aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers/nav/bsp2.tex
diff options
context:
space:
mode:
Diffstat (limited to 'buch/papers/nav/bsp2.tex')
-rw-r--r--buch/papers/nav/bsp2.tex236
1 files changed, 236 insertions, 0 deletions
diff --git a/buch/papers/nav/bsp2.tex b/buch/papers/nav/bsp2.tex
new file mode 100644
index 0000000..8d9083b
--- /dev/null
+++ b/buch/papers/nav/bsp2.tex
@@ -0,0 +1,236 @@
+\section{Beispielrechnung}
+\rhead{Beispielrechnung}
+
+\subsection{Einführung}
+In diesem Abschnitt wird die Theorie vom Abschnitt \ref{sta} in einem Praxisbeispiel angewendet.
+Wir haben die Deklination, Rektaszension, Höhe der beiden Planeten Deneb und Arktur und die Sternzeit von Greenwich als Ausgangslage.
+Die Deklinationen und Rektaszensionen sind von einem vergangenen Datum und die Höhe der Gestirne und die Sternzeit wurden digital in einer Stadt in Japan mit den Koordinaten 35.716672 N, 140.233336 E bestimmt.
+Wir werden nachrechnen, dass wir mit unserer Methode genau auf diese Koordinaten kommen.
+\subsection{Vorgehen}
+Unser Vorgehen erschliesst sich aus unserer Methode, die wir im Abschnitt \ref{p} theoretisch erklärt haben.
+\begin{compactenum}
+\item
+Koordinaten der Bildpunkte der Gestirne bestimmen
+\item
+Dreiecke aufzeichnen und richtig beschriften
+\item
+Dreieck ABC bestimmmen
+\item
+Dreieck BPC bestimmen
+\item
+Dreieck ABP bestimmen
+\item
+Geographische Breite bestimmen
+\item
+Geographische Länge bestimmen
+\end{compactenum}
+
+\subsection{Ausgangslage}
+\hbox to\textwidth{%
+\begin{minipage}{8.4cm}
+Die Rektaszension und die Sternzeit sind in der Regel in Stunden angegeben.
+Für die Umrechnung in Grad kann folgender Zusammenhang verwendet werden:
+\[
+\text{Stunden} \cdot 15 = \text{Grad}.
+\]
+Dies wurde hier bereits gemacht.
+\begin{center}
+\begin{tabular}{l l >{$}l<{$}}
+Sternzeit $s$ & $118.610804^\circ$ \\
+Deneb &\\
+ & Rektaszension $RA_{\text{Deneb}}$ & 310.55058^\circ\\
+ & Deklination $DEC_{\text{Deneb}}$ & \phantom{0}45.361194^\circ \\
+ & Höhe $h_c$ & \phantom{0}50.256027^\circ \\
+Arktur &\\
+ & Rektaszension $RA_{\text{Arktur}}$& 214.17558^\circ \\
+ & Deklination $DEC_{\text{Arktur}}$ & \phantom{0}19.063222^\circ \\
+ & Höhe $h_b$ & \phantom{0}47.427444^\circ \\
+\end{tabular}
+\end{center}
+\end{minipage}%
+\hfill%
+\raisebox{-2cm}{\includegraphics{papers/nav/bilder/position1.pdf}}%
+}
+\medskip
+
+\subsection{Koordinaten der Bildpunkte}
+Als erstes benötigen wir die Koordinaten der Bildpunkte von Arktur und Deneb.
+$\delta$ ist die Breite, $\lambda$ die Länge.
+\begin{align}
+\delta_{\text{Deneb}}&=DEC_{\text{Deneb}} = \underline{\underline{45.361194^\circ}} \nonumber \\
+\lambda_{\text{Deneb}}&=RA_{\text{Deneb}} - s = 310.55058^\circ -118.610804^\circ =\underline{\underline{191.939776^\circ}} \nonumber \\
+\delta_{\text{Arktur}}&=DEC_{\text{Arktur}} = \underline{\underline{19.063222^\circ}} \nonumber \\
+\lambda_{\text{Arktur}}&=RA_{\text{Arktur}} - s = 214.17558^\circ -118.610804^\circ = \underline{\underline{5.5647759^\circ}} \nonumber
+\end{align}
+
+
+\subsection{Dreiecke definieren}
+\begin{figure}
+\hbox{%
+\includegraphics{papers/nav/bilder/beispiele1.pdf}%
+\hfill%
+\includegraphics{papers/nav/bilder/beispiele2.pdf}}
+\caption{Arktur-Deneb; Spica-Altiar
+\label{nav:beispiele}}
+\end{figure}
+Das Festlegen der Dreiecke ist essenziell für die korrekten Berechnungen.
+Ein Problem, welches in der Theorie nicht berücksichtigt wurde ist, dass der Punkt $P$ nicht zwingend unterhalb der Seite $a$ sein muss.
+Wenn man das nicht berücksichtigt, erhält man falsche oder keine Ergebnisse.
+In der Realität weiss man jedoch ungefähr auf welchem Breitengrad man ist, so kann man relativ einfach entscheiden, ob der eigene Standort über $a$ ist oder nicht.
+Beim unserem genutzten Paar Arktur-Deneb ist dies kein Problem, da der Punkt unterhalb der Seite $a$ liegt.
+Würde man aber das Paar Altair-Spica nehmen, liegt $P$ über $a$
+(vgl. Abbildung\ref{nav:beispiele}) und man müsste trigonometrisch
+anders vorgehen.
+
+\subsection{Dreieck $ABC$}
+\vspace*{-3mm}
+\hbox to\textwidth{%
+\begin{minipage}{8.4cm}%
+Nun berechnen wir alle Seitenlängen $a$, $b$, $c$ und die
+Innnenwinkel $\alpha$, $\beta$ und $\gamma$.
+Wir können $b$ und $c$ mit den geltenten Zusammenhängen des nautischen Dreiecks wie folgt bestimmen:
+\begin{align*}
+b
+&=
+90^\circ-DEC_{\text{Deneb}}
+=
+90^\circ - 45.361194^\circ
+\\
+&=
+\underline{\underline{44.638806^\circ}}
+\\
+c
+&=
+90^\circ-DEC_{\text{Arktur}}
+=
+90^\circ - 19.063222^\circ
+\\
+&=
+\underline{\underline{70.936778^\circ}}
+\end{align*}
+\end{minipage}%
+\hfill%
+\raisebox{-2.4cm}{\includegraphics{papers/nav/bilder/position2.pdf}}%
+}
+Um $a$ zu bestimmen, benötigen wir zuerst den Winkel
+\begin{align*}
+\alpha
+&=
+RA_{\text{Deneb}} - RA_{\text{Arktur}}
+=
+310.55058^\circ -214.17558^\circ
+\\
+&=
+\underline{\underline{96.375^\circ}}.
+\end{align*}
+Danach nutzen wir den sphärischen Winkelkosinussatz, um $a$ zu berechnen:
+\begin{align*}
+ a &= \cos^{-1}(\cos(b) \cdot \cos(c) + \sin(b) \cdot \sin(c) \cdot \cos(\alpha)) \\
+ &= \cos^{-1}(\cos(44.638806^\circ) \cdot \cos(70.936778^\circ) + \sin(44.638806^\circ) \cdot \sin(70.936778^\circ) \cdot \cos(96.375^\circ)) \\
+ &= \underline{\underline{80.8707801^\circ}}
+\end{align*}
+Für $\beta$ und $\gamma$ nutzen wir den sphärischen Seitenkosinussatz:
+\begin{align*}
+ \beta &= \cos^{-1} \bigg[\frac{\cos(b)-\cos(a) \cdot \cos(c)}{\sin(a) \cdot \sin(c)}\bigg] \\
+ &= \cos^{-1} \bigg[\frac{\cos(44.638806^\circ)-\cos(80.8707801^\circ) \cdot \cos(70.936778^\circ)}{\sin(80.8707801^\circ) \cdot \sin(70.936778^\circ)}\bigg] \\
+ &= \underline{\underline{45.0115314^\circ}}
+\\
+\gamma &= \cos^{-1} \bigg[\frac{\cos(c)-\cos(b) \cdot \cos(a)}{\sin(a) \cdot \sin(b)}\bigg] \\
+ &= \cos^{-1} \bigg[\frac{\cos(70.936778^\circ)-\cos(44.638806^\circ) \cdot \cos(80.8707801^\circ)}{\sin(80.8707801^\circ) \cdot \sin(44.638806^\circ)}\bigg] \\
+ &=\underline{\underline{72.0573328^\circ}}
+\end{align*}
+
+
+
+\subsection{Dreieck $BPC$}
+\vspace*{-4mm}
+\hbox to\textwidth{%
+\begin{minipage}{8.4cm}%
+Als nächstes berechnen wir die Seiten $h_B$, $h_B$ und die Innenwinkel $\beta_1$ und $\gamma_1$.
+\begin{align*}
+h_B&=90^\circ - pbb
+ = 90^\circ - 47.42744^\circ \\
+ &= \underline{\underline{42.572556^\circ}}
+\\
+ h_C &= 90^\circ - pc
+ = 90^\circ - 50.256027^\circ \\
+ &= \underline{\underline{39.743973^\circ}}
+\end{align*}
+\end{minipage}%
+\hfill%
+\raisebox{-2.8cm}{\includegraphics{papers/nav/bilder/position3.pdf}}%
+}
+\begin{align*}
+\beta_1 &= \cos^{-1} \bigg[\frac{\cos(h_c)-\cos(a) \cdot \cos(h_B)}{\sin(a) \cdot \sin(h_B)}\bigg] \\
+ &= \cos^{-1} \bigg[\frac{\cos(39.743973^\circ)-\cos(80.8707801^\circ) \cdot \cos(42.572556^\circ)}{\sin(80.8707801^\circ) \cdot \sin(42.572556^\circ)}\bigg] \\
+ &=\underline{\underline{12.5211127^\circ}}
+\\
+\gamma_1 &= \cos^{-1} \bigg[\frac{\cos(h_b)-\cos(a) \cdot \cos(h_C)}{\sin(a) \cdot \sin(h_C)}\bigg] \\
+ &= \cos^{-1} \bigg[\frac{\cos(42.572556^\circ)-\cos(80.8707801^\circ) \cdot \cos(39.743973^\circ)}{\sin(80.8707801^\circ) \cdot \sin(39.743973^\circ)}\bigg] \\
+ &=\underline{\underline{13.2618475^\circ}}
+\end{align*}
+
+\subsection{Dreieck $ABP$}
+\vspace*{-2mm}
+\hbox to\textwidth{%
+\begin{minipage}{8.4cm}%
+Als erstes müssen wir den Winkel $\beta_2$ berechnen:
+\begin{align*}
+ \beta_2 &= \beta + \beta_1 = 45.011513^\circ + 12.5211127^\circ \\
+ &=\underline{\underline{44.6687451^\circ}}
+\end{align*}
+Danach können wir mithilfe von $\beta_2$, $c$ und $h_B$ die Seite $l$ berechnen:
+\begin{align*}
+l
+&=
+\cos^{-1}(\cos(c) \cdot \cos(h_B)
+ + \sin(c) \cdot \sin(h_B) \cdot \cos(\beta_2)) \\
+&=
+\cos^{-1}(\cos(70.936778^\circ) \cdot \cos(42.572556^\circ)\\
+&\qquad + \sin(70.936778^\circ) \cdot \sin(42.572556^\circ) \cdot \cos(57.5326442^\circ)) \\
+&= \underline{\underline{54.2833404^\circ}}
+\end{align*}
+\end{minipage}%
+\hfill%
+\raisebox{-2.0cm}{\includegraphics{papers/nav/bilder/position4.pdf}}%
+}
+
+\medskip
+
+Damit wir gleich den Längengrad berechnen können, benötigen wir noch den Winkel $\omega$:
+\begin{align*}
+ \omega &= \cos^{-1} \bigg[\frac{\cos(h_B)-\cos(c) \cdot \cos(l)}{\sin(c) \cdot \sin(l)}\bigg] \\
+ &=\cos^{-1} \bigg[\frac{\cos(42.572556^\circ)-\cos(70.936778^\circ) \cdot \cos(54.2833404^\circ)}{\sin(70.936778^\circ) \cdot \sin(54.2833404^\circ)}\bigg] \\
+ &= \underline{\underline{44.6687451^\circ}}
+\end{align*}
+
+\subsection{Längengrad und Breitengrad bestimmen}
+
+\begin{align*}
+\delta &= 90^\circ - l &
+ \lambda &= \lambda_{\text{Arktur}} + \omega \\
+&= 90^\circ - 54.2833404 &
+ &= 95.5647759^\circ + 44.6687451^\circ \\
+&= \underline{\underline{35.7166596^\circ}} &
+ &= \underline{\underline{140.233521^\circ}}
+\end{align*}
+Wie wir sehen, stimmen die berechneten Koordinaten mit den Koordinaten des Punktes, an welchem gemessen wurde überein.
+
+\subsection{Fazit}
+Die theoretische Anleitung im Abschnitt \ref{sta} scheint grundsätzlich zu funktionieren.
+Allerdings gab es zwei interessante Probleme.
+
+Einerseits das Problem, ob der Punkt $P$ sich oberhalb oder unterhalb von $a$ befindet.
+Da wir eigentlich wussten, wo der gesuchte Punkt $P$ ist, konnten wir das Dreieck anhand der Koordinaten der Bildpunkte richtig aufstellen.
+In der Praxis muss man aber schon wissen, auf welchem Breitengrad man ungefähr ist.
+Dies weis man in der Regeln aber, da die eigene Breite die Höhe des Polarsterns ist.
+Diese Höhe wird mit dem Sextant gemessen.
+
+Andererseits ist da noch ein Problem mit dem Sinussatz.
+Beim Sinussatz gibt es immer zwei Lösungen, weil \[ \sin(\pi-a)=\sin(a).\]
+Da kann es sein (und war in unserem Fall auch so), dass man das falsche Ergebnis erwischt.
+Wegen dieser Erkenntnis haben wir nur Kosinussätze verwendet und dies ebenfalls im Abschnitt \ref{sta} abgeändert, da es für den Leser auch relevant sein kann, wenn er es Probieren möchte.
+
+
+
+