aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers/parzyl/teil0.tex
diff options
context:
space:
mode:
Diffstat (limited to 'buch/papers/parzyl/teil0.tex')
-rw-r--r--buch/papers/parzyl/teil0.tex259
1 files changed, 244 insertions, 15 deletions
diff --git a/buch/papers/parzyl/teil0.tex b/buch/papers/parzyl/teil0.tex
index 09b4024..8be936d 100644
--- a/buch/papers/parzyl/teil0.tex
+++ b/buch/papers/parzyl/teil0.tex
@@ -3,20 +3,249 @@
%
% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
%
-\section{Teil 0\label{parzyl:section:teil0}}
-\rhead{Teil 0}
-Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam
-nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam
-erat, sed diam voluptua \cite{parzyl:bibtex}.
-At vero eos et accusam et justo duo dolores et ea rebum.
-Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum
-dolor sit amet.
-
-Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam
-nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam
-erat, sed diam voluptua.
-At vero eos et accusam et justo duo dolores et ea rebum. Stet clita
-kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit
-amet.
+\section{Einleitung\label{parzyl:section:teil0}}
+\rhead{Einleitung}
+%Die Laplace-Gleichung ist eine wichtige Gleichung in der Physik.
+%Mit ihr lässt sich zum Beispiel das elektrische Feld in einem ladungsfreien Raum bestimmen.
+%In diesem Kapitel wird die Lösung der Laplace-Gleichung im
+%parabolischen Zylinderkoordinatensystem genauer untersucht.
+Die Helmholtz-Gleichung ist eine wichtige Gleichung in der Physik.
+Mit ihr lässt sich zum Beispiel das Verhalten von elektromagnetischen Wellen beschreiben.
+In diesem Kapitel werden die Lösungen der Helmholtz-Gleichung im parabolischen Zylinderkoordinatensystem,
+die parabolischen Zylinderfunktionen, genauer untersucht.
+
+\subsection{Helmholtz-Gleichung}
+Die partielle Differentialgleichung
+\begin{equation}
+ \Delta f = \lambda f
+\end{equation}
+ist als Helmholtz-Gleichung bekannt und beschreibt das Eigenwert Problem für den Laplace-Operator.
+Sie ist eine der Gleichungen welche auftritt wenn die Wellengleichung
+\begin{equation}
+ \left ( \nabla^2 - \frac{1}{c^2}\frac{\partial^2}{\partial t^2} \right ) u(\textbf{r},t)
+ =
+ 0
+\end{equation}
+mit Hilfe von Separation
+\begin{equation}
+ u(\textbf{r},t) = A(\textbf{r})T(t)
+\end{equation}
+in zwei Differentialgleichungen aufgeteilt wird. Die Helmholtz-Gleichung ist der Teil,
+welcher zeitunabhängig ist
+\begin{equation}
+ \nabla^2 A(\textbf{r}) = \lambda A(\textbf{r}).
+\end{equation}
+
+%\subsection{Laplace Gleichung}
+%Die partielle Differentialgleichung
+%\begin{equation}
+% \Delta f = 0
+%\end{equation}
+%ist als Laplace-Gleichung bekannt.
+%Sie ist eine spezielle Form der Poisson-Gleichung
+%\begin{equation}
+% \Delta f = g
+%\end{equation}
+%mit $g$ als beliebiger Funktion.
+%In der Physik hat die Laplace-Gleichung in verschiedenen Gebieten
+%verwendet, zum Beispiel im Elektromagnetismus.
+%Das Gaussche Gesetz in den Maxwellgleichungen
+%\begin{equation}
+% \nabla \cdot E = \frac{\varrho}{\epsilon_0}
+%\label{parzyl:eq:max1}
+%\end{equation}
+%besagt, dass die Divergenz eines elektrischen Feldes an einem
+%Punkt gleich der Ladungsdichte an diesem Punkt ist.
+%Das elektrische Feld ist hierbei der Gradient des elektrischen
+%Potentials
+%\begin{equation}
+% \nabla \phi = E.
+%\end{equation}
+%Eingesetzt in \eqref{parzyl:eq:max1} resultiert
+%\begin{equation}
+% \nabla \cdot \nabla \phi = \Delta \phi = \frac{\varrho}{\epsilon_0},
+%\end{equation}
+%was eine Poisson-Gleichung ist.
+%An ladungsfreien Stellen ist der rechte Teil der Gleichung $0$.
+\subsection{Parabolische Zylinderkoordinaten
+\label{parzyl:subsection:finibus}}
+Das parabolischen Zylinderkoordinatensystem \cite{parzyl:coordinates} ist ein krummliniges Koordinatensystem,
+bei dem parabolische Zylinder die Koordinatenflächen bilden.
+Die Koordinate $(\sigma, \tau, z)$ sind in kartesischen Koordinaten ausgedrückt mit
+\begin{align}
+ x & = \sigma \tau \\
+ \label{parzyl:coordRelationsa}
+ y & = \frac{1}{2}\left(\tau^2 - \sigma^2\right) \\
+ z & = z.
+ \label{parzyl:coordRelationse}
+\end{align}
+Wird $\tau$ oder $\sigma$ konstant gesetzt, resultieren die Parabeln
+\begin{equation}
+ y = \frac{1}{2} \left( \frac{x^2}{\sigma^2} - \sigma^2 \right)
+\end{equation}
+und
+\begin{equation}
+ y = \frac{1}{2} \left( -\frac{x^2}{\tau^2} + \tau^2 \right).
+\end{equation}
+
+\begin{figure}
+ \centering
+ \includegraphics[scale=0.4]{papers/parzyl/img/koordinaten.png}
+ \caption{Das parabolische Koordinatensystem. Die roten Parabeln haben ein
+ konstantes $\sigma$ und die grünen ein konstantes $\tau$.}
+ \label{parzyl:fig:cordinates}
+\end{figure}
+Abbildung \ref{parzyl:fig:cordinates} zeigt das Parabolische Koordinatensystem.
+Das parabolische Zylinderkoordinatensystem entsteht wenn die Parabeln aus der
+Ebene gezogen werden.
+
+Um in diesem Koordinatensystem integrieren und differenzieren zu
+können braucht es die Skalierungsfaktoren $h_{\tau}$, $h_{\sigma}$ und $h_{z}$.
+
+Eine infinitessimal kleine Distanz $ds$ zwischen zwei Punkten
+kann im kartesischen Koordinatensystem mit
+\begin{equation}
+ \left(ds\right)^2 = \left(dx\right)^2 + \left(dy\right)^2 +
+ \left(dz\right)^2
+ \label{parzyl:eq:ds}
+\end{equation}
+ausgedrückt werden.
+Die Skalierungsfaktoren werden in einem orthogonalen Koordinatensystem so bestimmt, dass
+\begin{equation}
+ \left(ds\right)^2 = \left(h_{\sigma}d\sigma\right)^2 +
+ \left(h_{\tau}d\tau\right)^2 + \left(h_z dz\right)^2
+\label{parzyl:eq:dspara}
+\end{equation}
+gilt.
+Dafür werden $dx$, $dy$, und $dz$ in \eqref{parzyl:eq:ds} mit den Beziehungen
+von \eqref{parzyl:coordRelationsa} - \eqref{parzyl:coordRelationse} als
+\begin{align}
+ dx &= \frac{\partial x }{\partial \sigma} d\sigma +
+ \frac{\partial x }{\partial \tau} d\tau +
+ \frac{\partial x }{\partial \tilde{z}} d \tilde{z}
+ = \tau d\sigma + \sigma d \tau \\
+ dy &= \frac{\partial y }{\partial \sigma} d\sigma +
+ \frac{\partial y }{\partial \tau} d\tau +
+ \frac{\partial y }{\partial \tilde{z}} d \tilde{z}
+ = \tau d\tau - \sigma d \sigma \\
+ dz &= \frac{\partial \tilde{z} }{\partial \sigma} d\sigma +
+ \frac{\partial \tilde{z} }{\partial \tau} d\tau +
+ \frac{\partial \tilde{z} }{\partial \tilde{z}} d \tilde{z}
+ = d \tilde{z}
+\end{align}
+substituiert.
+Wird diese Gleichung in der Form von \eqref{parzyl:eq:dspara}
+geschrieben, resultiert
+\begin{equation}
+ \left(d s\right)^2 =
+ \left(\sigma^2 + \tau^2\right)\left(d\sigma\right)^2 +
+ \left(\sigma^2 + \tau^2\right)\left(d\tau\right)^2 +
+ \left(d \tilde{z}\right)^2.
+\end{equation}
+Daraus ergeben sich die Skalierungsfaktoren
+\begin{align}
+ h_{\sigma} &= \sqrt{\sigma^2 + \tau^2}\\
+ h_{\tau} &= \sqrt{\sigma^2 + \tau^2}\\
+ h_{z} &= 1.
+\end{align}
+\subsection{Differentialgleichung}
+Möchte man eine Differentialgleichung im parabolischen
+Zylinderkoordinatensystem aufstellen, müssen die Skalierungsfaktoren
+mitgerechnet werden.
+Der Laplace Operator wird dadurch zu
+\begin{equation}
+ \Delta f = \frac{1}{\sigma^2 + \tau^2}
+ \left(
+ \frac{\partial^2 f}{\partial \sigma ^2} +
+ \frac{\partial^2 f}{\partial \tau ^2}
+ \right)
+ + \frac{\partial^2 f}{\partial z^2}.
+ \label{parzyl:eq:laplaceInParZylCor}
+\end{equation}
+\subsubsection{Lösung der Helmholtz-Gleichung im parabolischen Zylinderfunktion}
+Die Differentialgleichungen, welche zu den parabolischen Zylinderfunktionen führen, tauchen
+%, wie bereits erwähnt,
+dann auf, wenn die Helmholtz-Gleichung
+\begin{equation}
+ \Delta f(x,y,z) = \lambda f(x,y,z)
+\end{equation}
+im parabolischen Zylinderkoordinatensystem
+\begin{equation}
+ \Delta f(\sigma,\tau,z) = \lambda f(\sigma,\tau,z)
+\end{equation}
+gelöst wird.
+%Wobei der Laplace Operator $\Delta$ im parabolischen Zylinderkoordinatensystem gegeben ist als
+%\begin{equation}
+% \Delta
+% =
+% \frac{1}{\sigma^2 + \tau^2}
+% \left (
+% \frac{\partial^2}{\partial \sigma^2}
+% +
+% \frac{\partial^2}{\partial \tau^2}
+% \right )
+% +
+% \frac{\partial^2}{\partial z^2}.
+%\end{equation}
+Mit dem Laplace Operator aus \eqref{parzyl:eq:laplaceInParZylCor} lautet die Helmholtz Gleichung
+\begin{equation}
+ \Delta f(\sigma, \tau, z)
+ =
+ \frac{1}{\sigma^2 + \tau^2}
+ \left (
+ \frac{\partial^2 f(\sigma,\tau,z)}{\partial \sigma^2}
+ +
+ \frac{\partial^2 f(\sigma,\tau,z)}{\partial \tau^2}
+ \right )
+ +
+ \frac{\partial^2 f(\sigma,\tau,z)}{\partial z^2}
+ =
+ \lambda f(\sigma,\tau,z).
+\end{equation}
+Diese partielle Differentialgleichung kann mit Hilfe von Separation gelöst werden, dazu wird
+\begin{equation}
+ f(\sigma,\tau,z) = g(\sigma)h(\tau)i(z)
+\end{equation}
+gesetzt, was dann schlussendlich zu den Differentialgleichungen
+\begin{equation}\label{parzyl:sep_dgl_1}
+ g''(\sigma)
+ -
+ \left (
+ \lambda\sigma^2
+ +
+ \mu
+ \right )
+ g(\sigma)
+ =
+ 0,
+\end{equation}
+\begin{equation}\label{parzyl:sep_dgl_2}
+ h''(\tau)
+ -
+ \left (
+ \lambda\tau^2
+ -
+ \mu
+ \right )
+ h(\tau)
+ =
+ 0
+\end{equation}
+und
+\begin{equation}\label{parzyl:sep_dgl_3}
+ i''(z)
+ +
+ \left (
+ \lambda
+ +
+ \mu
+ \right )
+ i(z)
+ =
+ 0
+\end{equation}
+führt.
+
+