aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers/parzyl/teil3.tex
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--buch/papers/parzyl/teil3.tex157
1 files changed, 154 insertions, 3 deletions
diff --git a/buch/papers/parzyl/teil3.tex b/buch/papers/parzyl/teil3.tex
index 4e44bd6..4176b55 100644
--- a/buch/papers/parzyl/teil3.tex
+++ b/buch/papers/parzyl/teil3.tex
@@ -3,6 +3,157 @@
%
% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
%
-\section{Teil 3
-\label{parzyl:section:teil3}}
-\rhead{Teil 3}
+
+\section{Anwendung in der Physik
+ \label{parzyl:section:teil2}}
+\rhead{Anwendung in der Physik}
+
+Die parabolischen Zylinderkoordinaten tauchen auf, wenn man das elektrische Feld einer semi-infiniten Platte, wie in Abbildung \ref{parzyl:fig:leiterplatte} gezeigt, finden will.
+\begin{figure}
+ \centering
+ \includegraphics[width=0.8\textwidth]{papers/parzyl/images/halfplane.pdf}
+ \caption{Semi-infinite Leiterplatte}
+ \label{parzyl:fig:leiterplatte}
+\end{figure}
+Die Äquipotentiallinien sind dabei in rot, die des elektrischen Feldes in grün und
+semi-infinite Platte ist in blau dargestellt.
+Das dies so ist, kann im Zweidimensionalen mit Hilfe von komplexen Funktionen gezeigt werden. Die Platte ist dann nur eine Halbgerade, was man in Abbildung \ref{parzyl:fig:leiterplatte_2d} sieht.
+\begin{figure}
+ \centering
+ \includegraphics[width=0.6\textwidth]{papers/parzyl/img/Plane_2D.png}
+ \caption{Semi-infinite Leiterplatte dargestellt in 2D}
+ \label{parzyl:fig:leiterplatte_2d}
+\end{figure}
+
+Jede komplexe Funktion $F(z)$ kann geschrieben werden als
+\begin{equation}
+ F(s) = U(x,y) + iV(x,y) \quad s = x + iy \qquad s \in \mathbb{C}; x,y \in \mathbb{R}.
+\end{equation}
+Dabei müssen, falls die Funktion differenzierbar ist, die Cauchy-Riemann Differentialgleichungen
+\begin{equation}
+ \frac{\partial U(x,y)}{\partial x}
+ =
+ \frac{\partial V(x,y)}{\partial y}
+ \qquad
+ \frac{\partial V(x,y)}{\partial x}
+ =
+ -\frac{\partial U(x,y)}{\partial y}
+\end{equation}
+gelten.
+Aus dieser Bedingung folgt
+\begin{equation}
+ \label{parzyl_e_feld_zweite_ab}
+ \underbrace{
+ \frac{\partial^2 U(x,y)}{\partial x^2}
+ +
+ \frac{\partial^2 U(x,y)}{\partial y^2}
+ =
+ 0
+ }_{\displaystyle{\nabla^2U(x,y)=0}}
+ \qquad
+ \underbrace{
+ \frac{\partial^2 V(x,y)}{\partial x^2}
+ +
+ \frac{\partial^2 V(x,y)}{\partial y^2}
+ =
+ 0
+ }_{\displaystyle{\nabla^2V(x,y) = 0}}.
+\end{equation}
+Zusätzlich kann auch gezeigt werden, dass die Funktion $F(z)$ eine winkeltreue Abbildung ist.
+
+
+Der Zusammenhang zum elektrischen Feld ist jetzt, dass das Potential an einem quellenfreien Punkt gegeben ist als
+\begin{equation}
+ \nabla^2\phi(x,y) = 0.
+\end{equation}
+Dies ist eine Bedingung, welche differenzierbare Funktionen, wie in Gleichung \eqref{parzyl_e_feld_zweite_ab} gezeigt wird, bereits besitzen.
+
+
+Nun kann zum Beispiel $U(x,y)$ als das Potential angeschaut werden:
+\begin{equation}
+ \phi(x,y) = U(x,y).
+\end{equation}
+Orthogonal zu den Äquipotenzialflächen sind die Feldlinien des elektrische Feld
+\begin{equation}
+ E(x,y) = V(x,y).
+\end{equation}
+
+
+Um nun zu den parabolische Zylinderkoordinaten zu gelangen, muss nur noch eine geeignete
+komplexe Funktion $F(s)$ gefunden werden,
+welche eine semi-infinite Platte beschreiben kann.
+
+
+Die gesuchte Funktion in diesem Fall ist
+\begin{equation}
+ F(s)
+ =
+ \sqrt{s}
+ =
+ \sqrt{x + iy}.
+\end{equation}
+Dies kann umgeformt werden zu
+\begin{equation}
+ F(s)
+ =
+ \underbrace{\sqrt{\frac{\sqrt{x^2+y^2} + x}{2}}}_{\displaystyle{U(x,y)}}
+ +
+ i\underbrace{\sqrt{\frac{\sqrt{x^2+y^2} - x}{2}}}_{\displaystyle{V(x,y)}}
+ .
+\end{equation}
+
+
+%Die Äquipotentialflächen können nun betrachtet werden,
+%indem man die Funktion, welche das Potential beschreibt, gleich eine Konstante setzt,
+%\begin{equation}
+% \sigma = U(x,y) = \sqrt{\frac{\sqrt{x^2+y^2} + x}{2}}.
+%\end{equation}
+%Die Flächen mit der gleichen elektrischen Feldstärke können als
+%\begin{equation}
+% \tau = V(x,y) = \sqrt{\frac{\sqrt{x^2+y^2} - x}{2}}
+%\end{equation}
+%beschrieben werden. Diese zwei Gleichungen zeigen nun, wie man vom
+%kartesischen Koordinatensystem ins parabolische Zylinderkoordinatensystem kommt.
+
+Die Äquipotentialflächen können nun betrachtet werden,
+indem man die Funktion, welche das Potential beschreibt, gleich eine Konstante setzt,
+\begin{equation}
+% \sigma = U(x,y) = \sqrt{\frac{\sqrt{x^2+y^2} + x}{2}}.
+ c_1 = U(x,y) = \sqrt{\frac{\sqrt{x^2+y^2} + x}{2}}.
+\end{equation}
+Die Flächen mit der gleichen elektrischen Feldstärke können als
+\begin{equation}
+% \tau = V(x,y) = \sqrt{\frac{\sqrt{x^2+y^2} - x}{2}}
+ c_2 = V(x,y) = \sqrt{\frac{\sqrt{x^2+y^2} - x}{2}}
+\end{equation}
+beschrieben werden. Diese zwei Gleichungen zeigen nun, wie man vom
+kartesischen Koordinatensystem ins parabolische Zylinderkoordinatensystem kommt.
+%Werden diese Formeln nun nach $x$ und $y$ aufgelöst
+%\begin{equation}
+% x = \sigma \tau,
+%\end{equation}
+%\begin{equation}
+% y = \frac{1}{2}\left ( \tau^2 - \sigma^2 \right ),
+%\end{equation}
+%so beschreibe sie, wie man aus dem parabolischen Zylinderkoordinatensystem zurück ins kartesische rechnen kann.
+Werden diese Formeln nun nach $x$ und $y$ aufgelöst
+\begin{align}
+ x &= c_1^2 - c_2^2 ,\\
+ y &= 2c_1 c_2,
+\end{align}
+so beschreiben sie mit $\tau = c_1 \sqrt{2}$ und $\sigma = c_2 \sqrt{2}$ die Beziehung
+zwischen dem parabolischen Zylinderkoordinatensystem und dem kartesischen Koordinatensystem.
+
+Nun wurde gezeigt, wieso sich das parabolische Zylinderkoordinatensystem am besten eignet, um
+das Potential und das elektrische Feld einer semi-infiniten Leiterplatte zu beschreiben.
+Um die Helmholtz-Gleichung in diesem Bereich zu lösen,
+da man zum Beispiel am Verhalten einer elektromagnetische Welle in der Nähe
+der Platte interessiert ist, kann man jetzt die parabolischen Zylinderfunktionen verwenden.
+%Werden diese Formeln nun nach $x$ und $y$ aufgelöst
+%\begin{equation}
+% x = \sigma \tau,
+%\end{equation}
+%\begin{equation}
+% y = \frac{1}{2}\left ( \tau^2 - \sigma^2 \right ),
+%\end{equation}
+%so beschreibe sie, wie man aus dem parabolischen Zylinderkoordinatensystem zurück ins kartesische rechnen kann. \ No newline at end of file