diff options
Diffstat (limited to 'buch/papers/kra/loesung.tex')
-rw-r--r-- | buch/papers/kra/loesung.tex | 86 |
1 files changed, 86 insertions, 0 deletions
diff --git a/buch/papers/kra/loesung.tex b/buch/papers/kra/loesung.tex new file mode 100644 index 0000000..4e0da1c --- /dev/null +++ b/buch/papers/kra/loesung.tex @@ -0,0 +1,86 @@ +\section{Lösungsmethoden} \label{kra:section:loesung} +\rhead{Lösungsmethoden} + +\subsection{Riccatische Differentialgleichung} \label{kra:loesung:riccati} +Eine allgemeine analytische Lösung der Riccati Differentialgleichung ist nicht möglich. +Es gibt aber Spezialfälle, in denen sich die Gleichung vereinfachen lässt und so eine analytische Lösung gefunden werden kann. +Diese wollen wir im folgenden Abschnitt genauer anschauen. + +\subsubsection{Fall 1: Konstante Koeffizienten} +Sind die Koeffizienten $f(x), g(x), h(x)$ Konstanten, so lässt sich die DGL separieren und reduziert sich auf die Lösung des Integrals \ref{kra:equation:case1_int}. +\begin{equation} + y' = fy^2 + gy + h +\end{equation} +\begin{equation} + \frac{dy}{dx} = fy^2 + gy + h +\end{equation} +\begin{equation} \label{kra:equation:case1_int} + \int \frac{dy}{fy^2 + gy + h} = \int dx +\end{equation} + +\subsubsection{Fall 2: Bekannte spezielle Lösung} +Kennt man eine spezielle Lösung $y_p$ so kann die riccatische DGL mit Hilfe einer Substitution auf eine lineare Gleichung reduziert werden. +Wir wählen als Substitution +\begin{equation} \label{kra:equation:substitution} + z = \frac{1}{y - y_p} +\end{equation} +durch Umstellen von \ref{kra:equation:substitution} folgt +\begin{equation} + y = y_p + \frac{1}{z^2} \label{kra:equation:backsubstitution} +\end{equation} +\begin{equation} + y' = y_p' - \frac{1}{z^2}z' +\end{equation} +mit Einsetzten in die DGL \ref{kra:equation:riccati} folgt +\begin{equation} + y_p' - \frac{1}{z^2}z' = f(x)(y_p + \frac{1}{z}) + g(x)(y_p + \frac{1}{z})^2 + h(x) +\end{equation} +\begin{equation} + -z^{2}y_p' + z' = -z^2\underbrace{(y_{p}f(x) + g(x)y_p^2 + h(x))}_{y_p'} - z(f(x) + 2y_{p}g(x)) - g(x) +\end{equation} +was uns direkt auf eine lineare Differentialgleichung 1.Ordnung führt. +\begin{equation} + z' = -z(f(x) + 2y_{p}g(x)) - g(x) +\end{equation} +Diese kann nun mit den Methoden zur Lösung von linearen Differentialgleichungen 1.Ordnung gelöst werden. +Durch die Rücksubstitution \ref{kra:equation:backsubstitution} erhält man dann die Lösung von \ref{kra:equation:riccati}. + +\subsection{Matrix-Riccati Differentialgleichung} \label{kra:loesung:riccati} +% Lösung matrix riccati +Die Lösung der Matrix-Riccati Gleichung \ref{kra:equation:matrixriccati} erhalten wir nach \cite{kra:kalmanisae} folgendermassen +\begin{equation} + \label{kra:matrixriccati-solution} + \begin{pmatrix} + X(t) \\ + Y(t) + \end{pmatrix} + = + \Phi(t_0, t) + \begin{pmatrix} + I(t) \\ + U_0(t) + \end{pmatrix} + = + \begin{pmatrix} + \Phi_{11}(t_0, t) & \Phi_{12}(t_0, t) \\ + \Phi_{21}(t_0, t) & \Phi_{22}(t_0, t) + \end{pmatrix} + \begin{pmatrix} + I(t) \\ + U_0(t) + \end{pmatrix} +\end{equation} +\begin{equation} + U(t) = + \begin{pmatrix} + \Phi_{21}(t_0, t) + \Phi_{22}(t_0, t) + \end{pmatrix} + \begin{pmatrix} + \Phi_{11}(t_0, t) + \Phi_{12}(t_0, t) + \end{pmatrix} + ^{-1} +\end{equation} +wobei $\Phi(t, t_0)$ die sogenannte Zustandsübergangsmatrix ist. +\begin{equation} + \Phi(t_0, t) = e^{H(t - t_0)} +\end{equation} |