+ -1
+ }{
+ \sqrt{
+ 1-z^2
+ }
+ }
+ ~dz
+ + \frac{\pi}{2}
+\end{align}
+Der Integrand oder auch die Ableitung
+\begin{equation}
+ \frac{
+ -1
+ }{
+ \sqrt{
+ 1-z^2
+ }
+ }
+\end{equation}
+bestimmt dabei die Richtung, in der die Funktion verläuft.
+Der reelle Arcuscosinus is bekanntlich nur für $|z| \leq 1$ definiert.
+Hier bleibt der Wert unter der Wurzel positiv und das Integral liefert reelle Werte.
+Doch wenn $|z|$ über 1 hinausgeht, wird der Term unter der Wurzel negativ.
+Durch die Quadratwurzel entstehen für den Integranden zwei rein komplexe Lösungen.
+Der Wert des Arcuscosinus verlässt also bei $z= \pm 1$ den reellen Zahlenstrahl und knickt in die komplexe Ebene ab.
+Abbildung \ref{ellfilter:fig:arccos} zeigt den $\arccos$ in der komplexen Ebene.
+\begin{figure}
+ \centering
+ \input{papers/ellfilter/tikz/arccos.tikz.tex}
+ \caption{Die Funktion $z = \cos^{-1}(w)$ dargestellt in der komplexen ebene.}
+ \label{ellfilter:fig:arccos}
+\end{figure}
+Wegen der Periodizität des Kosinus ist auch der Arcuscosinus $2\pi$-periodisch und es entstehen periodische Nullstellen.
+% \begin{equation}
+% \frac{
+% 1
+% }{
+% \sqrt{
+% 1-z^2
+% }
+% }
+% \in \mathbb{R}
+% \quad
+% \forall
+% \quad
+% -1 \leq z \leq 1
+% \end{equation}
+% \begin{equation}
+% \frac{
+% 1
+% }{
+% \sqrt{
+% 1-z^2
+% }
+% }
+% = i \xi \quad | \quad \xi \in \mathbb{R}
+% \quad
+% \forall
+% \quad
+% z \leq -1 \cup z \geq 1
+% \end{equation}
+
+Die Tschebyscheff-Polynome skalieren diese Nullstellen mit dem Ordnungsfaktor $N$, wie dargestellt in Abbildung \ref{ellfilter:fig:arccos2}.
+\begin{figure}
+ \centering
+ \input{papers/ellfilter/tikz/arccos2.tikz.tex}
+ \caption{
+ $z_1=N \cos^{-1}(w)$-Ebene der Tschebyscheff-Funktion.
+ Die eingefärbten Pfade sind Verläufe von $w~\forall~[-\infty, \infty]$ für verschiedene Ordnungen $N$.
+ Je grösser die Ordnung $N$ gewählt wird, desto mehr Nullstellen werden passiert.
+ }
+ \label{ellfilter:fig:arccos2}
+\end{figure}
+Somit passert $\cos( N~\cos^{-1}(w))$ im Intervall $[-1, 1]$ $N$ Nullstellen.
+Durch die spezielle Anordnung der Nullstellen hat die Funktion Equirippel-Verhalten und ist dennoch ein Polynom, was sich perfekt für linear Filter eignet.
+
+\section{Jacobische elliptische Funktionen}
+
+%TODO $z$ or $u$ for parameter?
+
+Für das elliptische Filter wird statt der, für das Tschebyscheff-Filter benutzen Kreis-Trigonometrie die elliptischen Funktionen gebraucht.
+Der Begriff elliptische Funktion wird für sehr viele Funktionen gebraucht, daher ist es hier wichtig zu erwähnen, dass es ausschliesslich um die Jacobischen elliptischen Funktionen geht.
+
+Im Wesentlichen erweitern die Jacobi elliptischen Funktionen die trigonometrische Funktionen für Ellipsen.
+Zum Beispiel gibt es analog zum Sinus den elliptischen $\sn(z, k)$.
+Im Gegensatz zum den trigonometrischen Funktionen haben die elliptischen Funktionen zwei parameter.
+Zum einen gibt es den \textit{elliptische Modul} $k$, der die Exzentrizität der Ellipse parametrisiert.
+Zum andern das Winkelargument $z$.
+Im Kreis ist der Radius für alle Winkel konstant, bei Ellipsen ändert sich das.
+Dies hat zur Folge, dass bei einer Ellipse die Kreisbodenstrecke nicht linear zum Winkel verläuft.
+Darum kann hier nicht der gewohnte Winkel verwendet werden.
+Das Winkelargument $z$ kann durch das elliptische Integral erster Art
+\begin{equation}
+ z
+ =
+ F(\phi, k)
+ =
+ \int_{0}^{\phi}
+ \frac{
+ d\theta
+ }{
+ \sqrt{
+ 1-k^2 \sin^2 \theta
+ }
+ }
+ =
+ \int_{0}^{\phi}
+ \frac{
+ dt
+ }{
+ \sqrt{
+ (1-t^2)(1-k^2 t^2)
+ }
+ } %TODO which is right? are both functions from phi?
+\end{equation}
+mit dem Winkel $\phi$ in Verbindung liegt.
+
+Dabei wird das vollständige und unvollständige Elliptische integral unterschieden.
+Beim vollständigen Integral
+\begin{equation}
+ K(k)
+ =
+ \int_{0}^{\pi / 2}
+ \frac{
+ d\theta
+ }{
+ \sqrt{
+ 1-k^2 \sin^2 \theta
+ }
+ }
+\end{equation}
+wird über ein viertel Ellipsenbogen integriert also bis $\phi=\pi/2$ und liefert das Winkelargument für eine Vierteldrehung.
+Die Zahl wird oft auch abgekürzt mit $K = K(k)$ und ist für das elliptische Filter sehr relevant.
+Alle elliptishen Funktionen sind somit $4K$-periodisch.
+
+Neben dem $\sn$ gibt es zwei weitere basis-elliptische Funktionen $\cn$ und $\dn$.
+Dazu kommen noch weitere abgeleitete Funktionen, die durch Quotienten und Kehrwerte dieser Funktionen zustande kommen.
+Insgesamt sind es die zwölf Funktionen
+\begin{equation*}
+ \sn \quad
+ \ns \quad
+ \scelliptic \quad
+ \sd \quad
+ \cn \quad
+ \nc \quad
+ \cs \quad
+ \cd \quad
+ \dn \quad
+ \nd \quad
+ \ds \quad
+ \dc.
+\end{equation*}
+
+Die Jacobischen elliptischen Funktionen können mit der inversen Funktion des kompletten elliptischen Integrals erster Art
+\begin{equation}
+ \phi = F^{-1}(z, k)
+\end{equation}
+definiert werden. Dabei ist zu beachten dass nur das $z$ Argument der Funktion invertiert wird, also
+\begin{equation}
+ z = F(\phi, k)
+ \Leftrightarrow
+ \phi = F^{-1}(z, k).
+\end{equation}
+Mithilfe von $F^{-1}$ kann zum Beispiel $sn^{-1}$ mit dem Elliptischen integral dargestellt werden:
+\begin{equation}
+ \sin(\phi)
+ =
+ \sin \left( F^{-1}(z, k) \right)
+ =
+ \sn(z, k)
+ =
+ w
+\end{equation}
+
+\begin{equation}
+ \phi
+ =
+ F^{-1}(z, k)
+ =
+ \sin^{-1} \big( \sn (z, k ) \big)
+ =
+ \sin^{-1} ( w )
+\end{equation}
+
+\begin{equation}
+ F(\phi, k)
+ =
+ z
+ =
+ F( \sin^{-1} \big( \sn (z, k ) \big) , k)
+ =
+ F( \sin^{-1} ( w ), k)
+\end{equation}
+
+\begin{equation}
+ \sn^{-1}(w, k)
+ =
+ F(\phi, k),
+ \quad
+ \phi = \sin^{-1}(w)
+\end{equation}
+
+\begin{align}
+ \sn^{-1}(w, k)
+ & =
+ \int_{0}^{\phi}
+ \frac{
+ d\theta
+ }{
+ \sqrt{
+ 1-k^2 \sin^2 \theta
+ }
+ },
+ \quad
+ \phi = \sin^{-1}(w)
+ \\
+ & =
+ \int_{0}^{w}
+ \frac{
+ dt
+ }{
+ \sqrt{
+ (1-t^2)(1-k^2 t^2)
+ }
+ }
+\end{align}
+
+Beim $\cos^{-1}(x)$ haben wir gesehen, dass die analytische Fortsetzung bei $x < -1$ und $x > 1$ rechtwinklig in die Komplexen zahlen wandert.
+Wenn man das gleiche mit $\sn^{-1}(w, k)$ macht, erkennt man zwei interessante Stellen.
+Die erste ist die gleiche wie beim $\cos^{-1}(x)$ nämlich bei $t = \pm 1$.
+Der erste Term unter der Wurzel wird dann negativ, während der zweite noch positiv ist, da $k \leq 1$.
+\begin{equation}
+ \frac{
+ 1
+ }{
+ \sqrt{
+ (1-t^2)(1-k^2 t^2)
+ }
+ }
+ \in \mathbb{R}
+ \quad \forall \quad
+ -1 \leq t \leq 1
+\end{equation}
+Die zweite stelle passiert wenn beide Faktoren unter der Wurzel negativ werden, was bei $t = 1/k$ der Fall ist.
+
+
+
+
+Funktion in relle und komplexe Richtung periodisch
+
+In der reellen Richtung ist sie $4K(k)$-periodisch und in der imaginären Richtung $4K^\prime(k)$-periodisch.
+
+
+
+%TODO sn^{-1} grafik
+
+\begin{figure}
+ \centering
+ \input{papers/ellfilter/tikz/sn.tikz.tex}
+ \caption{
+ $z$-Ebene der Funktion $z = \sn^{-1}(w, k)$.
+ Die Funktion ist in der realen Achse $4K$-periodisch und in der imaginären Achse $2jK^\prime$-periodisch.
+ }
+ % \label{ellfilter:fig:cd2}
+\end{figure}
+
+\section{Elliptische rationale Funktionen}
+
+Kommen wir nun zum eigentlichen Teil dieses Papers, den elliptischen rationalen Funktionen
+\begin{align}
+ R_N(\xi, w) &= \cd \left(N~f_1(\xi)~\cd^{-1}(w, 1/\xi), f_2(\xi)\right) \\
+ &= \cd \left(N~\frac{K_1}{K}~\cd^{-1}(w, k), k_1)\right) , \quad k= 1/\xi, k_1 = 1/f(\xi) \\
+ &= \cd \left(N~K_1~z , k_1 \right), \quad w= \cd(z K, k)
+\end{align}
+
+
+sieht ähnlich aus wie die trigonometrische Darstellung der Tschebyschef-Polynome \eqref{ellfilter:eq:chebychef_polynomials}
+Anstelle vom Kosinus kommt hier die $\cd$-Funktion zum Einsatz.
+Die Ordnungszahl $N$ kommt auch als Faktor for.
+Zusätzlich werden noch zwei verschiedene elliptische Module $k$ und $k_1$ gebraucht.
+
+
+
+Sinus entspricht $\sn$
+
+Damit die Nullstellen an ähnlichen Positionen zu liegen kommen wie bei den Tschebyscheff-Polynomen, muss die $\cd$-Funktion gewählt werden.
+
+Die $\cd^{-1}(w, k)$-Funktion ist um $K$ verschoben zur $\sn^{-1}(w, k)$-Funktion, wie ersichtlich in Abbildung \ref{ellfilter:fig:cd}.
+\begin{figure}
+ \centering
+ \input{papers/ellfilter/tikz/cd.tikz.tex}
+ \caption{
+ $z$-Ebene der Funktion $z = \sn^{-1}(w, k)$.
+ Die Funktion ist in der realen Achse $4K$-periodisch und in der imaginären Achse $2jK^\prime$-periodisch.
+ }
+ \label{ellfilter:fig:cd}
+\end{figure}
+Auffallend ist, dass sich alle Nullstellen und Polstellen um $K$ verschoben haben.
+
+Durch das Konzept vom fundamentalen Rechteck, siehe Abbildung \ref{ellfilter:fig:fundamental_rectangle} können für alle inversen Jaccobi elliptischen Funktionen die Positionen der Null- und Polstellen anhand eines Diagramms ermittelt werden.
+Der erste Buchstabe bestimmt die Position der Nullstelle und der zweite Buchstabe die Polstelle.
+\begin{figure}
+ \centering
+ \input{papers/ellfilter/tikz/fundamental_rectangle.tikz.tex}
+ \caption{
+ Fundamentales Rechteck der inversen Jaccobi elliptischen Funktionen.
+ }
+ \label{ellfilter:fig:fundamental_rectangle}
+\end{figure}
+
+Auffallend an der $w = \sn(z, k)$-Funktion ist, dass sich $w$ auf der reellen Achse wie der Kosinus immer zwischen $-1$ und $1$ bewegt, während bei $\mathrm{Im(z) = K^\prime}$ die Werte zwischen $\pm 1/k$ und $\pm \infty$ verlaufen.
+Die Funktion hat also Equirippel-Verhalten um $w=0$ und um $w=\pm \infty$.
+Falls es möglich ist diese Werte abzufahren im Sti der Tschebyscheff-Polynome, kann ein Filter gebaut werden, dass Equirippel-Verhalten im Durchlass- und Sperrbereich aufweist.
+
+
+
+Analog zu Abbildung \ref{ellfilter:fig:arccos2} können wir auch bei den elliptisch rationalen Funktionen die komplexe $z$-Ebene betrachten, wie ersichtlich in Abbildung \ref{ellfilter:fig:cd2}, um die besser zu verstehen.
+\begin{figure}
+ \centering
+ \input{papers/ellfilter/tikz/cd2.tikz.tex}
+ \caption{
+ $z_1$-Ebene der elliptischen rationalen Funktionen.
+ Je grösser die Ordnung $N$ gewählt wird, desto mehr Nullstellen passiert.
+ }
+ \label{ellfilter:fig:cd2}
+\end{figure}
+% Da die $\cd^{-1}$-Funktion
+
+
+
+\begin{figure}
+ \centering
+ \input{papers/ellfilter/python/F_N_elliptic.pgf}
+ \caption{$F_N$ für ein elliptischs filter.}
+ \label{ellfilter:fig:elliptic}
+\end{figure}
+
+\subsection{Degree Equation}
+
+Der $\cd^{-1}$ Term muss so verzogen werden, dass die umgebene $\cd$-Funktion die Nullstellen und Pole trifft.
+Dies trifft ein wenn die Degree Equation erfüllt ist.
+
+\begin{equation}
+ N \frac{K^\prime}{K} = \frac{K^\prime_1}{K_1}
+\end{equation}
+
+
+Leider ist das lösen dieser Gleichung nicht trivial.
+Die Rechnung wird in \ref{ellfilter:bib:orfanidis} im Detail angeschaut.
+
+
+\subsection{Polynome?}
+
+Bei den Tschebyscheff-Polynomen haben wir gesehen, dass die Trigonometrische Formel zu einfachen Polynomen umgewandelt werden kann.
+Im gegensatz zum $\cos^{-1}$ hat der $\cd^{-1}$ nicht nur Nullstellen sondern auch Pole.
+Somit entstehen bei den elliptischen rationalen Funktionen, wie es der name auch deutet, rationale Funktionen, also ein Bruch von zwei Polynomen.
+
+Da Transformationen einer rationalen Funktionen mit Grundrechenarten, wie es in \eqref{ellfilter:eq:h_omega} der Fall ist, immer noch rationale Funktionen ergeben, stellt dies kein Problem für die Implementierung dar.
\input{papers/ellfilter/teil0.tex}
\input{papers/ellfilter/teil1.tex}
\input{papers/ellfilter/teil2.tex}
\input{papers/ellfilter/teil3.tex}
-\printbibliography[heading=subbibliography]
+% \printbibliography[heading=subbibliography]
\end{refsection}