aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers/laguerre/eigenschaften.tex
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--buch/papers/laguerre/eigenschaften.tex111
1 files changed, 108 insertions, 3 deletions
diff --git a/buch/papers/laguerre/eigenschaften.tex b/buch/papers/laguerre/eigenschaften.tex
index b7597e5..4adbe86 100644
--- a/buch/papers/laguerre/eigenschaften.tex
+++ b/buch/papers/laguerre/eigenschaften.tex
@@ -3,6 +3,111 @@
%
% (c) 2022 Patrik Müller, Ostschweizer Fachhochschule
%
-\section{Eigenschaften
-\label{laguerre:section:eigenschaften}}
-\rhead{Eigenschaften} \ No newline at end of file
+\section{Orthogonalität
+ \label{laguerre:section:orthogonal}}
+Im Abschnitt~\ref{laguerre:section:definition}
+haben wir die Behauptung aufgestellt,
+dass die Laguerre-Polynome orthogonal sind.
+Zu dieser Behauptung möchten wir nun einen Beweis liefern.
+Wenn wir \eqref{laguerre:dgl} in ein
+Sturm-Liouville-Problem umwandeln können, haben wir bewiesen, dass es sich
+bei den Laguerre-Polynomen um orthogonale Polynome handelt (siehe
+Abschnitt~\ref{buch:integrale:subsection:sturm-liouville-problem}).
+Der Beweis kann äquivalent auch über den Sturm-Liouville-Operator
+\begin{align}
+S
+=
+\frac{1}{w(x)} \left(-\frac{d}{dx}p(x) \frac{d}{dx} + q(x) \right).
+\label{laguerre:slop}
+\end{align}
+und den Laguerre-Operator
+\begin{align}
+\Lambda
+=
+x \frac{d}{dx^2} + (\nu + 1 -x) \frac{d}{dx}
+\end{align}
+erhalten werden,
+indem wir diese Operatoren einander gleichsetzen.
+Aus der Beziehung
+\begin{align}
+S
+ & =
+\Lambda
+\nonumber
+\\
+\frac{1}{w(x)} \left(-\frac{d}{dx}p(x) \frac{d}{dx} + q(x) \right)
+ & =
+x \frac{d^2}{dx^2} + (\nu + 1 - x) \frac{d}{dx}
+\label{laguerre:sl-lag}
+\end{align}
+lässt sich sofort erkennen, dass $q(x) = 0$.
+Ausserdem ist ersichtlich, dass $p(x)$ die Differentialgleichung
+\begin{align*}
+x \frac{dp}{dx}
+=
+-(\nu + 1 - x) p
+\end{align*}
+erfüllen muss.
+Durch Separation erhalten wir dann
+\begin{align*}
+\int \frac{dp}{p}
+ & =
+-\int \frac{\nu + 1 - x}{x} \, dx
+=
+-\int \frac{\nu + 1}{x} \, dx - \int 1\, dx
+\\
+\log p
+ & =
+-(\nu + 1)\log x - x + c
+\\
+p(x)
+ & =
+-C x^{\nu + 1} e^{-x}
+.
+\end{align*}
+Eingefügt in Gleichung~\eqref{laguerre:sl-lag} ergibt sich
+\begin{align*}
+\frac{C}{w(x)}
+\left(
+x^{\nu+1} e^{-x} \frac{d^2}{dx^2} +
+(\nu + 1 - x) x^{\nu} e^{-x} \frac{d}{dx}
+\right)
+=
+x \frac{d^2}{dx^2} + (\nu + 1 - x) \frac{d}{dx}.
+\end{align*}
+Mittels Koeffizientenvergleich kann nun abgelesen werden, dass $w(x) = x^\nu
+e^{-x}$ und $C=1$ mit $\nu > -1$.
+Die Gewichtsfunktion $w(x)$ wächst für $x\rightarrow-\infty$ sehr schnell an,
+deshalb ist die Laguerre-Gewichtsfunktion nur geeignet für den
+Definitionsbereich $(0, \infty)$.
+Bleibt nur noch sicherzustellen, dass die Randbedingungen,
+\begin{align}
+k_0 y(0) + h_0 p(0)y'(0)
+ & =
+0
+\label{laguerre:sllag_randa}
+\\
+k_\infty y(\infty) + h_\infty p(\infty) y'(\infty)
+ & =
+0
+\label{laguerre:sllag_randb}
+\end{align}
+mit $|k_i|^2 + |h_i|^2 \neq 0,\,\forall i \in \{0, \infty\}$, erfüllt sind.
+Am linken Rand (Gleichung~\eqref{laguerre:sllag_randa}) kann $y(0) = 1$, $k_0 =
+0$ und $h_0 = 1$ verwendet werden,
+was auch die Laguerre-Polynome ergeben haben.
+Für den rechten Rand ist die Bedingung (Gleichung~\eqref{laguerre:sllag_randb})
+\begin{align*}
+\lim_{x \rightarrow \infty} p(x) y'(x)
+ & =
+\lim_{x \rightarrow \infty} -x^{\nu + 1} e^{-x} y'(x)
+=
+0
+\end{align*}
+für beliebige Polynomlösungen erfüllt für $k_\infty=0$ und $h_\infty=1$.
+Damit können wir schlussfolgern:
+Die verallgemeinerten Laguerre-Polynome sind orthogonal
+bezüglich des Skalarproduktes auf dem Intervall $(0, \infty)$
+mit der verallgemeinerten Laguerre\--Gewichtsfunktion $w(x)=x^\nu e^{-x}$.
+Die Laguerre-Polynome ($\nu=0$) sind somit orthognal im Intervall $(0, \infty)$
+mit der Gewichtsfunktion $w(x)=e^{-x}$.