diff options
Diffstat (limited to 'buch/papers/fm')
-rw-r--r-- | buch/papers/fm/01_AM-FM.tex | 37 | ||||
-rw-r--r-- | buch/papers/fm/main.tex | 2 | ||||
-rw-r--r-- | buch/papers/fm/references.bib | 11 |
3 files changed, 34 insertions, 16 deletions
diff --git a/buch/papers/fm/01_AM-FM.tex b/buch/papers/fm/01_AM-FM.tex index ef55d55..2267d39 100644 --- a/buch/papers/fm/01_AM-FM.tex +++ b/buch/papers/fm/01_AM-FM.tex @@ -7,30 +7,37 @@ \rhead{AM- FM} Das sinusförmige Trägersignal hat die übliche Form: -\(x_c(t) = A_c \cdot cos(\omega_c(t)+\varphi)\). +\(x_c(t) = A_c \cdot \cos(\omega_c(t)+\varphi)\). Wobei die konstanten Amplitude \(A_c\) und Phase \(\varphi\) vom Nachrichtensignal \(m(t)\) verändert wird. Der Parameter \(\omega_c\), die Trägerkreisfrequenz bzw. die Trägerfrequenz \(f_c = \frac{\omega_c}{2\pi}\), steht nicht für die modulation zur verfügung, statt dessen kann durch ihn die Frequenzachse frei gewählt werden. \newblockpunct -Jedoch ist das für die Vilfalt der Modulationsarten keine Einschrenkung. +Jedoch ist das für die Vielfalt der Modulationsarten keine Einschrenkung. Ein Nachrichtensignal kann auch über die Momentanfrequenz (instantenous frequency) \(\omega_i\) eines trägers verändert werden. Mathematisch wird dann daraus \[ \omega_i = \omega_c + \frac{d \varphi(t)}{dt} \] -mit der Ableitung der Phase. +mit der Ableitung der Phase\cite{fm:NAT}. +Mit diesen drei parameter ergeben sich auch drei modulationsarten, die Amplitudenmodulation welche \(A_c\) benutzt, +die Phasenmodulation \(\varphi\) und dann noch die Momentankreisfrequenz \(\omega_i\): \newline \newline -TODO: -Hier beschrieib ich was AmplitudenModulation ist und mache dan den link zu Frequenzmodulation inkl Formel \[cos( cos x)\] - - - -%Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam -%nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam -erat, sed diam voluptua \cite{fm:bibtex}. -%At vero eos et accusam et justo duo dolores et ea rebum. -%Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum -%dolor sit amet. - +To do: Bilder jeder Modulationsart +\subsection{AM - Amplitudenmodulation} +Das Ziel ist FM zu verstehen doch dazu wird zuerst AM erklärt welches einwenig einfacher zu verstehen ist und erst dann übertragen wir die Ideeen in FM. +Nun zur Amplitudenmodulation verwenden wir das bevorzugte Trägersignal +\[ + x_c(t) = A_c \cdot \cos(\omega_ct). +\] +Dies bringt den grossen Vorteil das, dass modulierend Signal sämtliche Anteile im Frequenzspektrum inanspruch nimmt +und das Trägersignal nur zwei komplexe Schwingungen besitzt. +Dies sieht man besonders in der Eulerischen Formel +\[ + x_c(t) = \frac{A_c}{2} \cdot e^{j\omega_ct}\;+\;\frac{A_c}{2} \cdot e^{-j\omega_ct}. +\] +Dabei ist die negative Frequenz der zweiten komplexen Schwingung zwingend erforderlich, damit in der Summe immer ein reelwertiges Trägersignal ergibt. +\newline +TODO: +Hier beschrieib ich was AmplitudenModulation ist und mache dan den link zu Frequenzmodulation inkl Formel \[\cos( \cos x)\] diff --git a/buch/papers/fm/main.tex b/buch/papers/fm/main.tex index fcf4d1a..6af3386 100644 --- a/buch/papers/fm/main.tex +++ b/buch/papers/fm/main.tex @@ -27,7 +27,7 @@ welches Digital einfach umzusetzten ist, genauso als Trägersignal genutzt werden kann. Zuerst wird erklärt was \textit{FM-AM} ist, danach wie sich diese im Frequenzspektrum verhalten. Erst dann erklär ich dir wie die Besselfunktion mit der Frequenzmodulation( acro?) zusammenhängt. -Nun zur Modulation im nächsten Abschnitt. +Nun zur Modulation im nächsten Abschnitt.\cite{fm:NAT} \input{papers/fm/01_AM-FM.tex} \input{papers/fm/02_frequenzyspectrum.tex} diff --git a/buch/papers/fm/references.bib b/buch/papers/fm/references.bib index 76eb265..21b910b 100644 --- a/buch/papers/fm/references.bib +++ b/buch/papers/fm/references.bib @@ -23,6 +23,17 @@ volume = {2} } +@book{fm:NAT, + title = {Nachrichtentechnik 1 + 2}, + author = {Thomas Kneubühler}, + publisher = {None}, + year = {2021}, + isbn = {}, + inseries = {Script for students}, + volume = {} +} + + @article{fm:mendezmueller, author = { Tabea Méndez and Andreas Müller }, title = { Noncommutative harmonic analysis and image registration }, |