aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers/parzyl/teil2.tex
diff options
context:
space:
mode:
Diffstat (limited to 'buch/papers/parzyl/teil2.tex')
-rw-r--r--buch/papers/parzyl/teil2.tex168
1 files changed, 92 insertions, 76 deletions
diff --git a/buch/papers/parzyl/teil2.tex b/buch/papers/parzyl/teil2.tex
index 3f890d0..705dbef 100644
--- a/buch/papers/parzyl/teil2.tex
+++ b/buch/papers/parzyl/teil2.tex
@@ -3,89 +3,105 @@
%
% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
%
-\section{Anwendung in der Physik
-\label{parzyl:section:teil2}}
-\rhead{Teil 2}
+\section{Eigenschaften
+ \label{parzyl:section:Eigenschaften}}
+\rhead{Eigenschaften}
-
-\subsection{Elektrisches Feld einer semi-infiniten Platte
-\label{parzyl:subsection:bonorum}}
-Die parabolischen Zylinderkoordinaten tauchen auf, wenn man das elektrische Feld einer semi-infiniten Platte finden will.
-Das dies so ist kann im zwei Dimensionalen mit Hilfe von komplexen Funktionen gezeigt werden. Wobei die Platte dann nur eine Linie ist.
-Jede komplexe Funktion $F(z)$ kann geschrieben werden als
-\begin{equation}
- F(z) = U(x,y) + iV(x,y) \qquad z \in \mathbb{C}; x,y \in \mathbb{R}.
-\end{equation}
-Dabei muss gelten, falls die Funktion differenzierbar ist, dass
-\begin{equation}
- \frac{\partial U(x,y)}{\partial x}
- =
- \frac{\partial V(x,y)}{\partial y}
- \qquad
- \frac{\partial V(x,y)}{\partial x}
- =
- -\frac{\partial U(x,y)}{\partial y}.
-\end{equation}
-Aus dieser Bedingung folgt
-\begin{equation}
- \label{parzyl_e_feld_zweite_ab}
- \underbrace{
- \frac{\partial^2 U(x,y)}{\partial x^2}
- +
- \frac{\partial^2 U(x,y)}{\partial y^2}
- =
- 0
- }_{\nabla^2U(x,y)=0}
- \qquad
- \underbrace{
- \frac{\partial^2 V(x,y)}{\partial x^2}
- +
- \frac{\partial^2 V(x,y)}{\partial y^2}
- =
- 0
- }_{\nabla^2V(x,y) = 0}.
-\end{equation}
-Zusätzlich zeigen diese Bedingungen auch, dass die zwei Funktionen $U(x,y)$ und $V(x,y)$ orthogonal zueinander sind.
-Der Zusammenhang zum elektrischen Feld ist jetzt, dass das Potential an einem quellenfreien Punkt gegeben ist als
-\begin{equation}
- \nabla^2\phi(x,y) = 0.
-\end{equation}
-Da dies bei komplexen differenzierbaren Funktionen gilt, wie Gleichung \ref{parzyl_e_feld_zweite_ab} zeigt, kann entweder $U(x,y)$ oder $V(x,y)$ von einer solchen Funktion als das Potential angesehen werden. Im weiteren wird für das Potential $U(x,y)$ verwendet.
-Da die Funktion, welche nicht das Potential beschreibt, in weiteren angenommen als $V(x,y)$, orthogonal zum Potential ist, zeigt dies das Verhalten des elektrischen Feldes.
-Um nun zu den parabolische Zylinderkoordinaten zu gelangen muss nur noch eine geeignete komplexe Funktion $F(z)$ gefunden werden, welche eine semi-infinite Platte beschreiben kann. Man könnte natürlich auch nach anderen Funktionen suchen, welche andere Bedingungen erfüllen und würde dann auf andere Koordinatensysteme stossen. Die gesuchte Funktion in diesem Fall ist
-\begin{equation}
- F(z)
- =
- \sqrt{z}
+\subsection{Potenzreihenentwicklung
+ \label{parzyl:potenz}}
+%Die parabolischen Zylinderfunktionen, welche in Gleichung \ref{parzyl:eq:solution_dgl} gegeben sind,
+%können auch als Potenzreihen geschrieben werden
+Die parabolischen Zylinderfunktionen können auch als Potenzreihen geschrieben werden.
+Parabolische Zylinderfunktionen sind Linearkombinationen
+$A(\alpha)w_1(\alpha, x) + B(\alpha)w_2(\alpha, x)$ aus einem geraden Teil $w_1(\alpha, x)$
+und einem ungeraden Teil $w_2(\alpha, x)$, welche als Potenzreihen geschrieben
+\begin{align}
+ w_1(\alpha,x)
+ &=
+ e^{-x^2/4} \,
+ {}_{1} F_{1}
+ (
+ \alpha, {\textstyle \frac{1}{2}} ; {\textstyle \frac{1}{2}}x^2)
=
- \sqrt{x + iy}.
-\end{equation}
-Dies kann umgeformt werden zu
-\begin{equation}
- F(z)
+ e^{-\frac{x^2}{4}}
+ \sum^{\infty}_{n=0}
+ \frac{\left ( \alpha \right )_{n}}{\left ( \frac{1}{2}\right )_{n}}
+ \frac{\left ( \frac{1}{2} x^2\right )^n}{n!} \\
+ &=
+ e^{-\frac{x^2}{4}}
+ \left (
+ 1
+ +
+ \left ( 2\alpha \right )\frac{x^2}{2!}
+ +
+ \left ( 2\alpha \right )\left ( 2 + 2\alpha \right )\frac{x^4}{4!}
+ +
+ \dots
+ \right )
+\end{align}
+und
+\begin{align}
+ w_2(\alpha,x)
+ &=
+ xe^{-x^2/4} \,
+ {}_{1} F_{1}
+ (
+ {\textstyle \frac{1}{2}}
+ + \alpha, {\textstyle \frac{3}{2}} ; {\textstyle \frac{1}{2}}x^2)
=
- \underbrace{\sqrt{\frac{\sqrt{x^2+y^2} + x}{2}}}_{U(x,y)}
- +
- i\underbrace{\sqrt{\frac{\sqrt{x^2+y^2} - x}{2}}}_{V(x,y)}
- .
-\end{equation}
-Die Äquipotentialflächen können nun betrachtet werden, indem man die Funktion welche das Potential beschreibt gleich eine Konstante setzt,
+ xe^{-\frac{x^2}{4}}
+ \sum^{\infty}_{n=0}
+ \frac{\left ( \frac{1}{2} + \alpha \right )_{n}}{\left ( \frac{3}{2}\right )_{n}}
+ \frac{\left ( \frac{1}{2} x^2\right )^n}{n!} \\
+ &=
+ e^{-\frac{x^2}{4}}
+ \left (
+ x
+ +
+ \left ( 1 + 2\alpha \right )\frac{x^3}{3!}
+ +
+ \left ( 1 + 2\alpha \right )\left ( 3 + 2\alpha \right )\frac{x^5}{5!}
+ +
+ \dots
+ \right )
+\end{align}
+sind.
+
+
+Die Potenzreihen sind in der Regel unendliche Reihen.
+Es gibt allerdings die Möglichkeit, dass für bestimmte $\alpha$ die Terme in der Klammer gleich null werden
+und die Reihe somit eine endliche Anzahl $n$ Summanden hat.
+Dies geschieht bei $w_1(\alpha,x)$, falls
\begin{equation}
- \sigma = U(x,y) = \sqrt{\frac{\sqrt{x^2+y^2} + x}{2}},
+ \alpha = -n \qquad n \in \mathbb{N}_0
+% \sigma = U(x,y) = \sqrt{\frac{\sqrt{x^2+y^2} + x}{2}}.
+% c_1 = U(x,y) = \sqrt{\frac{\sqrt{x^2+y^2} + x}{2}}.
\end{equation}
-und die Flächen mit der gleichen elektrischen Feldstärke können als
+und bei $w_2(\alpha,x)$ falls
\begin{equation}
- \tau = V(x,y) = \sqrt{\frac{\sqrt{x^2+y^2} - x}{2}}
+ \alpha = -\frac{1}{2} - n \qquad n \in \mathbb{N}_0.
\end{equation}
-beschrieben werden. Diese zwei Gleichungen zeigen nun wie man vom kartesischen Koordinatensystem ins parabolische Zylinderkoordinatensystem kommt. Werden diese Formeln nun nach x und y aufgelöst so beschreibe sie, wie man aus dem parabolischen Zylinderkoordinatensystem zurück ins kartesische rechnen kann
+Der Wert von $\alpha$ ist abhängig, ob man $D_n(x)$, $U(a,x)$ oder $V(a,x)$ verwendet.
+Bei $D_n(x)$ gilt $\alpha = -{\textstyle \frac{1}{2}} n$ und bei $U(a,z)$ oder $V(a,x)$ gilt
+$\alpha = {\textstyle \frac{1}{2}} a + {\textstyle \frac{1}{4}}$.
+\subsection{Ableitung}
+Die Ableitungen $\frac{\partial w_1(\alpha, x)}{\partial x}$ und $\frac{\partial w_2(\alpha, x)}{\partial x}$
+können mit den Eigenschaften der hypergeometrischen Funktionen in Abschnitt
+\ref{buch:rekursion:hypergeometrisch:stammableitung} berechnet werden.
+Zusammen mit der Produktregel ergeben sich die Ableitungen
\begin{equation}
- x = \sigma \tau,
-\end{equation}
+ \frac{\partial w_1(\alpha,x)}{\partial x} = 2\alpha w_2(\alpha + \frac{1}{2}, x) - \frac{1}{2} x w_1(\alpha, x),
+\end{equation}
+und
+%\begin{equation}
+% \frac{\partial w_2(z,k)}{\partial z} = w_1(z, k -\frac{1}{2}) - \frac{1}{2} z w_2(z,k).
+%\end{equation}
\begin{equation}
- y = \frac{1}{2}\left ( \tau^2 - \sigma^2 \right )
+ \frac{\partial w_2(\alpha,x)}{\partial x} = e^{-x^2/4} \left(
+ x^{-1} w_2(\alpha, x) - \frac{x}{2} w_2(\alpha, x) + 2 x^2 \left(\frac{\alpha + 1}{3}\right)
+ {}_{1} F_{1} (
+ {\textstyle \frac{3}{2}}
+ + \alpha, {\textstyle \frac{5}{2}} ; {\textstyle \frac{1}{2}}x^2)
+ \right)
\end{equation}
-
-
-
-
-
+Nach dem selben Vorgehen können weitere Ableitungen berechnet werden.