diff options
Diffstat (limited to 'buch/papers/kreismembran/teil3.tex')
-rw-r--r-- | buch/papers/kreismembran/teil3.tex | 102 |
1 files changed, 70 insertions, 32 deletions
diff --git a/buch/papers/kreismembran/teil3.tex b/buch/papers/kreismembran/teil3.tex index 73dee0f..bef8b5f 100644 --- a/buch/papers/kreismembran/teil3.tex +++ b/buch/papers/kreismembran/teil3.tex @@ -3,38 +3,76 @@ % % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % -\section{Teil 3 +\section{Lösungsmethode 2: Transformationsmethode \label{kreismembran:section:teil3}} -\rhead{Teil 3} -Sed ut perspiciatis unde omnis iste natus error sit voluptatem -accusantium doloremque laudantium, totam rem aperiam, eaque ipsa -quae ab illo inventore veritatis et quasi architecto beatae vitae -dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas sit -aspernatur aut odit aut fugit, sed quia consequuntur magni dolores -eos qui ratione voluptatem sequi nesciunt. Neque porro quisquam -est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci -velit, sed quia non numquam eius modi tempora incidunt ut labore -et dolore magnam aliquam quaerat voluptatem. Ut enim ad minima -veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam, -nisi ut aliquid ex ea commodi consequatur? Quis autem vel eum iure -reprehenderit qui in ea voluptate velit esse quam nihil molestiae -consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla -pariatur? - -\subsection{De finibus bonorum et malorum -\label{kreismembran:subsection:malorum}} -At vero eos et accusamus et iusto odio dignissimos ducimus qui -blanditiis praesentium voluptatum deleniti atque corrupti quos -dolores et quas molestias excepturi sint occaecati cupiditate non -provident, similique sunt in culpa qui officia deserunt mollitia -animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis -est et expedita distinctio. Nam libero tempore, cum soluta nobis -est eligendi optio cumque nihil impedit quo minus id quod maxime -placeat facere possimus, omnis voluptas assumenda est, omnis dolor -repellendus. Temporibus autem quibusdam et aut officiis debitis aut -rerum necessitatibus saepe eveniet ut et voluptates repudiandae -sint et molestiae non recusandae. Itaque earum rerum hic tenetur a -sapiente delectus, ut aut reiciendis voluptatibus maiores alias -consequatur aut perferendis doloribus asperiores repellat. +\rhead{Lösungsmethode 2: Transformationsmethode} +Die Hankel-Transformation wird dann zur Lösung der Differentialgleichung verwendet. Es müssen jedoch einige Änderungen an dem Problem vorgenommen werden, damit es mit den Annahmen übereinstimmt, die für die Verwendung der Hankel-Transformation erforderlich sind. Das heisst, dass die Funktion u nur von der Entfernung zum Ausgangspunkt abhängt. Wir führen also das Konzept einer unendlichen und achsensymmetrischen Membran ein: +\begin{equation*} + \frac{\partial^2u}{\partial t^2} + = + c^2 \left(\frac{\partial^2 u}{\partial r^2} + + + \frac{1}{r} + \frac{\partial u}{\partial r} \right), \quad 0<r<\infty, \quad t>0 + \label{eq:PDE_inf_membane} +\end{equation*} + +\begin{align} + u(r,0)=f(r), \quad \frac{\partial}{\partial t} u(r,0) = g(r), \quad \text{für} \quad 0<r<\infty + \label{eq:PDE_inf_membane_RB} +\end{align} + +Mit Anwendung der Hankel-Transformation nullter Ordnung in Abhängigkeit von $r$ auf die Gleichungen \eqref{eq:PDE_inf_membane} und \eqref{eq:PDE_inf_membane_RB}: + +\begin{align} + \tilde{u}(\kappa,t)=\int_{0}^{\infty}r J_0(\kappa r)u(r,t) dr, +\end{align} + +bekommt man: + +\begin{equation*} + \frac{d^2 \tilde{u}}{dt^2} + c^2\kappa^2\tilde{u}=0, +\end{equation*} + +\begin{equation*} + \tilde{u}(\kappa,0)=\tilde{f}(\kappa), \quad + \frac{\partial}{\partial t}\tilde{u}(\kappa,0)=\tilde{g}(\kappa). +\end{equation*} + +Die allgemeine Lösung für diese Transformation lautet, wie schon gesehen, wie folgt + +\begin{equation*} + \tilde{u}(\kappa,t)=\tilde{f}(\kappa)\cos(c\kappa t) + \frac{1}{c\kappa}\tilde{g}(\kappa)\sin(c\kappa t). +\end{equation*} + +Wendet man an nun die inverse Hankel-Transformation an, so erhält man die formale Lösung + +\begin{align} + u(r,t)=\int_{0}^{\infty}\kappa\tilde{f}(\kappa)\cos(c\kappa t) J_0(\kappa r) d\kappa +\frac{1}{c}\int_{0}^{\infty}\tilde{g}(\kappa)\sin(c\kappa t)J_0(\kappa r) d\kappa. + \label{eq:formale_lösung} +\end{align} + +Es wird daher davon ausgegangen, dass sich die Membran verformt und zum Zeitpunkt $t=0$ freigegeben wird + +\begin{equation*} + u(r,0)=f(r)=Aa(r^2 + a^2)^{-\frac{1}{2}}, \quad \frac{d}{dt}(r,0)=g(r)=0 +\end{equation*} + +so dass $\tilde{g}(\kappa)\equiv 0$ und + +\begin{equation*} + \tilde{f}(\kappa)=Aa\int_{0}^{\infty}r(a^2 + r^2)^{-\frac{1}{2}} J_0 (\kappa r) dr=\frac{Aa}{\kappa}e^{-a\kappa} +\end{equation*} + +Die formale Lösung \eqref{eq:formale_lösung} lautet also +\begin{align*} + u(r,t)&=Aa\int_{0}^{\infty}e^{-a\kappa} J_0(\kappa r)\cos(c\kappa t)dk=AaRe\int_{0}^{\infty}e^{-\kappa(a+ict)} J_0(\kappa r)dk\\ + &=AaRe\left\{r^2+\left(a+ict\right)^2\right\}^{-\frac{1}{2}} +\end{align*} + + +\subsection{Vergleich der Lösungen +\label{kreismembran:vergleich}} +Hier kommt noch der Vergleich der Lösungen ;) |