aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers/fresnel/teil2.tex
diff options
context:
space:
mode:
Diffstat (limited to 'buch/papers/fresnel/teil2.tex')
-rw-r--r--buch/papers/fresnel/teil2.tex205
1 files changed, 172 insertions, 33 deletions
diff --git a/buch/papers/fresnel/teil2.tex b/buch/papers/fresnel/teil2.tex
index 701c3ee..ec8c896 100644
--- a/buch/papers/fresnel/teil2.tex
+++ b/buch/papers/fresnel/teil2.tex
@@ -3,38 +3,177 @@
%
% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
%
-\section{Teil 2
-\label{fresnel:section:teil2}}
-\rhead{Teil 2}
-Sed ut perspiciatis unde omnis iste natus error sit voluptatem
-accusantium doloremque laudantium, totam rem aperiam, eaque ipsa
-quae ab illo inventore veritatis et quasi architecto beatae vitae
-dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas sit
-aspernatur aut odit aut fugit, sed quia consequuntur magni dolores
-eos qui ratione voluptatem sequi nesciunt. Neque porro quisquam
-est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci
-velit, sed quia non numquam eius modi tempora incidunt ut labore
-et dolore magnam aliquam quaerat voluptatem. Ut enim ad minima
-veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam,
-nisi ut aliquid ex ea commodi consequatur? Quis autem vel eum iure
-reprehenderit qui in ea voluptate velit esse quam nihil molestiae
-consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla
-pariatur?
-
-\subsection{De finibus bonorum et malorum
-\label{fresnel:subsection:bonorum}}
-At vero eos et accusamus et iusto odio dignissimos ducimus qui
-blanditiis praesentium voluptatum deleniti atque corrupti quos
-dolores et quas molestias excepturi sint occaecati cupiditate non
-provident, similique sunt in culpa qui officia deserunt mollitia
-animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis
-est et expedita distinctio. Nam libero tempore, cum soluta nobis
-est eligendi optio cumque nihil impedit quo minus id quod maxime
-placeat facere possimus, omnis voluptas assumenda est, omnis dolor
-repellendus. Temporibus autem quibusdam et aut officiis debitis aut
-rerum necessitatibus saepe eveniet ut et voluptates repudiandae
-sint et molestiae non recusandae. Itaque earum rerum hic tenetur a
-sapiente delectus, ut aut reiciendis voluptatibus maiores alias
-consequatur aut perferendis doloribus asperiores repellat.
+\section{Klothoide
+\label{fresnel:section:klothoide}}
+\rhead{Klothoide}
+In diesem Abschnitt soll gezeigt werden, dass die Krümmung der
+Euler-Spirale proportional zur vom Nullpunkt aus gemessenen Bogenlänge
+ist.
+
+\begin{definition}
+Eine ebene Kurve, deren Krümmung proportionale zur Kurvenlänge ist,
+heisst {\em Klothoide}.
+\end{definition}
+
+Die Klothoide wird zum Beispiel im Strassenbau für Autobahnkurven
+verwendet.
+Fährt man mit konstanter Geschwindigkeit entlang einer Klothoide,
+muss man die Krümmung mit konstaner Geschwindigkeit ändern,
+also das Lenkrad mit konstanter Geschwindigkeit drehen.
+Dies ermöglicht eine ruhige Fahrweise.
+
+\subsection{Krümmung einer ebenen Kurve}
+\begin{figure}
+\centering
+\includegraphics{papers/fresnel/images/kruemmung.pdf}
+\caption{Berechnung der Krümmung einer ebenen Kurve.
+\label{fresnel:figure:kruemmung}}
+\end{figure}
+Abbildung~\ref{fresnel:figure:kruemmung} erinnert daran, dass der
+Bogen eines Kreises vom Radius $r$, entlang dem sich die Richtung
+der Tangente um $\Delta\varphi$ ändert, die Länge
+$\Delta s = r\Delta\varphi$.
+Die Krümmung ist der Kehrwert des Krümmungsradius, daraus kann
+man ablesen, dass
+\[
+\kappa = \frac{1}{r} = \frac{\Delta \varphi}{\Delta s}.
+\]
+Für eine beliebige ebene Kurve ist daher die Krümmung
+\[
+\kappa = \frac{d\varphi}{ds}.
+\]
+
+\subsection{Krümmung der Euler-Spirale}
+Wir betrachten jetzt die Euler-Spirale mit der Parametrisierung
+$\gamma(s) = (C_1(s),S_1(s))$.
+Zunächst stellen wir fest, dass die Länge der Tangente
+\[
+\dot{\gamma}(s)
+=
+\frac{d\gamma}{ds}
+=
+\begin{pmatrix}
+\dot{C}_1(s)\\
+\dot{S}_1(s)
+\end{pmatrix}
+=
+\begin{pmatrix}
+\cos s^2\\
+\sin s^2
+\end{pmatrix}
+\qquad\Rightarrow\qquad
+|\dot{\gamma}(s)|
+=
+\sqrt{\cos^2s^2+\sin^2s^2}
+=
+1.
+\]
+Insbesondere ist der Parameter $s$ der Kurve $\gamma(s)$ die
+Bogenlänge.
+
+Der zu $\dot{\gamma}(s)$ gehörige Polarwinkel kann aus dem Vergleich
+mit einem Vektor mit bekanntem Polarwinkel $\varphi$ abgelesen werden:
+\[
+\begin{pmatrix}
+\cos \varphi\\
+\sin \varphi
+\end{pmatrix}
+=
+\dot{\gamma}(s)
+=
+\begin{pmatrix}
+\cos s^2\\\sin s^2
+\end{pmatrix},
+\]
+der Polarwinkel
+ist daher $\varphi = s^2$.
+Die Krümmung ist die Ableitung des Polarwinkels nach $s$, also
+\[
+\kappa
+=
+\frac{d\varphi}{ds}
+=
+\frac{ds^2}{ds}
+=
+2s,
+\]
+sie ist somit proportional zur Bogenlänge $s$.
+Damit folgt, dass die Euler-Spirale eine Klothoide ist.
+
+\subsection{Eine Kugel schälen}
+\begin{figure}
+\centering
+\includegraphics[width=\textwidth]{papers/fresnel/images/schale.pdf}
+\caption{Schält man eine einen Streifen konstanter Breite beginnend am
+Äquator von einer Kugel ab und breitet ihn in der Ebene aus, entsteht
+eine Klothoide.
+\label{fresnel:figure:schale}}
+\end{figure}
+\begin{figure}
+\centering
+\includegraphics{papers/fresnel/images/apfel.pdf}
+\caption{Klothoide erhalten durch Abschälen eines Streifens von einem
+Apfel (vgl.~Abbildung~\ref{fresnel:figure:schale})
+\label{fresnel:figure:apfel}}
+\end{figure}
+Schält man einen Streifen konstanter Breite beginnend parallel zum Äquator
+von einer Kugel ab und breitet ihn in die Ebene aus, entsteht eine
+Approximation einer Klothoide.
+Abbildung~\ref{fresnel:figure:schale} zeigt blau den abgeschälten Streifen,
+Abbildung~\ref{fresnel:figure:apfel} zeigt das Resultat dieses Versuches
+an einem Apfel, das Youtube-Video \cite{fresnel:schale} des
+Numberphile-Kanals illustriert das Problem anhand eines aufblasbaren
+Globus.
+
+Windet sich die Kurve in Abbildung~\ref{fresnel:figure:schale} $n$
+mal um die vertikale Achse, bevor sie den Nordpol erreicht, dann kann
+die Kurve mit der Funktion
+\[
+\gamma(t)
+=
+\begin{pmatrix}
+\cos(t) \cos(t/n) \\
+\sin(t) \cos(t/n) \\
+\sin(t/n)
+\end{pmatrix}
+\]
+parametrisiert werden.
+Der Tangentialvektor
+\[
+\dot{\gamma}(t)
+=
+\begin{pmatrix}
+-\sin(t)\cos(t/n) - \cos(t)\sin(t/n)/n \\
+\cos(t)\cos(t/n) - \sin(t)\sin(t/n)/n \\
+\cos(t/n)/n
+\end{pmatrix}
+\]
+hat die Länge
+\[
+| \dot{\gamma}(t) |^2
+=
+\frac{1}{n^2}
++
+\cos^2\frac{t}{n}.
+\]
+Die Ableitung der Bogenlänge ist daher
+\[
+\dot{s}(t)
+=
+\sqrt{
+\frac{1}{n^2}
++
+\cos^2\frac{t}{n}
+}.
+\]
+
+
+Der Krümmungsradius des blauen Streifens, der die Kugel im Punkt $P$ bei
+geographischer $\vartheta$ berührt, hat die Länge der Tangente, die
+die Kugel im Punkt $P$ berührt und im Punkt $Q$ durch die Achse der
+Kugel geht (Abbildung~\ref{fresnel:figure:schale}).
+Die Krümmung in Abhängigkeit von $\vartheta$ ist daher $\tan\vartheta$.
+
+