aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers/laguerre/definition.tex
diff options
context:
space:
mode:
Diffstat (limited to 'buch/papers/laguerre/definition.tex')
-rw-r--r--buch/papers/laguerre/definition.tex212
1 files changed, 180 insertions, 32 deletions
diff --git a/buch/papers/laguerre/definition.tex b/buch/papers/laguerre/definition.tex
index 5f6d8bd..e2062d2 100644
--- a/buch/papers/laguerre/definition.tex
+++ b/buch/papers/laguerre/definition.tex
@@ -3,46 +3,194 @@
%
% (c) 2022 Patrik Müller, Ostschweizer Fachhochschule
%
-\section{Definition
+\section{Herleitung%
+% \section{Einleitung
+% \section{Definition
\label{laguerre:section:definition}}
-\rhead{Definition}
+\rhead{Definition}%
+In einem ersten Schritt möchten wir die Laguerre-Polynome
+aus der Laguerre-\-Differentialgleichung herleiten.
+Zudem möchten wir die Lösung auch auf
+die assoziierten Laguerre-Polynome ausweiten.
+Im Anschluss möchten wir dann noch die Orthogonalität dieser Polynome beweisen.
+\subsection{Assoziierte Laguerre-Differentialgleichung}
+Die assoziierte Laguerre-Differentialgleichung ist gegeben durch
\begin{align}
- x y''(x) + (1 - x) y'(x) + n y(x)
- =
- 0
- \label{laguerre:dgl}
+x y''(x) + (\nu + 1 - x) y'(x) + n y(x)
+=
+0
+, \quad
+n \in \mathbb{N}
+, \quad
+x \in \mathbb{R}
+\label{laguerre:dgl}
+.
\end{align}
+Spannenderweise wurde die assoziierte Laguerre-Differentialgleichung
+zuerst von Yacovlevich Sonine (1849 - 1915) beschrieben,
+aber aufgrund ihrer Ähnlichkeit nach Laguerre benannt.
+Die klassische Laguerre-Diffentialgleichung erhält man, wenn $\nu = 0$.
+{\subsection{Potenzreihenansatz}
+\label{laguerre:subsection:potenzreihenansatz}}
+Hier wird die assoziierte Laguerre-Differentialgleichung verwendet,
+weil die Lösung mit derselben Methode berechnet werden kann.
+Zusätzlich erhält man aber die Lösung für den allgmeinen Fall.
+Wir stellen die Vermutung auf,
+dass die Lösungen orthogonale Polynome sind.
+Die Orthogonalität der Lösung werden wir im
+Abschnitt~\ref{laguerre:subsection:orthogonal} beweisen.
+Zur Lösung von \eqref{laguerre:dgl} verwenden wir aufgrund
+der getroffenen Vermutungen einen Potenzreihenansatz.
+Der Potenzreihenansatz ist gegeben als
+% Da wir bereits wissen,
+% dass die Lösung orthogonale Polynome sind,
+% erscheint dieser Ansatz sinnvoll.
+\begin{align*}
+y(x)
+& =
+\sum_{k=0}^\infty a_k x^k
+% \\
+.
+\end{align*}
+Für die 1. und 2. Ableitungen erhalten wir
+\begin{align*}
+y'(x)
+& =
+\sum_{k=1}^\infty k a_k x^{k-1}
+=
+\sum_{k=0}^\infty (k+1) a_{k+1} x^k
+\\
+y''(x)
+& =
+\sum_{k=2}^\infty k (k-1) a_k x^{k-2}
+=
+\sum_{k=1}^\infty (k+1) k a_{k+1} x^{k-1}
+.
+\end{align*}
+
+\subsection{Lösen der Laguerre-Differentialgleichung}
+Setzt man nun den Potenzreihenansatz in
+\eqref{laguerre:dgl}
+%die Differentialgleichung
+ein,
+% erhält man
+resultiert
+\begin{align*}
+\sum_{k=1}^\infty (k+1) k a_{k+1} x^k
++
+(\nu + 1)\sum_{k=0}^\infty (k+1) a_{k+1} x^k
+-
+\sum_{k=0}^\infty k a_k x^k
++
+n \sum_{k=0}^\infty a_k x^k
+ & =
+0 \\
+\sum_{k=1}^\infty
+\left[ (k+1) k a_{k+1} + (\nu + 1)(k+1) a_{k+1} - k a_k + n a_k \right] x^k
+ & =
+0.
+\end{align*}
+Daraus lässt sich die Rekursionsbeziehung
\begin{align}
- L_n(x)
- =
- \sum_{k=0}^{n}
- \frac{(-1)^k}{k!}
- \begin{pmatrix}
- n \\
- k
- \end{pmatrix}
- x^k
- \label{laguerre:polynom}
+a_{k+1}
+ & =
+\frac{k-n}{(k+1) (k + \nu + 1)} a_k
+\label{laguerre:rekursion}
\end{align}
-
+ableiten.
+Für ein konstantes $n$ erhalten wir als Potenzreihenlösung ein Polynom vom Grad
+$n$,
+denn für $k=n$ wird $a_{n+1} = 0$ und damit auch $a_{n+2}=a_{n+3}=\ldots=0$.
+Aus %der Rekursionsbeziehung
+\eqref{laguerre:rekursion} ist zudem ersichtlich,
+dass $a_0 \neq 0$ beliebig gewählt werden kann.
+Wählen wir nun $a_0 = 1$, dann folgt für die Koeffizienten $a_1, a_2, a_3$
+\begin{align*}
+a_1
+=
+-\frac{n}{1 \cdot (\nu + 1)}
+, & &
+a_2
+=
+\frac{(n-1)n}{1 \cdot 2 \cdot (\nu + 1)(\nu + 2)}
+, & &
+a_3
+=
+-\frac{(n-2)(n-1)n}{1 \cdot 2 \cdot 3 \cdot (\nu + 1)(\nu + 2)(\nu + 3)}
+\end{align*}
+und allgemein
+\begin{align*}
+k
+ & \leq
+n:
+ &
+a_k
+ & =
+(-1)^k \frac{n!}{(n-k)!} \frac{1}{k!(\nu + 1)_k}
+=
+\frac{(-1)^k}{(\nu + 1)_k} \binom{n}{k}
+\\
+k & >n:
+ &
+a_k
+ & =
+0.
+\end{align*}
+Somit erhalten wir für $\nu = 0$ die Laguerre-Polynome
\begin{align}
- x y''(x) + (\alpha + 1 - x) y'(x) + n y(x)
- =
- 0
- \label{laguerre:generell_dgl}
+L_n(x)
+=
+\sum_{k=0}^{n} \frac{(-1)^k}{k!} \binom{n}{k} x^k
+\label{laguerre:polynom}
\end{align}
-
+und mit $\nu \in \mathbb{R}$ die assoziierten Laguerre-Polynome
\begin{align}
- L_n^\alpha (x)
- =
- \sum_{k=0}^{n}
- \frac{(-1)^k}{k!}
- \begin{pmatrix}
- n + \alpha \\
- n - k
- \end{pmatrix}
- x^k
- \label{laguerre:polynom}
+L_n^\nu(x)
+=
+\sum_{k=0}^{n} \frac{(-1)^k}{(\nu + 1)_k} \binom{n}{k} x^k.
+\label{laguerre:allg_polynom}
\end{align}
+Die Laguerre-Polynome von Grad $0$ bis $7$ sind in
+Abbildung~\ref{laguerre:fig:polyeval} dargestellt.
+\begin{figure}
+\centering
+% \scalebox{0.8}{\input{papers/laguerre/images/laguerre_poly.pgf}}
+\includegraphics[width=0.9\textwidth]{papers/laguerre/images/laguerre_poly.pdf}
+\caption{Laguerre-Polynome vom Grad $0$ bis $7$}
+\label{laguerre:fig:polyeval}
+\end{figure}
+
+\subsection{Analytische Fortsetzung}
+Durch die analytische Fortsetzung können wir zudem noch die zweite Lösung der
+Differentialgleichung erhalten.
+Laut \eqref{buch:funktionentheorie:singularitäten:eqn:w1} hat die Lösung
+die Form
+\begin{align*}
+\Xi_n(x)
+=
+L_n(x) \log(x) + \sum_{k=1}^\infty d_k x^k
+.
+\end{align*}
+Eine Herleitung dazu lässt sich im
+Abschnitt \ref{buch:funktionentheorie:subsection:dglsing}
+im ersten Teil des Buches finden.
+Nach einigen aufwändigen Rechnungen,
+% die am besten ein Computeralgebrasystem übernimmt,
+die den Rahmen dieses Kapitel sprengen würden,
+erhalten wir
+\begin{align*}
+\Xi_n
+=
+L_n(x) \log(x)
++
+\sum_{k=1}^n \frac{(-1)^k}{k!} \binom{n}{k}
+(\alpha_{n-k} - \alpha_n - 2 \alpha_k)x^k
++
+(-1)^n \sum_{k=1}^\infty \frac{(k-1)!n!}{((n+k)!)^2} x^{n+k},
+\end{align*}
+wobei $\alpha_0 = 0$ und $\alpha_k =\sum_{i=1}^k i^{-1}$,
+$\forall k \in \mathbb{N}$.
+% https://www.math.kit.edu/iana1/lehre/hm3phys2012w/media/laguerre.pdf
+% http://www.physics.okayama-u.ac.jp/jeschke_homepage/E4/kapitel4.pdf