aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers/nav
diff options
context:
space:
mode:
Diffstat (limited to 'buch/papers/nav')
-rw-r--r--buch/papers/nav/beispiel.txt22
-rw-r--r--buch/papers/nav/bsp.tex139
-rw-r--r--buch/papers/nav/main.tex1
3 files changed, 143 insertions, 19 deletions
diff --git a/buch/papers/nav/beispiel.txt b/buch/papers/nav/beispiel.txt
index 12d9e9e..b8716fc 100644
--- a/buch/papers/nav/beispiel.txt
+++ b/buch/papers/nav/beispiel.txt
@@ -5,31 +5,15 @@ Sternzeit: 7h 54m 26.593s 7.90738694h
Deneb
RA 20h 42m 12.14s 20.703372h
-DEC 45g 21' 40.3" 45.361194
+DEC 45 21' 40.3" 45.361194
-H 50g 15' 21.7" 50.256027
+H 50g 15' 17.1" 50.254750
Azi 59g 36' 02.0" 59.600555
-Altair
-
-RA 19h 51' 53.39" 19.864831h
-DEC 8g 55' 42.3 8.928416
-
-H 45g 27' 48.1" 45.463361
-Azi 117g 16' 14.1" 117.270583
-
-Arktur
-
-RA 14h 16' 42.14" 14.278372
-DEC 19g 03' 47.6 19.063222
-
-H 47g 25' 38.8" 47.427444
-Azi 259g 09' 38.4" 259.160666
-
Spica
RA 13h 26m 23.44s 13.439844h
-DEC -11g 16' 46.8" -11.279666
+DEC -11g 16' 46.8" 11.279666
H 18g 27' 30.0" 18.458333
Azi 240g 23' 52.5" 240.397916
diff --git a/buch/papers/nav/bsp.tex b/buch/papers/nav/bsp.tex
new file mode 100644
index 0000000..ac749c5
--- /dev/null
+++ b/buch/papers/nav/bsp.tex
@@ -0,0 +1,139 @@
+\section{Beispielrechnung}
+
+\subsection{Einführung}
+In diesem Abschnitt wird die Theorie vom Abschnitt 21.6 in einem Praxisbeispiel angewendet.
+Wir haben die Deklination, Rektaszension, Höhe der beiden Planeten Deneb und Arktur und die Sternzeit von Greenwich als Ausgangslage.
+Die Deklinationen und Rektaszensionen sind von einem vergangenen Datum und die Höhe der Gestirne und die Sternzeit wurden von unserem Dozenten digital in einer Stadt in Japan mit den Koordinaten 35.716672 N, 140.233336 E bestimmt.
+Wir werden rechnerisch beweisen, dass wir mit diesen Ergebnissen genau auf diese Koordinaten kommen.
+\subsection{Vorgehen}
+
+\begin{center}
+ \begin{tabular}{l l l}
+ 1. & Koordinaten der Bildpunkte der Gestirne bestimmen \\
+ 2. & Dreiecke aufzeichnen und richtig beschriften\\
+ 3. & Dreieck ABC bestimmmen\\
+ 4. & Dreieck BPC bestimmen \\
+ 5. & Dreieck ABP bestimmen \\
+ 6. & Geographische Breite bestimmen \\
+ 7. & Geographische Länge bestimmen \\
+ \end{tabular}
+\end{center}
+
+\subsection{Ausgangslage}
+Die Rektaszension und die Sternzeit sind in der Regeln in Stunden angegeben.
+Für die Umrechnung in Grad kann folgender Zusammenhang verwendet werden:
+\[ Stunden \cdot 15 = Grad\].
+Dies wurde hier bereits gemacht.
+\begin{center}
+ \begin{tabular}{l l l}
+ Sternzeit $s$ & $118.610804^\circ$ \\
+ Deneb&\\
+ & Rektaszension $RA_{Deneb}$& $310.55058^\circ$ \\
+ & Deklination $DEC_{Deneb}$& $45.361194^\circ$ \\
+ & Höhe $H_{Deneb}$ & $50.256027^\circ$ \\
+ Arktur &\\
+ & Rektaszension $RA_{Arktur}$& $214.17558^\circ$ \\
+ & Deklination $DEC_{Arktur}$& $19.063222^\circ$ \\
+ & Höhe $H_{Arktur}$ & $47.427444^\circ$ \\
+ \end{tabular}
+\end{center}
+\subsection{Koordinaten der Bildpunkte}
+Als erstes benötigen wir die Koordinaten der Bildpunkte von Arktur und Deneb.
+$\delta$ ist die Breite, $\lambda$ die Länge.
+\begin{align}
+\delta_{Deneb}&=DEC_{Deneb} = \underline{\underline{45.361194^\circ}} \nonumber \\
+\lambda_{Deneb}&=RA_{Deneb} - s = 310.55058^\circ -118.610804^\circ =\underline{\underline{191.939776^\circ}} \nonumber \\
+\delta_{Arktur}&=DEC_{Arktur} = \underline{\underline{19.063222^\circ}} \nonumber \\
+\lambda_{Arktur}&=RA_{Arktur} - s = 214.17558^\circ -118.610804^\circ = \underline{\underline{5.5647759^\circ}} \nonumber
+\end{align}
+
+
+\subsection{Dreiecke definieren}
+Das Festlegen der Dreiecke ist essenziell für die korrekten Berechnungen.
+BILD
+\subsection{Dreieck $ABC$}
+Nun berechnen wir alle Seitenlängen $a$, $b$, $c$ und die Innnenwinkel $\alpha$, $\beta$ und $\gamma$
+Wir können $b$ und $c$ mit den geltenten Zusammenhängen des nautischen Dreiecks wie folgt bestimmen:
+\begin{align}
+ b=90^\circ-DEC_{Deneb} = 90^\circ - 45.361194^\circ = \underline{\underline{44.638806^\circ}}\nonumber \\
+ c=90^\circ-DEC_{Arktur} = 90^\circ - 19.063222^\circ = \underline{\underline{70.936778^\circ}} \nonumber
+\end{align}
+Um $a$ zu bestimmen, benötigen wir zuerst den Winkel \[\alpha= RA_{Deneb} - RA_{Arktur} = 310.55058^\circ -214.17558^\circ = \underline{\underline{96.375^\circ}}.\]
+Danach nutzen wir den sphärischen Winkelkosinussatz, um $a$ zu berechnen:
+\begin{align}
+ a &= \cos^{-1}(\cos(b) \cdot \cos(c) + \sin(b) \cdot \sin(c) \cdot \cos(\alpha)) \nonumber \\
+ &= \cos^{-1}(\cos(44.638806) \cdot \cos(70.936778) + \sin(44.638806) \cdot \sin(70.936778) \cdot \cos(96.375)) \nonumber \\
+ &= \underline{\underline{80.8707801^\circ}} \nonumber
+\end{align}
+Für $\beta$ und $\gamma$ nutzen wir den sphärischen Seitenkosinussatz:
+\begin{align}
+ \beta &= \cos^{-1} \bigg[\frac{\cos(b)-\cos(a) \cdot \cos(c)}{\sin(a) \cdot \sin(c)}\bigg] \nonumber \\
+ &= \cos^{-1} \bigg[\frac{\cos(44.638806)-\cos(80.8707801) \cdot \cos(70.936778)}{\sin(80.8707801) \cdot \sin(70.936778)}\bigg] \nonumber \\
+ &= \underline{\underline{45.0115314^\circ}} \nonumber
+\end{align}
+
+ \begin{align}
+ \gamma &= \cos^{-1} \bigg[\frac{\cos(c)-\cos(b) \cdot \cos(a)}{\sin(a) \cdot \sin(b)}\bigg] \nonumber \\
+ &= \cos^{-1} \bigg[\frac{\cos(70.936778)-\cos(44.638806) \cdot \cos(80.8707801)}{\sin(80.8707801) \cdot \sin(44.638806)}\bigg] \nonumber \\
+ &=\underline{\underline{72.0573328^\circ}} \nonumber
+\end{align}
+\subsection{Dreieck $BPC$}
+Als nächstes berechnen wir die Seiten $pb$, $pc$ und die Innenwinkel $\beta_1$ und $\gamma_1$.
+\begin{align}
+ pb&=90^\circ - H_{Arktur} \nonumber \\
+ &= 90^\circ - 47.42744^\circ \nonumber \\
+ &= \underline{\underline{42.572556^\circ}} \nonumber
+\end{align}
+\begin{align}
+ pc &= 90^\circ - H_{Deneb} \nonumber \\
+ &= 90^\circ - 50.256027^\circ \nonumber \\
+ &= \underline{\underline{39.743973^\circ}} \nonumber
+\end{align}
+\begin{align}
+ \beta_1 &= \cos^{-1} \bigg[\frac{\cos(pc)-\cos(a) \cdot \cos(pb)}{\sin(a) \cdot \sin(pb)}\bigg] \nonumber \\
+ &= \cos^{-1} \bigg[\frac{\cos(39.743973)-\cos(80.8707801) \cdot \cos(42.572556)}{\sin(80.8707801) \cdot \sin(42.572556)}\bigg] \nonumber \\
+ &=\underline{\underline{12.5211127^\circ}} \nonumber
+\end{align}
+\begin{align}
+ \gamma_1 &= \cos^{-1} \bigg[\frac{\cos(pb)-\cos(a) \cdot \cos(pc)}{\sin(a) \cdot \sin(pc)}\bigg] \nonumber \\
+ &= \cos^{-1} \bigg[\frac{\cos(42.572556)-\cos(80.8707801) \cdot \cos(39.743973)}{\sin(80.8707801) \cdot \sin(39.743973)}\bigg] \nonumber \\
+ &=\underline{\underline{13.2618475^\circ}} \nonumber
+\end{align}
+
+\subsection{Dreieck $ABP$}
+Als erster müssen wir den Winkel $\kappa$ berechnen:
+\begin{align}
+ \kappa &= \beta + \beta_1 = 45.011513^\circ + 12.5211127^\circ \nonumber \\
+ &=\underline{\underline{44.6687451^\circ}} \nonumber
+\end{align}
+Danach können wir mithilfe von $\kappa$, $c$ und $pb$ die Seite $l$ berechnen:
+\begin{align}
+ l &= \cos^{-1}(\cos(c) \cdot \cos(pb) + \sin(c) \cdot \sin(pb) \cdot \cos(\kappa)) \nonumber \\
+ &= \cos^{-1}(\cos(70.936778) \cdot \cos(42.572556) + \sin(70.936778) \cdot \sin(42.572556) \cdot \cos(57.5326442)) \nonumber \\
+ &= \underline{\underline{54.2833404^\circ}} \nonumber
+\end{align}
+Damit wir gleich den Längengrad berechnen können, benötigen wir noch den Winkel $\omega$:
+\begin{align}
+ \omega &= \cos^{-1} \bigg[\frac{\cos(pb)-\cos(c) \cdot \cos(l)}{\sin(c) \cdot \sin(l)}\bigg] \nonumber \\
+ &=\cos^{-1} \bigg[\frac{\cos(42.572556)-\cos(70.936778) \cdot \cos(54.2833404)}{\sin(70.936778) \cdot \sin(54.2833404)}\bigg] \nonumber \\
+ &= \underline{\underline{44.6687451^\circ}} \nonumber
+\end{align}
+
+\subsection{Längengrad und Breitengrad bestimmen}
+
+\begin{align}
+ \delta &= 90^\circ - l \nonumber \\
+ &= 90^\circ - 54.2833404 \nonumber \\
+ &= \underline{\underline{35.7166596^\circ}} \nonumber
+\end{align}
+\begin{align}
+ \lambda &= \lambda_{Arktur} + \omega \nonumber \\
+ &= 95.5647759^\circ + 44.6687451^\circ \nonumber \\
+ &= \underline{\underline{140.233521^\circ}} \nonumber
+\end{align}
+Wie wir sehen, stimmen die berechneten Koordinaten mit den Koordinaten des Punktes, an welchem gemessen wurde überein.
+Unsere Methode scheint also zu funktionieren.
+
+
+
+
diff --git a/buch/papers/nav/main.tex b/buch/papers/nav/main.tex
index 4c52547..37bc83a 100644
--- a/buch/papers/nav/main.tex
+++ b/buch/papers/nav/main.tex
@@ -15,6 +15,7 @@
\input{papers/nav/sincos.tex}
\input{papers/nav/trigo.tex}
\input{papers/nav/nautischesdreieck.tex}
+\input{papers/nav/bsp.tex}
\printbibliography[heading=subbibliography]