aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers/kra/loesung.tex
diff options
context:
space:
mode:
Diffstat (limited to 'buch/papers/kra/loesung.tex')
-rw-r--r--buch/papers/kra/loesung.tex69
1 files changed, 47 insertions, 22 deletions
diff --git a/buch/papers/kra/loesung.tex b/buch/papers/kra/loesung.tex
index 4e0da1c..18ac853 100644
--- a/buch/papers/kra/loesung.tex
+++ b/buch/papers/kra/loesung.tex
@@ -7,47 +7,75 @@ Es gibt aber Spezialfälle, in denen sich die Gleichung vereinfachen lässt und
Diese wollen wir im folgenden Abschnitt genauer anschauen.
\subsubsection{Fall 1: Konstante Koeffizienten}
-Sind die Koeffizienten $f(x), g(x), h(x)$ Konstanten, so lässt sich die DGL separieren und reduziert sich auf die Lösung des Integrals \ref{kra:equation:case1_int}.
+Im Fall von konstanten Koeffizienten $f(x), g(x), h(x)$, wird die Gleichung \eqref{kra:equation:riccati} zu
\begin{equation}
- y' = fy^2 + gy + h
+ y' = fy^2 + gy + h.
\end{equation}
+Durch Ausschreiben des Differentialquotienten
\begin{equation}
\frac{dy}{dx} = fy^2 + gy + h
\end{equation}
+erkennt man, dass die DGL separierbar ist. Die Lösung findet man nun durch die Berechnung des Integrals
\begin{equation} \label{kra:equation:case1_int}
- \int \frac{dy}{fy^2 + gy + h} = \int dx
+ \int \frac{dy}{fy^2 + gy + h} = \int dx.
\end{equation}
\subsubsection{Fall 2: Bekannte spezielle Lösung}
-Kennt man eine spezielle Lösung $y_p$ so kann die riccatische DGL mit Hilfe einer Substitution auf eine lineare Gleichung reduziert werden.
+Kennt man eine spezielle Lösung $y_p$, so kann die riccatische DGL mit Hilfe einer Substitution auf eine lineare Gleichung reduziert werden.
Wir wählen als Substitution
\begin{equation} \label{kra:equation:substitution}
- z = \frac{1}{y - y_p}
+ z = \frac{1}{y - y_p},
\end{equation}
-durch Umstellen von \ref{kra:equation:substitution} folgt
+durch Umstellen von \eqref{kra:equation:substitution} folgt
\begin{equation}
y = y_p + \frac{1}{z^2} \label{kra:equation:backsubstitution}
\end{equation}
\begin{equation}
- y' = y_p' - \frac{1}{z^2}z'
+ y' = y_p' - \frac{1}{z^2}z',
\end{equation}
-mit Einsetzten in die DGL \ref{kra:equation:riccati} folgt
+mit Einsetzten in die DGL \eqref{kra:equation:riccati} resultiert
\begin{equation}
y_p' - \frac{1}{z^2}z' = f(x)(y_p + \frac{1}{z}) + g(x)(y_p + \frac{1}{z})^2 + h(x)
\end{equation}
\begin{equation}
- -z^{2}y_p' + z' = -z^2\underbrace{(y_{p}f(x) + g(x)y_p^2 + h(x))}_{y_p'} - z(f(x) + 2y_{p}g(x)) - g(x)
+ -z^{2}y_p' + z' = -z^2\underbrace{(y_{p}f(x) + g(x)y_p^2 + h(x))}_{\displaystyle{y_p'}} - z(f(x) + 2y_{p}g(x)) - g(x)
\end{equation}
-was uns direkt auf eine lineare Differentialgleichung 1.Ordnung führt.
+was uns direkt auf die lineare Differentialgleichung 1. Ordnung
\begin{equation}
z' = -z(f(x) + 2y_{p}g(x)) - g(x)
\end{equation}
-Diese kann nun mit den Methoden zur Lösung von linearen Differentialgleichungen 1.Ordnung gelöst werden.
-Durch die Rücksubstitution \ref{kra:equation:backsubstitution} erhält man dann die Lösung von \ref{kra:equation:riccati}.
+führt.
+Diese kann nun mit den Methoden zur Lösung von linearen Differentialgleichungen 1. Ordnung gelöst werden.
+Durch die Rücksubstitution \eqref{kra:equation:backsubstitution} erhält man dann die Lösung von \eqref{kra:equation:riccati}.
-\subsection{Matrix-Riccati Differentialgleichung} \label{kra:loesung:riccati}
-% Lösung matrix riccati
-Die Lösung der Matrix-Riccati Gleichung \ref{kra:equation:matrixriccati} erhalten wir nach \cite{kra:kalmanisae} folgendermassen
+\subsection{Matrix-Riccati-Differentialgleichung} \label{kra:loesung:riccati}
+Im Folgenden wollen wir uns anschauen wie die Matrix-Riccati-DGL entsteht und wie sie gelöst werden kann.
+Der Ausgangspunkt bildet die Matrix-Differentialgleichung
+\begin{equation}
+ \label{kra:equation:matrix-dgl}
+ \begin{pmatrix}
+ \dot{X}(t) \\
+ \dot{Y}(t)
+ \end{pmatrix}
+ =
+ \underbrace{
+ \begin{pmatrix}
+ A & B \\
+ C & D
+ \end{pmatrix}
+ }_{\displaystyle{H}},
+\end{equation}
+mit den allgemeinen quadratischen Matrizen $A, B, C$ und $D$ welche zusammen die sogennante Hamilonsche-Matrix bilden.
+Betrachten wir das Verhältniss von $Y$ zu $X$
+\[
+ P(t) = Y(t)X^{-1}
+\]
+und deren Ableitung $\dot{P}(t)$, so erhalten wir die Riccati-Matrix-DGL
+\[
+ \dot{P}(t) = C + DU - UA - UBU.
+\]
+
+Die Lösung erhalten wir dann mit
\begin{equation}
\label{kra:matrixriccati-solution}
\begin{pmatrix}
@@ -58,7 +86,7 @@ Die Lösung der Matrix-Riccati Gleichung \ref{kra:equation:matrixriccati} erhalt
\Phi(t_0, t)
\begin{pmatrix}
I(t) \\
- U_0(t)
+ P_0(t)
\end{pmatrix}
=
\begin{pmatrix}
@@ -67,11 +95,11 @@ Die Lösung der Matrix-Riccati Gleichung \ref{kra:equation:matrixriccati} erhalt
\end{pmatrix}
\begin{pmatrix}
I(t) \\
- U_0(t)
+ P_0(t)
\end{pmatrix}
\end{equation}
\begin{equation}
- U(t) =
+ P(t) =
\begin{pmatrix}
\Phi_{21}(t_0, t) + \Phi_{22}(t_0, t)
\end{pmatrix}
@@ -80,7 +108,4 @@ Die Lösung der Matrix-Riccati Gleichung \ref{kra:equation:matrixriccati} erhalt
\end{pmatrix}
^{-1}
\end{equation}
-wobei $\Phi(t, t_0)$ die sogenannte Zustandsübergangsmatrix ist.
-\begin{equation}
- \Phi(t_0, t) = e^{H(t - t_0)}
-\end{equation}
+wobei $\Phi(t_0, t) = e^{H(t - t_0)}$ die sogenannte Zustandsübergangsmatrix von \eqref{kra:equation:matrix-dgl} ist \cite{kra:kalmanisae}.