aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers/parzyl/teil1.tex
diff options
context:
space:
mode:
Diffstat (limited to 'buch/papers/parzyl/teil1.tex')
-rw-r--r--buch/papers/parzyl/teil1.tex112
1 files changed, 77 insertions, 35 deletions
diff --git a/buch/papers/parzyl/teil1.tex b/buch/papers/parzyl/teil1.tex
index 0e1ad1b..e6a55b2 100644
--- a/buch/papers/parzyl/teil1.tex
+++ b/buch/papers/parzyl/teil1.tex
@@ -6,7 +6,7 @@
\section{Lösung
\label{parzyl:section:teil1}}
\rhead{Lösung}
-
+\subsection{Lösung harmonischer Oszillator}
\eqref{parzyl:sep_dgl_3} beschriebt einen ungedämpften harmonischen Oszillator.
Die Lösung ist somit
\begin{equation}
@@ -22,43 +22,83 @@ Die Lösung ist somit
\sqrt{\lambda + \mu}
\right )}.
\end{equation}
+\subsection{Lösung der Weberschen Differentialgleichung}
Die Differentialgleichungen \eqref{parzyl:sep_dgl_1} und \eqref{parzyl:sep_dgl_2} werden in \cite{parzyl:whittaker}
mit Hilfe der Whittaker Gleichung gelöst.
+\begin{satz}
+ Die Funktionen
+ \begin{equation}
+ M_{k,m}(x) =
+ e^{-x/2} x^{m+1/2} \,
+ {}_{1} F_{1}
+ (
+ {\textstyle \frac{1}{2}}
+ + m - k, 1 + 2m; x) \qquad x \in \mathbb{C}
+ \label{parzyl:eq:sol_diffEq_1}
+ \end{equation}
+ und damit auch die Linearkombinationen
+ \begin{equation}
+ W_{k,m}(x) = \frac{
+ \Gamma \left( -2m\right)
+ }{
+ \Gamma \left( {\textstyle \frac{1}{2}} - m - k\right)
+ }
+ M_{-k, m} \left(x\right)
+ +
+ \frac{
+ \Gamma \left( 2m\right)
+ }{
+ \Gamma \left( {\textstyle \frac{1}{2}} + m - k\right)
+ }
+ M_{k, -m} \left(x\right)
+ \label{parzyl:eq:sol_diffEq_2}
+ \end{equation}
+ sind Lösungen der Differentialgleichung
+ \begin{equation}
+ \frac{d^2W}{d x^2} +
+ \biggl( -\frac{1}{4} + \frac{k}{x} + \frac{\frac{1}{4} - m^2}{x^2} \biggr) W = 0.
+ \label{parzyl:eq:whitDiffEq}
+ \end{equation}
+
+\end{satz}
\begin{definition}
- Die Funktionen
- \begin{equation*}
- M_{k,m}(x) =
- e^{-x/2} x^{m+1/2} \,
- {}_{1} F_{1}
- (
- {\textstyle \frac{1}{2}}
- + m - k, 1 + 2m; x) \qquad x \in \mathbb{C}
- \end{equation*}
- und
- \begin{equation*}
- W_{k,m}(x) = \frac{
- \Gamma \left( -2m\right)
- }{
- \Gamma \left( {\textstyle \frac{1}{2}} - m - k\right)
- }
- M_{-k, m} \left(x\right)
- +
- \frac{
- \Gamma \left( 2m\right)
- }{
- \Gamma \left( {\textstyle \frac{1}{2}} + m - k\right)
- }
- M_{k, -m} \left(x\right)
- \end{equation*}
- gehören zu den Whittaker Funktionen und sind Lösungen
- der Whittaker Differentialgleichung
- \begin{equation}
- \frac{d^2W}{d x^2} +
- \biggl( -\frac{1}{4} + \frac{k}{x} + \frac{\frac{1}{4} - m^2}{x^2} \biggr) W = 0.
- \label{parzyl:eq:whitDiffEq}
- \end{equation}
-
+ Die Differentialgleichung \ref{parzyl:eq:whitDiffEq} heisst Whittaker-Differentialgleichung. Die Funktionen \ref{parzyl:eq:sol_diffEq_1} und \ref{parzyl:eq:sol_diffEq_2} sind Teil der Familie der Whittaker-Funktionen.
\end{definition}
+%\begin{definition}
+% Die Funktionen
+% \begin{equation*}
+% M_{k,m}(x) =
+% e^{-x/2} x^{m+1/2} \,
+% {}_{1} F_{1}
+% (
+% {\textstyle \frac{1}{2}}
+% + m - k, 1 + 2m; x) \qquad x \in \mathbb{C}
+% \end{equation*}
+% und
+% \begin{equation*}
+% W_{k,m}(x) = \frac{
+% \Gamma \left( -2m\right)
+% }{
+% \Gamma \left( {\textstyle \frac{1}{2}} - m - k\right)
+% }
+% M_{-k, m} \left(x\right)
+% +
+% \frac{
+% \Gamma \left( 2m\right)
+% }{
+% \Gamma \left( {\textstyle \frac{1}{2}} + m - k\right)
+% }
+% M_{k, -m} \left(x\right)
+% \end{equation*}
+% gehören zu den Whittaker Funktionen und sind Lösungen
+% der Whittaker Differentialgleichung
+% \begin{equation}
+% \frac{d^2W}{d x^2} +
+% \biggl( -\frac{1}{4} + \frac{k}{x} + \frac{\frac{1}{4} - m^2}{x^2} \biggr) W = 0.
+% \label{parzyl:eq:whitDiffEq}
+% \end{equation}
+%
+%\end{definition}
Es wird nun die Differentialgleichung bestimmt, welche
\begin{equation}
w = x^{-1/2} W_{k,-1/4} \left({\textstyle \frac{1}{2}} x^2\right)
@@ -123,6 +163,8 @@ Mit $M_{k,m}(x)$ geschrieben resultiert
}
M_{\frac{1}{2} n + \frac{1}{4}, \frac{1}{4}} \left(\frac{1}{2}x^2\right).
\end{equation}
+
+
In \cite{parzyl:abramowitz-stegun} sind zwei Lösungen $U(a, x)$ und $V(a,x)$
\begin{align}
U(a,x) &=
@@ -161,7 +203,7 @@ der Differentialgleichung
\begin{equation}
\frac{d^2 y}{d x^2} - \left(\frac{1}{4} x^2 + a\right) y = 0
\end{equation}
-beschrieben. Die Lösungen $U(a,z)$ und $V(a, z)$ können auch mit $D_n(z)$
+beschrieben. Die Lösungen $U(a,z)$ und $V(a, z)$ können auch durch $D_n(z)$
ausgedrückt werden
\begin{align}
U(a,x) &= D_{-a-1/2}(x) \\