aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers/parzyl/teil3.tex
diff options
context:
space:
mode:
Diffstat (limited to 'buch/papers/parzyl/teil3.tex')
-rw-r--r--buch/papers/parzyl/teil3.tex226
1 files changed, 138 insertions, 88 deletions
diff --git a/buch/papers/parzyl/teil3.tex b/buch/papers/parzyl/teil3.tex
index 1b59ed9..12c28fe 100644
--- a/buch/papers/parzyl/teil3.tex
+++ b/buch/papers/parzyl/teil3.tex
@@ -3,102 +3,152 @@
%
% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
%
-\section{Eigenschaften
-\label{parzyl:section:Eigenschaften}}
-\rhead{Eigenschaften}
-\subsection{Potenzreihenentwicklung
- \label{parzyl:potenz}}
-%Die parabolischen Zylinderfunktionen, welche in Gleichung \ref{parzyl:eq:solution_dgl} gegeben sind,
-%können auch als Potenzreihen geschrieben werden
-Die parabolischen Zylinderfunktionen können auch als Potenzreihen geschrieben werden.
-Parabolische Zylinderfunktionen sind Linearkombinationen
-$A(\alpha)w_1(\alpha, x) + B(\alpha)w_2(\alpha, x)$ aus einem geraden Teil $w_1(\alpha, x)$
-und einem ungeraden Teil $w_2(\alpha, x)$, welche als Potenzreihen
-\begin{align}
- w_1(\alpha,x)
- &=
- e^{-x^2/4} \,
- {}_{1} F_{1}
- (
- \alpha, {\textstyle \frac{1}{2}} ; {\textstyle \frac{1}{2}}x^2)
- =
- e^{-\frac{x^2}{4}}
- \sum^{\infty}_{n=0}
- \frac{\left ( \alpha \right )_{n}}{\left ( \frac{1}{2}\right )_{n}}
- \frac{\left ( \frac{1}{2} x^2\right )^n}{n!} \\
- &=
- e^{-\frac{x^2}{4}}
- \left (
- 1
- +
- \left ( 2\alpha \right )\frac{x^2}{2!}
- +
- \left ( 2\alpha \right )\left ( 2 + 2\alpha \right )\frac{x^4}{4!}
- +
- \dots
- \right )
-\end{align}
-und
-\begin{align}
- w_2(\alpha,x)
- &=
- xe^{-x^2/4} \,
- {}_{1} F_{1}
- (
- {\textstyle \frac{1}{2}}
- + \alpha, {\textstyle \frac{3}{2}} ; {\textstyle \frac{1}{2}}x^2)
- =
- xe^{-\frac{x^2}{4}}
- \sum^{\infty}_{n=0}
- \frac{\left ( \frac{1}{2} + \alpha \right )_{n}}{\left ( \frac{3}{2}\right )_{n}}
- \frac{\left ( \frac{1}{2} x^2\right )^n}{n!} \\
- &=
- e^{-\frac{x^2}{4}}
- \left (
- x
- +
- \left ( 1 + 2\alpha \right )\frac{x^3}{3!}
- +
- \left ( 1 + 2\alpha \right )\left ( 3 + 2\alpha \right )\frac{x^5}{5!}
- +
- \dots
- \right )
-\end{align}
-sind.
-Die Potenzreihen sind in der regel unendliche Reihen.
-Es gibt allerdings die Möglichkeit, dass für bestimmte $\alpha$ die Terme in der Klammer gleich null werden
-und die Reihe somit eine endliche Anzahl $n$ Summanden hat.
-Dies geschieht bei $w_1(\alpha,x)$, falls
+\section{Anwendung in der Physik
+ \label{parzyl:section:teil2}}
+\rhead{Anwendung in der Physik}
+
+Die parabolischen Zylinderkoordinaten tauchen auf, wenn man das elektrische Feld einer semi-infiniten Platte, wie in Abbildung \ref{parzyl:fig:leiterplatte} gezeigt, finden will.
+\begin{figure}
+ \centering
+ \includegraphics[width=0.8\textwidth]{papers/parzyl/images/halfplane.pdf}
+ \caption{Semi-infinite Leiterplatte}
+ \label{parzyl:fig:leiterplatte}
+\end{figure}
+Die Äquipotentiallinien sind dabei in rot ,die des elektrischen Feldes in grün und semi-infinite Platte ist in blau dargestellt.
+Das dies so ist kann im Zweidimensionalen mit Hilfe von komplexen Funktionen gezeigt werden. Die Platte ist dann nur eine Halbgerade, was man in Abbildung \ref{parzyl:fig:leiterplatte_2d} sieht.
+\begin{figure}
+ \centering
+ \includegraphics[width=0.6\textwidth]{papers/parzyl/img/Plane_2D.png}
+ \caption{Semi-infinite Leiterplatte dargestellt in 2D}
+ \label{parzyl:fig:leiterplatte_2d}
+\end{figure}
+
+Jede komplexe Funktion $F(z)$ kann geschrieben werden als
+\begin{equation}
+ F(s) = U(x,y) + iV(x,y) \quad s = x + iy \qquad s \in \mathbb{C}; x,y \in \mathbb{R}.
+\end{equation}
+Dabei müssen, falls die Funktion differenzierbar ist, die Cauchy-Riemann Differentialgleichungen
\begin{equation}
- \alpha = -n \qquad n \in \mathbb{N}_0
+ \frac{\partial U(x,y)}{\partial x}
+ =
+ \frac{\partial V(x,y)}{\partial y}
+ \qquad
+ \frac{\partial V(x,y)}{\partial x}
+ =
+ -\frac{\partial U(x,y)}{\partial y}
\end{equation}
-und bei $w_2(\alpha,x)$ falls
+gelten.
+Aus dieser Bedingung folgt
+\begin{equation}
+ \label{parzyl_e_feld_zweite_ab}
+ \underbrace{
+ \frac{\partial^2 U(x,y)}{\partial x^2}
+ +
+ \frac{\partial^2 U(x,y)}{\partial y^2}
+ =
+ 0
+ }_{\displaystyle{\nabla^2U(x,y)=0}}
+ \qquad
+ \underbrace{
+ \frac{\partial^2 V(x,y)}{\partial x^2}
+ +
+ \frac{\partial^2 V(x,y)}{\partial y^2}
+ =
+ 0
+ }_{\displaystyle{\nabla^2V(x,y) = 0}}.
+\end{equation}
+Zusätzlich kann auch gezeigt werden, dass die Funktion $F(z)$ eine winkeltreue Abbildung ist.
+
+
+Der Zusammenhang zum elektrischen Feld ist jetzt, dass das Potential an einem quellenfreien Punkt gegeben ist als
+\begin{equation}
+ \nabla^2\phi(x,y) = 0.
+\end{equation}
+Dies ist eine Bedingung, welche differenzierbare Funktionen, wie in Gleichung \eqref{parzyl_e_feld_zweite_ab} gezeigt wird, bereits besitzen.
+
+
+Nun kann zum Beispiel $U(x,y)$ als das Potential angeschaut werden:
+\begin{equation}
+ \phi(x,y) = U(x,y).
+\end{equation}
+Orthogonal zu den Äquipotenzialflächen sind die Feldlinien des elektrische Feld
+\begin{equation}
+ E(x,y) = V(x,y).
+\end{equation}
+
+
+Um nun zu den parabolische Zylinderkoordinaten zu gelangen, muss nur noch eine geeignete
+komplexe Funktion $F(s)$ gefunden werden,
+welche eine semi-infinite Platte beschreiben kann.
+
+
+Die gesuchte Funktion in diesem Fall ist
\begin{equation}
- \alpha = -\frac{1}{2} - n \qquad n \in \mathbb{N}_0.
+ F(s)
+ =
+ \sqrt{s}
+ =
+ \sqrt{x + iy}.
\end{equation}
-Der Wert von $\alpha$ ist abhängig, ob man $D_n(x)$, $U(a,x)$ oder $V(a,x)$ verwendet.
-Bei $D_n(x)$ gilt $\alpha = -{\textstyle \frac{1}{2}} n$ und bei $U(a,z)$ oder $V(a,x)$ gilt
-$\alpha = {\textstyle \frac{1}{2}} a + {\textstyle \frac{1}{4}}$.
-\subsection{Ableitung}
-Die Ableitungen $\frac{\partial w_1(\alpha, x)}{\partial x}$ und $\frac{\partial w_2(\alpha, x)}{\partial x}$
-können mit den Eigenschaften der hypergeometrischen Funktionen in Abschnitt
-\ref{buch:rekursion:hypergeometrisch:stammableitung} berechnet werden.
-Zusammen mit der Produktregel ergeben sich die Ableitungen
+Dies kann umgeformt werden zu
\begin{equation}
- \frac{\partial w_1(\alpha,x)}{\partial x} = 2\alpha w_2(\alpha + \frac{1}{2}, x) - \frac{1}{2} x w_1(\alpha, x),
-\end{equation}
-und
+ F(s)
+ =
+ \underbrace{\sqrt{\frac{\sqrt{x^2+y^2} + x}{2}}}_{U(x,y)}
+ +
+ i\underbrace{\sqrt{\frac{\sqrt{x^2+y^2} - x}{2}}}_{V(x,y)}
+ .
+\end{equation}
+
+
+%Die Äquipotentialflächen können nun betrachtet werden,
+%indem man die Funktion, welche das Potential beschreibt, gleich eine Konstante setzt,
+%\begin{equation}
+% \sigma = U(x,y) = \sqrt{\frac{\sqrt{x^2+y^2} + x}{2}}.
+%\end{equation}
+%Die Flächen mit der gleichen elektrischen Feldstärke können als
%\begin{equation}
-% \frac{\partial w_2(z,k)}{\partial z} = w_1(z, k -\frac{1}{2}) - \frac{1}{2} z w_2(z,k).
+% \tau = V(x,y) = \sqrt{\frac{\sqrt{x^2+y^2} - x}{2}}
%\end{equation}
+%beschrieben werden. Diese zwei Gleichungen zeigen nun, wie man vom
+%kartesischen Koordinatensystem ins parabolische Zylinderkoordinatensystem kommt.
+
+Die Äquipotentialflächen können nun betrachtet werden,
+indem man die Funktion, welche das Potential beschreibt, gleich eine Konstante setzt,
\begin{equation}
- \frac{\partial w_2(\alpha,x)}{\partial x} = e^{-x^2/4} \left(
- x^{-1} w_2(\alpha, x) - \frac{x}{2} w_2(\alpha, x) + 2 x^2 \left(\frac{\alpha + 1}{3}\right)
- {}_{1} F_{1} (
- {\textstyle \frac{3}{2}}
- + \alpha, {\textstyle \frac{5}{2}} ; {\textstyle \frac{1}{2}}x^2)
- \right)
+% \sigma = U(x,y) = \sqrt{\frac{\sqrt{x^2+y^2} + x}{2}}.
+ c_1 = U(x,y) = \sqrt{\frac{\sqrt{x^2+y^2} + x}{2}}.
\end{equation}
-Nach dem selben Vorgehen können weitere Ableitungen berechnet werden.
+Die Flächen mit der gleichen elektrischen Feldstärke können als
+\begin{equation}
+% \tau = V(x,y) = \sqrt{\frac{\sqrt{x^2+y^2} - x}{2}}
+ c_2 = V(x,y) = \sqrt{\frac{\sqrt{x^2+y^2} - x}{2}}
+\end{equation}
+beschrieben werden. Diese zwei Gleichungen zeigen nun, wie man vom
+kartesischen Koordinatensystem ins parabolische Zylinderkoordinatensystem kommt.
+%Werden diese Formeln nun nach $x$ und $y$ aufgelöst
+%\begin{equation}
+% x = \sigma \tau,
+%\end{equation}
+%\begin{equation}
+% y = \frac{1}{2}\left ( \tau^2 - \sigma^2 \right ),
+%\end{equation}
+%so beschreibe sie, wie man aus dem parabolischen Zylinderkoordinatensystem zurück ins kartesische rechnen kann.
+Werden diese Formeln nun nach $x$ und $y$ aufgelöst
+\begin{align}
+ x &= c_1^2 - c_2^2 ,\\
+ y &= 2c_1 c_2,
+\end{align}
+so beschreiben sie mit $\tau = c_1 \sqrt{2}$ und $\sigma = c_2 \sqrt{2}$ die Beziehung
+zwischen dem parabolischen Zylinderkoordinatensystem und dem kartesischen Koordinatensystem.
+Nun wurde gezeigt wieso sich das parabolische Zylinderkoordinatensystem am besten eignet um das Potential und das elektrische Feld einer semi-infiniten Leiterplatte zu beschreien. Falls man nun die Helmholtz-Gleichung in diesem Bereich lösen müsste, da man zum Beispiel am Verhalten einer elektromagnetischne Welle in der Nähe der Platte interessiert wäre, so würde man auf die parabolischen Zylinderfunktionen kommen.
+%Werden diese Formeln nun nach $x$ und $y$ aufgelöst
+%\begin{equation}
+% x = \sigma \tau,
+%\end{equation}
+%\begin{equation}
+% y = \frac{1}{2}\left ( \tau^2 - \sigma^2 \right ),
+%\end{equation}
+%so beschreibe sie, wie man aus dem parabolischen Zylinderkoordinatensystem zurück ins kartesische rechnen kann. \ No newline at end of file