diff options
Diffstat (limited to 'buch/papers/parzyl')
-rw-r--r-- | buch/papers/parzyl/img/D_plot.png | bin | 712446 -> 704810 bytes | |||
-rw-r--r-- | buch/papers/parzyl/teil1.tex | 16 | ||||
-rw-r--r-- | buch/papers/parzyl/teil3.tex | 39 |
3 files changed, 32 insertions, 23 deletions
diff --git a/buch/papers/parzyl/img/D_plot.png b/buch/papers/parzyl/img/D_plot.png Binary files differindex f76e35b..94b483b 100644 --- a/buch/papers/parzyl/img/D_plot.png +++ b/buch/papers/parzyl/img/D_plot.png diff --git a/buch/papers/parzyl/teil1.tex b/buch/papers/parzyl/teil1.tex index a4253b8..c5ece66 100644 --- a/buch/papers/parzyl/teil1.tex +++ b/buch/papers/parzyl/teil1.tex @@ -112,7 +112,7 @@ Mit $M_{k,m}(z)$ geschrieben resultiert D_n(z) = \frac{ \Gamma \left( {\textstyle \frac{1}{2}}\right) 2^{\frac{1}{2}n + \frac{1}{4}} z^{-\frac{1}{2}} }{ - \Gamma \left( {\textstyle \frac{1}{2}} \right) - {\textstyle \frac{1}{2}} n) + \Gamma \left( {\textstyle \frac{1}{2}} - {\textstyle \frac{1}{2}} n \right) } M_{\frac{1}{2} n + \frac{1}{4}, - \frac{1}{4}} \left(\frac{1}{2}z^2\right) + @@ -127,11 +127,14 @@ In \cite{parzyl:abramowitz-stegun} sind zwei Lösungen $U(a, z)$ und $V(a,z)$ \begin{align} U(a,z) &= \cos\left[\pi \left({\textstyle \frac{1}{4}} + {\textstyle \frac{1}{2}} a\right)\right] Y_1 - - \sin\left[\pi \left({\textstyle \frac{1}{4}} + {\textstyle \frac{1}{2}} a\right)\right] Y_2 \\ + - \sin\left[\pi \left({\textstyle \frac{1}{4}} + {\textstyle \frac{1}{2}} a\right)\right] Y_2 + \label{parzyl:eq:Uaz} + \\ V(a,z) &= \frac{1}{\Gamma \left({\textstyle \frac{1}{2} - a}\right)} \left\{ \sin\left[\pi \left({\textstyle \frac{1}{4}} + {\textstyle \frac{1}{2}} a\right)\right] Y_1 + \cos\left[\pi \left({\textstyle \frac{1}{4}} + {\textstyle \frac{1}{2}} a\right)\right] Y_2 \right\} + \label{parzyl:eq:Vaz} \end{align} mit \begin{align} @@ -143,9 +146,8 @@ mit {}_{1} F_{1} \left({\textstyle \frac{1}{2}}a + {\textstyle \frac{1}{4}}, {\textstyle \frac{1}{2}} ; - {\textstyle \frac{1}{2}}z^2\right) - \\ - Y_2 &= \frac{1}{\sqrt{\pi}} + {\textstyle \frac{1}{2}}z^2\right)\\ + Y_2 &= \frac{1}{\sqrt{\pi}} \frac{\Gamma\left({\textstyle \frac{3}{4} - {\textstyle \frac{1}{2}}a}\right)} {2^{\frac{1}{2} a - \frac{1}{4}}} @@ -167,11 +169,11 @@ ausgedrückt werden \left[\sin\left(\pi a\right) D_{-a-1/2}(z) + D_{-a-1/2}(-x)\right]. \end{align} In den Abbildungen \ref{parzyl:fig:dnz} und \ref{parzyl:fig:Vnz} sind -die Funktionen $D_a(z)$ und $V(a,z)$ mit verschiedenen Werten für $a$ abgebildet. +die Funktionen $D_n(z)$ und $V(a,z)$ mit verschiedenen Werten für $a$ abgebildet. \begin{figure} \centering \includegraphics[scale=0.3]{papers/parzyl/img/D_plot.png} - \caption{$D_a(z)$ mit unterschiedlichen Werten für $a$.} + \caption{$D_n(z)$ mit unterschiedlichen Werten für $n$.} \label{parzyl:fig:dnz} \end{figure} \begin{figure} diff --git a/buch/papers/parzyl/teil3.tex b/buch/papers/parzyl/teil3.tex index 972fd33..78950e1 100644 --- a/buch/papers/parzyl/teil3.tex +++ b/buch/papers/parzyl/teil3.tex @@ -9,41 +9,45 @@ \subsection{Potenzreihenentwicklung \label{parzyl:potenz}} -Die parabolischen Zylinderfunktionen, welche in Gleichung \ref{parzyl:eq:solution_dgl} gegeben sind, können auch als Potenzreihen geschrieben werden +%Die parabolischen Zylinderfunktionen, welche in Gleichung \ref{parzyl:eq:solution_dgl} gegeben sind, +%können auch als Potenzreihen geschrieben werden +Die parabolischen Zylinderfunktionen können auch als Potenzreihen geschrieben werden. +Im folgenden Abschnitt werden die Terme welche nur von $n$ oder $a$ abhängig sind vernachlässigt. +Die parabolischen Zylinderfunktionen sind Linearkombinationen aus einem geraden Teil $w_1(\alpha, z)$ +und einem ungeraden Teil $w_2(\alpha, z)$, welche als Potenzreihe \begin{align} - w_1(k,z) + w_1(\alpha,z) &= e^{-z^2/4} \, {}_{1} F_{1} ( - {\textstyle \frac{1}{4}} - - k, {\textstyle \frac{1}{2}} ; {\textstyle \frac{1}{2}}z^2) + \alpha, {\textstyle \frac{1}{2}} ; {\textstyle \frac{1}{2}}z^2) = e^{-\frac{z^2}{4}} \sum^{\infty}_{n=0} - \frac{\left ( \frac{1}{4} - k \right )_{n}}{\left ( \frac{1}{2}\right )_{n}} + \frac{\left ( \alpha \right )_{n}}{\left ( \frac{1}{2}\right )_{n}} \frac{\left ( \frac{1}{2} z^2\right )^n}{n!} \\ &= e^{-\frac{z^2}{4}} \left ( 1 + - \left ( \frac{1}{2} - 2k \right )\frac{z^2}{2!} + \left ( 2\alpha \right )\frac{z^2}{2!} + - \left ( \frac{1}{2} - 2k \right )\left ( \frac{5}{2} - 2k \right )\frac{z^4}{4!} + \left ( 2\alpha \right )\left ( 2 + 2\alpha \right )\frac{z^4}{4!} + \dots \right ) \end{align} und \begin{align} - w_2(k,z) + w_2(\alpha,z) &= ze^{-z^2/4} \, {}_{1} F_{1} ( - {\textstyle \frac{3}{4}} - - k, {\textstyle \frac{3}{2}} ; {\textstyle \frac{1}{2}}z^2) + {\textstyle \frac{1}{2}} + + \alpha, {\textstyle \frac{3}{2}} ; {\textstyle \frac{1}{2}}z^2) = ze^{-\frac{z^2}{4}} \sum^{\infty}_{n=0} @@ -54,20 +58,23 @@ und \left ( z + - \left ( \frac{3}{2} - 2k \right )\frac{z^3}{3!} + \left ( 1 + 2\alpha \right )\frac{z^3}{3!} + - \left ( \frac{3}{2} - 2k \right )\left ( \frac{7}{2} - 2k \right )\frac{z^5}{5!} + \left ( 1 + 2\alpha \right )\left ( 3 + 2\alpha \right )\frac{z^5}{5!} + \dots \right ). \end{align} -Bei den Potenzreihen sieht man gut, dass die Ordnung des Polynoms im generellen ins unendliche geht. Es gibt allerdings die Möglichkeit für bestimmte k das die Terme in der Klammer gleich null werden und das Polynom somit eine endliche Ordnung $n$ hat. Dies geschieht bei $w_1(k,z)$ falls +sind. +Bei den Potenzreihen sieht man gut, dass die Ordnung des Polynoms im generellen ins unendliche geht. +Es gibt allerdings die Möglichkeit für bestimmte $\alpha$ das die Terme in der Klammer gleich null werden +und das Polynom somit eine endliche Ordnung $n$ hat. Dies geschieht bei $w_1(\alpha,z)$ falls \begin{equation} - k = \frac{1}{4} + n \qquad n \in \mathbb{N}_0 + \alpha = -n \qquad n \in \mathbb{N}_0 \end{equation} -und bei $w_2(k,z)$ falls +und bei $w_2(\alpha,z)$ falls \begin{equation} - k = \frac{3}{4} + n \qquad n \in \mathbb{N}_0. + \alpha = -\frac{1}{2} - n \qquad n \in \mathbb{N}_0. \end{equation} \subsection{Ableitung} |