diff options
Diffstat (limited to 'buch/papers/parzyl')
-rw-r--r-- | buch/papers/parzyl/images/Makefile | 16 | ||||
-rw-r--r-- | buch/papers/parzyl/images/common.inc | 64 | ||||
-rw-r--r-- | buch/papers/parzyl/images/halfplane.jpg | bin | 0 -> 200681 bytes | |||
-rw-r--r-- | buch/papers/parzyl/images/halfplane.pdf | bin | 0 -> 208606 bytes | |||
-rw-r--r-- | buch/papers/parzyl/images/halfplane.png | bin | 0 -> 473623 bytes | |||
-rw-r--r-- | buch/papers/parzyl/images/halfplane.pov | 201 | ||||
-rw-r--r-- | buch/papers/parzyl/images/halfplane.tex | 41 | ||||
-rw-r--r-- | buch/papers/parzyl/img/D_plot.png | bin | 0 -> 746370 bytes | |||
-rw-r--r-- | buch/papers/parzyl/img/koordinaten.png | bin | 0 -> 159434 bytes | |||
-rw-r--r-- | buch/papers/parzyl/img/plane.pdf | bin | 0 -> 2072 bytes | |||
-rw-r--r-- | buch/papers/parzyl/img/v_plot.png | bin | 0 -> 648430 bytes | |||
-rw-r--r-- | buch/papers/parzyl/main.tex | 22 | ||||
-rw-r--r-- | buch/papers/parzyl/references.bib | 33 | ||||
-rw-r--r-- | buch/papers/parzyl/teil0.tex | 259 | ||||
-rw-r--r-- | buch/papers/parzyl/teil1.tex | 219 | ||||
-rw-r--r-- | buch/papers/parzyl/teil2.tex | 130 | ||||
-rw-r--r-- | buch/papers/parzyl/teil3.tex | 130 |
17 files changed, 969 insertions, 146 deletions
diff --git a/buch/papers/parzyl/images/Makefile b/buch/papers/parzyl/images/Makefile new file mode 100644 index 0000000..4bd13ec --- /dev/null +++ b/buch/papers/parzyl/images/Makefile @@ -0,0 +1,16 @@ +# +# Makefile to build 3d images +# +# (c) 2022 Prof Dr Andreas Müller +# + +all: halfplane.pdf + +halfplane.pdf: halfplane.tex halfplane.jpg + pdflatex halfplane.tex +halfplane.png: halfplane.pov + povray +A0.1 -W1920 -H1080 -Ohalfplane.png halfplane.pov +halfplane.jpg: halfplane.png Makefile + convert -extract 1280x1080+340+0 halfplane.png \ + -density 300 -units PixelsPerInch halfplane.jpg + diff --git a/buch/papers/parzyl/images/common.inc b/buch/papers/parzyl/images/common.inc new file mode 100644 index 0000000..28aed2b --- /dev/null +++ b/buch/papers/parzyl/images/common.inc @@ -0,0 +1,64 @@ +// +// common.inc -- some common useful tools for drawing 3d images +// +// (c) 2018 Prof Dr Andreas Müller, Hochschule Rapperswil +// + +// +// draw a right angle quarter circle at point <o> with legs <v1> and <v2> and +// color <c> +// +#declare rechterwinkelradius = 0.5; +#declare rechterwinkelthickness = 0.01; +#macro rechterwinkel(o, v1, v2, c) +intersection { + sphere { o, rechterwinkelradius } + #declare rnormale = vnormalize(vcross(v1, v2)); + plane { rnormale, vdot(o, rnormale) + rechterwinkelthickness * rechterwinkelradius / 0.5 } + plane { -rnormale, -vdot(o, rnormale) + rechterwinkelthickness * rechterwinkelradius / 0.5 } + plane { -v1, -vdot(o, v1) } + plane { -v2, -vdot(o, v2) } + pigment { + color c + } +} +sphere { o + 0.45 * (vnormalize(v1) +vnormalize(v2)) * rechterwinkelradius, + 0.05 * rechterwinkelradius / 0.5 + pigment { + color c + } +} +#end + +// +// draw an arrow from <from> to <to> with thickness <arrowthickness> with +// color <c> +// +#macro arrow(from, to, arrowthickness, c) + #declare arrowdirection = vnormalize(to - from); + #declare arrowlength = vlength(to - from); + union { + sphere { + from, 1.1 * arrowthickness + } + cylinder { + from, + from + (arrowlength - 5 * arrowthickness) * arrowdirection, + arrowthickness + } + cone { + from + (arrowlength - 5 * arrowthickness) * arrowdirection, + 2 * arrowthickness, + to, + 0 + } + pigment { + color c + } + finish { + specular 0.9 + metallic + } + } +#end + diff --git a/buch/papers/parzyl/images/halfplane.jpg b/buch/papers/parzyl/images/halfplane.jpg Binary files differnew file mode 100644 index 0000000..8cb5ae3 --- /dev/null +++ b/buch/papers/parzyl/images/halfplane.jpg diff --git a/buch/papers/parzyl/images/halfplane.pdf b/buch/papers/parzyl/images/halfplane.pdf Binary files differnew file mode 100644 index 0000000..7275810 --- /dev/null +++ b/buch/papers/parzyl/images/halfplane.pdf diff --git a/buch/papers/parzyl/images/halfplane.png b/buch/papers/parzyl/images/halfplane.png Binary files differnew file mode 100644 index 0000000..5beefa0 --- /dev/null +++ b/buch/papers/parzyl/images/halfplane.png diff --git a/buch/papers/parzyl/images/halfplane.pov b/buch/papers/parzyl/images/halfplane.pov new file mode 100644 index 0000000..419bb67 --- /dev/null +++ b/buch/papers/parzyl/images/halfplane.pov @@ -0,0 +1,201 @@ +// +// 3dimage.pov +// +// (c) 2022 Prof Dr Andreas Müller +// +#version 3.7; +#include "colors.inc" +#include "skies.inc" +#include "common.inc" + +global_settings { + assumed_gamma 1 +} + +#declare imagescale = 0.63; +#declare ar = 0.02; + +#declare Cameracenter = <5,3,-4>; +#declare Worldpoint = <0,-0.80, 0>; +#declare Lightsource = < 7,10,-3>; +#declare Lightdirection = vnormalize(Lightsource - Worldpoint); +#declare Lightaxis1 = vnormalize(vcross(Lightdirection, <0,1,0>)); +#declare Lightaxis2 = vnormalize(vcross(Lightaxis1, Lightdirection)); + +camera { + location Cameracenter + look_at Worldpoint + right 16/9 * x * imagescale + up y * imagescale +} + +light_source { + Lightsource color White + area_light Lightaxis1 Lightaxis2, 10, 10 + adaptive 1 + jitter +} + +sky_sphere { + pigment { + color White + } +} + +arrow( <-2.1, 0, 0 >, < 2.2, 0, 0 >, ar, White) +arrow( < 0, -1.1, 0 >, < 0, 1.3, 0 >, ar, White) +arrow( < 0, 0, -2 >, < 0, 0, 2.2 >, ar, White) + +#declare planecolor = rgb<0.2,0.6,1.0>; +#declare r = 0.01; + +#macro planebox() + box { <-2.1,-1.1,-2.1>, <0,1.1,2.1> } +#end + +intersection { + plane { <0, 0, 1>, 0.001 } + plane { <0, 0, -1>, 0.001 } + planebox() + pigment { + color planecolor transmit 0.3 + } + finish { + metallic + specular 0.95 + } +} + +#declare Xstep = 0.2; + +intersection { + union { + #declare X = 0; + #while (X > -2.5) + cylinder { <X,-3,0>, <X,+3,0>, r } + #declare X = X - Xstep; + #end + + #declare Y = Xstep; + #while (Y < 2.5) + cylinder { <-3, Y, 0>, <0, Y, 0>, r } + cylinder { <-3, -Y, 0>, <0, -Y, 0>, r } + #declare Y = Y + Xstep; + #end + } + planebox() + pigment { + color planecolor + } + finish { + metallic + specular 0.95 + } +} + +#declare parammin = -4; +#declare parammax = 4; +#declare paramsteps = 100; +#declare paramstep = (parammax - parammin) / paramsteps; + +#macro punkt(sigma, tau, Z) + < + 0.5 * (tau*tau - sigma*sigma) + Z, + sigma * tau, + > +#end + +#macro sigmasurface(sigma, farbe) + #declare taumin1 = 2/sigma; + #declare taumin2 = sqrt(4+sigma*sigma); + #if (taumin1 > taumin2) + #declare taumin = -taumin2; + #else + #declare taumin = -taumin1; + #end + + mesh { + #declare tau = taumin; + #declare taumax = -taumin; + #declare taustep = (taumax - taumin) / paramsteps; + #while (tau < taumax - taustep/2) + triangle { + punkt(sigma, tau, -1), + punkt(sigma, tau, 0), + punkt(sigma, tau + taustep, -1) + } + triangle { + punkt(sigma, tau + taustep, -1), + punkt(sigma, tau + taustep, 0), + punkt(sigma, tau, 0) + } + #declare tau = tau + taustep; + #end + pigment { + color farbe + } + finish { + specular 0.9 + metallic + } + } + + union { + #declare tau = taumin; + #declare taumax = -taumin; + #declare taustep = (taumax - taumin) / paramsteps; + #while (tau < taumax - taustep/2) + sphere { punkt(sigma, tau, 0), r } + cylinder { + punkt(sigma, tau, 0), + punkt(sigma, tau + taustep, 0), + r + } + #declare tau = tau + taustep; + #end + sphere { punkt(sigma, tau, 0), r } + pigment { + color farbe + } + finish { + specular 0.9 + metallic + } + + } +#end + +#declare greensurfacecolor = rgb<0.6,1.0,0.6>; +#declare redsurfacecolor = rgb<1.0,0.6,0.6>; + +sigmasurface(0.25, greensurfacecolor) +sigmasurface(0.5, greensurfacecolor) +sigmasurface(0.75, greensurfacecolor) +sigmasurface(1, greensurfacecolor) +sigmasurface(1.25, greensurfacecolor) +sigmasurface(1.5, greensurfacecolor) +sigmasurface(1.75, greensurfacecolor) +sigmasurface(2, greensurfacecolor) + +union { + sigmasurface(0.25, redsurfacecolor) + sigmasurface(0.5, redsurfacecolor) + sigmasurface(0.75, redsurfacecolor) + sigmasurface(1.00, redsurfacecolor) + sigmasurface(1.25, redsurfacecolor) + sigmasurface(1.5, redsurfacecolor) + sigmasurface(1.75, redsurfacecolor) + sigmasurface(2, redsurfacecolor) + rotate <0, 180, 0> +} + +box { <-2,-1,-2>, <2,-0.99,2> + pigment { + color rgb<1.0,0.8,0.6> transmit 0.8 + } + finish { + specular 0.9 + metallic + } +} diff --git a/buch/papers/parzyl/images/halfplane.tex b/buch/papers/parzyl/images/halfplane.tex new file mode 100644 index 0000000..e470057 --- /dev/null +++ b/buch/papers/parzyl/images/halfplane.tex @@ -0,0 +1,41 @@ +% +% halfplane.tex +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\documentclass[tikz]{standalone} +\usepackage{times} +\usepackage{amsmath} +\usepackage{txfonts} +\usepackage[utf8]{inputenc} +\usepackage{graphics} +\usetikzlibrary{arrows,intersections,math} +\usepackage{ifthen} +\begin{document} + +\newboolean{showgrid} +\setboolean{showgrid}{false} +\def\breite{5} +\def\hoehe{4} + +\begin{tikzpicture}[>=latex,thick] + +% Povray Bild +\node at (0,0) {\includegraphics[width=10cm]{halfplane.jpg}}; + +% Gitter +\ifthenelse{\boolean{showgrid}}{ +\draw[step=0.1,line width=0.1pt] (-\breite,-\hoehe) grid (\breite, \hoehe); +\draw[step=0.5,line width=0.4pt] (-\breite,-\hoehe) grid (\breite, \hoehe); +\draw (-\breite,-\hoehe) grid (\breite, \hoehe); +\fill (0,0) circle[radius=0.05]; +}{} + +\node at (0,3.7) {$z$}; +\node at (3.3,-0.3) {$x$}; +\node at (2.7,2.5) {$y$}; + +\end{tikzpicture} + +\end{document} + diff --git a/buch/papers/parzyl/img/D_plot.png b/buch/papers/parzyl/img/D_plot.png Binary files differnew file mode 100644 index 0000000..6c61eea --- /dev/null +++ b/buch/papers/parzyl/img/D_plot.png diff --git a/buch/papers/parzyl/img/koordinaten.png b/buch/papers/parzyl/img/koordinaten.png Binary files differnew file mode 100644 index 0000000..3ee582d --- /dev/null +++ b/buch/papers/parzyl/img/koordinaten.png diff --git a/buch/papers/parzyl/img/plane.pdf b/buch/papers/parzyl/img/plane.pdf Binary files differnew file mode 100644 index 0000000..c52c336 --- /dev/null +++ b/buch/papers/parzyl/img/plane.pdf diff --git a/buch/papers/parzyl/img/v_plot.png b/buch/papers/parzyl/img/v_plot.png Binary files differnew file mode 100644 index 0000000..7cd5455 --- /dev/null +++ b/buch/papers/parzyl/img/v_plot.png diff --git a/buch/papers/parzyl/main.tex b/buch/papers/parzyl/main.tex index ff21c9f..fd2aea7 100644 --- a/buch/papers/parzyl/main.tex +++ b/buch/papers/parzyl/main.tex @@ -6,31 +6,13 @@ \chapter{Parabolische Zylinderfunktionen\label{chapter:parzyl}} \lhead{Parabolische Zylinderfunktionen} \begin{refsection} -\chapterauthor{Thierry Schwaller, Alain Keller} +\chapterauthor{Alain Keller und Thierry Schwaller} + -Ein paar Hinweise für die korrekte Formatierung des Textes -\begin{itemize} -\item -Absätze werden gebildet, indem man eine Leerzeile einfügt. -Die Verwendung von \verb+\\+ ist nur in Tabellen und Arrays gestattet. -\item -Die explizite Platzierung von Bildern ist nicht erlaubt, entsprechende -Optionen werden gelöscht. -Verwenden Sie Labels und Verweise, um auf Bilder hinzuweisen. -\item -Beginnen Sie jeden Satz auf einer neuen Zeile. -Damit ermöglichen Sie dem Versionsverwaltungssysteme, Änderungen -in verschiedenen Sätzen von verschiedenen Autoren ohne Konflikt -anzuwenden. -\item -Bilden Sie auch für Formeln kurze Zeilen, einerseits der besseren -Übersicht wegen, aber auch um GIT die Arbeit zu erleichtern. -\end{itemize} \input{papers/parzyl/teil0.tex} \input{papers/parzyl/teil1.tex} \input{papers/parzyl/teil2.tex} \input{papers/parzyl/teil3.tex} - \printbibliography[heading=subbibliography] \end{refsection} diff --git a/buch/papers/parzyl/references.bib b/buch/papers/parzyl/references.bib index 494ff7c..390d5ed 100644 --- a/buch/papers/parzyl/references.bib +++ b/buch/papers/parzyl/references.bib @@ -33,3 +33,36 @@ url = {https://doi.org/10.1016/j.acha.2017.11.004} } +@book{parzyl:whittaker, + place={Cambridge}, + edition={4}, + series={Cambridge Mathematical Library}, + title={A Course of Modern Analysis}, + DOI={10.1017/CBO9780511608759}, + publisher={Cambridge University Press}, + author={Whittaker, E. T. and Watson, G. N.}, + year={1996}, + collection={Cambridge Mathematical Library}} + +@book{parzyl:abramowitz-stegun, + added-at = {2008-06-25T06:25:58.000+0200}, + address = {New York}, + author = {Abramowitz, Milton and Stegun, Irene A.}, + edition = {ninth Dover printing, tenth GPO printing}, + interhash = {d4914a420f489f7c5129ed01ec3cf80c}, + intrahash = {23ec744709b3a776a1af0a3fd65cd09f}, + keywords = {Handbook}, + publisher = {Dover}, + timestamp = {2008-06-25T06:25:58.000+0200}, + title = {Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables}, + year = 1972 +} + +@online{parzyl:coordinates, + title = {Parabolic cylindrical coordinates}, + url = {https://en.wikipedia.org/wiki/Parabolic_cylindrical_coordinates}, + date = {2022-08-17}, + year = {2022}, + month = {8}, + day = {17} +}
\ No newline at end of file diff --git a/buch/papers/parzyl/teil0.tex b/buch/papers/parzyl/teil0.tex index 09b4024..8be936d 100644 --- a/buch/papers/parzyl/teil0.tex +++ b/buch/papers/parzyl/teil0.tex @@ -3,20 +3,249 @@ % % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % -\section{Teil 0\label{parzyl:section:teil0}} -\rhead{Teil 0} -Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam -nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam -erat, sed diam voluptua \cite{parzyl:bibtex}. -At vero eos et accusam et justo duo dolores et ea rebum. -Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum -dolor sit amet. - -Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam -nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam -erat, sed diam voluptua. -At vero eos et accusam et justo duo dolores et ea rebum. Stet clita -kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit -amet. +\section{Einleitung\label{parzyl:section:teil0}} +\rhead{Einleitung} +%Die Laplace-Gleichung ist eine wichtige Gleichung in der Physik. +%Mit ihr lässt sich zum Beispiel das elektrische Feld in einem ladungsfreien Raum bestimmen. +%In diesem Kapitel wird die Lösung der Laplace-Gleichung im +%parabolischen Zylinderkoordinatensystem genauer untersucht. +Die Helmholtz-Gleichung ist eine wichtige Gleichung in der Physik. +Mit ihr lässt sich zum Beispiel das Verhalten von elektromagnetischen Wellen beschreiben. +In diesem Kapitel werden die Lösungen der Helmholtz-Gleichung im parabolischen Zylinderkoordinatensystem, +die parabolischen Zylinderfunktionen, genauer untersucht. + +\subsection{Helmholtz-Gleichung} +Die partielle Differentialgleichung +\begin{equation} + \Delta f = \lambda f +\end{equation} +ist als Helmholtz-Gleichung bekannt und beschreibt das Eigenwert Problem für den Laplace-Operator. +Sie ist eine der Gleichungen welche auftritt wenn die Wellengleichung +\begin{equation} + \left ( \nabla^2 - \frac{1}{c^2}\frac{\partial^2}{\partial t^2} \right ) u(\textbf{r},t) + = + 0 +\end{equation} +mit Hilfe von Separation +\begin{equation} + u(\textbf{r},t) = A(\textbf{r})T(t) +\end{equation} +in zwei Differentialgleichungen aufgeteilt wird. Die Helmholtz-Gleichung ist der Teil, +welcher zeitunabhängig ist +\begin{equation} + \nabla^2 A(\textbf{r}) = \lambda A(\textbf{r}). +\end{equation} + +%\subsection{Laplace Gleichung} +%Die partielle Differentialgleichung +%\begin{equation} +% \Delta f = 0 +%\end{equation} +%ist als Laplace-Gleichung bekannt. +%Sie ist eine spezielle Form der Poisson-Gleichung +%\begin{equation} +% \Delta f = g +%\end{equation} +%mit $g$ als beliebiger Funktion. +%In der Physik hat die Laplace-Gleichung in verschiedenen Gebieten +%verwendet, zum Beispiel im Elektromagnetismus. +%Das Gaussche Gesetz in den Maxwellgleichungen +%\begin{equation} +% \nabla \cdot E = \frac{\varrho}{\epsilon_0} +%\label{parzyl:eq:max1} +%\end{equation} +%besagt, dass die Divergenz eines elektrischen Feldes an einem +%Punkt gleich der Ladungsdichte an diesem Punkt ist. +%Das elektrische Feld ist hierbei der Gradient des elektrischen +%Potentials +%\begin{equation} +% \nabla \phi = E. +%\end{equation} +%Eingesetzt in \eqref{parzyl:eq:max1} resultiert +%\begin{equation} +% \nabla \cdot \nabla \phi = \Delta \phi = \frac{\varrho}{\epsilon_0}, +%\end{equation} +%was eine Poisson-Gleichung ist. +%An ladungsfreien Stellen ist der rechte Teil der Gleichung $0$. +\subsection{Parabolische Zylinderkoordinaten +\label{parzyl:subsection:finibus}} +Das parabolischen Zylinderkoordinatensystem \cite{parzyl:coordinates} ist ein krummliniges Koordinatensystem, +bei dem parabolische Zylinder die Koordinatenflächen bilden. +Die Koordinate $(\sigma, \tau, z)$ sind in kartesischen Koordinaten ausgedrückt mit +\begin{align} + x & = \sigma \tau \\ + \label{parzyl:coordRelationsa} + y & = \frac{1}{2}\left(\tau^2 - \sigma^2\right) \\ + z & = z. + \label{parzyl:coordRelationse} +\end{align} +Wird $\tau$ oder $\sigma$ konstant gesetzt, resultieren die Parabeln +\begin{equation} + y = \frac{1}{2} \left( \frac{x^2}{\sigma^2} - \sigma^2 \right) +\end{equation} +und +\begin{equation} + y = \frac{1}{2} \left( -\frac{x^2}{\tau^2} + \tau^2 \right). +\end{equation} + +\begin{figure} + \centering + \includegraphics[scale=0.4]{papers/parzyl/img/koordinaten.png} + \caption{Das parabolische Koordinatensystem. Die roten Parabeln haben ein + konstantes $\sigma$ und die grünen ein konstantes $\tau$.} + \label{parzyl:fig:cordinates} +\end{figure} +Abbildung \ref{parzyl:fig:cordinates} zeigt das Parabolische Koordinatensystem. +Das parabolische Zylinderkoordinatensystem entsteht wenn die Parabeln aus der +Ebene gezogen werden. + +Um in diesem Koordinatensystem integrieren und differenzieren zu +können braucht es die Skalierungsfaktoren $h_{\tau}$, $h_{\sigma}$ und $h_{z}$. + +Eine infinitessimal kleine Distanz $ds$ zwischen zwei Punkten +kann im kartesischen Koordinatensystem mit +\begin{equation} + \left(ds\right)^2 = \left(dx\right)^2 + \left(dy\right)^2 + + \left(dz\right)^2 + \label{parzyl:eq:ds} +\end{equation} +ausgedrückt werden. +Die Skalierungsfaktoren werden in einem orthogonalen Koordinatensystem so bestimmt, dass +\begin{equation} + \left(ds\right)^2 = \left(h_{\sigma}d\sigma\right)^2 + + \left(h_{\tau}d\tau\right)^2 + \left(h_z dz\right)^2 +\label{parzyl:eq:dspara} +\end{equation} +gilt. +Dafür werden $dx$, $dy$, und $dz$ in \eqref{parzyl:eq:ds} mit den Beziehungen +von \eqref{parzyl:coordRelationsa} - \eqref{parzyl:coordRelationse} als +\begin{align} + dx &= \frac{\partial x }{\partial \sigma} d\sigma + + \frac{\partial x }{\partial \tau} d\tau + + \frac{\partial x }{\partial \tilde{z}} d \tilde{z} + = \tau d\sigma + \sigma d \tau \\ + dy &= \frac{\partial y }{\partial \sigma} d\sigma + + \frac{\partial y }{\partial \tau} d\tau + + \frac{\partial y }{\partial \tilde{z}} d \tilde{z} + = \tau d\tau - \sigma d \sigma \\ + dz &= \frac{\partial \tilde{z} }{\partial \sigma} d\sigma + + \frac{\partial \tilde{z} }{\partial \tau} d\tau + + \frac{\partial \tilde{z} }{\partial \tilde{z}} d \tilde{z} + = d \tilde{z} +\end{align} +substituiert. +Wird diese Gleichung in der Form von \eqref{parzyl:eq:dspara} +geschrieben, resultiert +\begin{equation} + \left(d s\right)^2 = + \left(\sigma^2 + \tau^2\right)\left(d\sigma\right)^2 + + \left(\sigma^2 + \tau^2\right)\left(d\tau\right)^2 + + \left(d \tilde{z}\right)^2. +\end{equation} +Daraus ergeben sich die Skalierungsfaktoren +\begin{align} + h_{\sigma} &= \sqrt{\sigma^2 + \tau^2}\\ + h_{\tau} &= \sqrt{\sigma^2 + \tau^2}\\ + h_{z} &= 1. +\end{align} +\subsection{Differentialgleichung} +Möchte man eine Differentialgleichung im parabolischen +Zylinderkoordinatensystem aufstellen, müssen die Skalierungsfaktoren +mitgerechnet werden. +Der Laplace Operator wird dadurch zu +\begin{equation} + \Delta f = \frac{1}{\sigma^2 + \tau^2} + \left( + \frac{\partial^2 f}{\partial \sigma ^2} + + \frac{\partial^2 f}{\partial \tau ^2} + \right) + + \frac{\partial^2 f}{\partial z^2}. + \label{parzyl:eq:laplaceInParZylCor} +\end{equation} +\subsubsection{Lösung der Helmholtz-Gleichung im parabolischen Zylinderfunktion} +Die Differentialgleichungen, welche zu den parabolischen Zylinderfunktionen führen, tauchen +%, wie bereits erwähnt, +dann auf, wenn die Helmholtz-Gleichung +\begin{equation} + \Delta f(x,y,z) = \lambda f(x,y,z) +\end{equation} +im parabolischen Zylinderkoordinatensystem +\begin{equation} + \Delta f(\sigma,\tau,z) = \lambda f(\sigma,\tau,z) +\end{equation} +gelöst wird. +%Wobei der Laplace Operator $\Delta$ im parabolischen Zylinderkoordinatensystem gegeben ist als +%\begin{equation} +% \Delta +% = +% \frac{1}{\sigma^2 + \tau^2} +% \left ( +% \frac{\partial^2}{\partial \sigma^2} +% + +% \frac{\partial^2}{\partial \tau^2} +% \right ) +% + +% \frac{\partial^2}{\partial z^2}. +%\end{equation} +Mit dem Laplace Operator aus \eqref{parzyl:eq:laplaceInParZylCor} lautet die Helmholtz Gleichung +\begin{equation} + \Delta f(\sigma, \tau, z) + = + \frac{1}{\sigma^2 + \tau^2} + \left ( + \frac{\partial^2 f(\sigma,\tau,z)}{\partial \sigma^2} + + + \frac{\partial^2 f(\sigma,\tau,z)}{\partial \tau^2} + \right ) + + + \frac{\partial^2 f(\sigma,\tau,z)}{\partial z^2} + = + \lambda f(\sigma,\tau,z). +\end{equation} +Diese partielle Differentialgleichung kann mit Hilfe von Separation gelöst werden, dazu wird +\begin{equation} + f(\sigma,\tau,z) = g(\sigma)h(\tau)i(z) +\end{equation} +gesetzt, was dann schlussendlich zu den Differentialgleichungen +\begin{equation}\label{parzyl:sep_dgl_1} + g''(\sigma) + - + \left ( + \lambda\sigma^2 + + + \mu + \right ) + g(\sigma) + = + 0, +\end{equation} +\begin{equation}\label{parzyl:sep_dgl_2} + h''(\tau) + - + \left ( + \lambda\tau^2 + - + \mu + \right ) + h(\tau) + = + 0 +\end{equation} +und +\begin{equation}\label{parzyl:sep_dgl_3} + i''(z) + + + \left ( + \lambda + + + \mu + \right ) + i(z) + = + 0 +\end{equation} +führt. + + diff --git a/buch/papers/parzyl/teil1.tex b/buch/papers/parzyl/teil1.tex index 9ea60e2..13d8109 100644 --- a/buch/papers/parzyl/teil1.tex +++ b/buch/papers/parzyl/teil1.tex @@ -3,53 +3,182 @@ % % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % -\section{Teil 1 +\section{Lösung \label{parzyl:section:teil1}} -\rhead{Problemstellung} -Sed ut perspiciatis unde omnis iste natus error sit voluptatem -accusantium doloremque laudantium, totam rem aperiam, eaque ipsa -quae ab illo inventore veritatis et quasi architecto beatae vitae -dicta sunt explicabo. -Nemo enim ipsam voluptatem quia voluptas sit aspernatur aut odit -aut fugit, sed quia consequuntur magni dolores eos qui ratione -voluptatem sequi nesciunt +\rhead{Lösung} + +\eqref{parzyl:sep_dgl_3} beschriebt einen ungedämpften harmonischen Oszillator. +Die Lösung ist somit \begin{equation} -\int_a^b x^2\, dx -= -\left[ \frac13 x^3 \right]_a^b -= -\frac{b^3-a^3}3. -\label{parzyl:equation1} + i(z) + = + A\cos{ + \left ( + \sqrt{\lambda + \mu}z + \right )} + + + B\sin{ + \left ( + \sqrt{\lambda + \mu}z + \right )}. \end{equation} -Neque porro quisquam est, qui dolorem ipsum quia dolor sit amet, -consectetur, adipisci velit, sed quia non numquam eius modi tempora -incidunt ut labore et dolore magnam aliquam quaerat voluptatem. - -Ut enim ad minima veniam, quis nostrum exercitationem ullam corporis -suscipit laboriosam, nisi ut aliquid ex ea commodi consequatur? -Quis autem vel eum iure reprehenderit qui in ea voluptate velit -esse quam nihil molestiae consequatur, vel illum qui dolorem eum -fugiat quo voluptas nulla pariatur? - -\subsection{De finibus bonorum et malorum -\label{parzyl:subsection:finibus}} -At vero eos et accusamus et iusto odio dignissimos ducimus qui -blanditiis praesentium voluptatum deleniti atque corrupti quos -dolores et quas molestias excepturi sint occaecati cupiditate non -provident, similique sunt in culpa qui officia deserunt mollitia -animi, id est laborum et dolorum fuga \eqref{000tempmlate:equation1}. - -Et harum quidem rerum facilis est et expedita distinctio -\ref{parzyl:section:loesung}. -Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil -impedit quo minus id quod maxime placeat facere possimus, omnis -voluptas assumenda est, omnis dolor repellendus -\ref{parzyl:section:folgerung}. -Temporibus autem quibusdam et aut officiis debitis aut rerum -necessitatibus saepe eveniet ut et voluptates repudiandae sint et -molestiae non recusandae. -Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis -voluptatibus maiores alias consequatur aut perferendis doloribus -asperiores repellat. +Die Differentialgleichungen \eqref{parzyl:sep_dgl_1} und \eqref{parzyl:sep_dgl_2} werden in \cite{parzyl:whittaker} +mit Hilfe der Whittaker Gleichung gelöst. +\begin{definition} + Die Funktionen + \begin{equation*} + M_{k,m}(x) = + e^{-x/2} x^{m+1/2} \, + {}_{1} F_{1} + ( + {\textstyle \frac{1}{2}} + + m - k, 1 + 2m; x) \qquad x \in \mathbb{C} + \end{equation*} + und + \begin{equation*} + W_{k,m}(x) = \frac{ + \Gamma \left( -2m\right) + }{ + \Gamma \left( {\textstyle \frac{1}{2}} - m - k\right) + } + M_{-k, m} \left(x\right) + + + \frac{ + \Gamma \left( 2m\right) + }{ + \Gamma \left( {\textstyle \frac{1}{2}} + m - k\right) + } + M_{k, -m} \left(x\right) + \end{equation*} + gehören zu den Whittaker Funktionen und sind Lösungen + von der Whittaker Differentialgleichung + \begin{equation} + \frac{d^2W}{d x^2} + + \biggl( -\frac{1}{4} + \frac{k}{x} + \frac{\frac{1}{4} - m^2}{x^2} \biggr) W = 0. + \label{parzyl:eq:whitDiffEq} + \end{equation} +\end{definition} +Es wird nun die Differentialgleichung bestimmt, welche +\begin{equation} + w = x^{-1/2} W_{k,-1/4} \left({\textstyle \frac{1}{2}} x^2\right) +\end{equation} +als Lösung hat. +Dafür wird $w$ in \eqref{parzyl:eq:whitDiffEq} eingesetzt, woraus +\begin{equation} + \frac{d^2 w}{dx^2} - \left(\frac{1}{4} x^2 - 2k\right) w = 0 +\label{parzyl:eq:weberDiffEq} +\end{equation} +resultiert. Diese Differentialgleichung ist dieselbe wie +\eqref{parzyl:sep_dgl_1} und \eqref{parzyl:sep_dgl_2}, welche somit +$w$ als Lösung haben. +%Da es sich um eine Differentialgleichung zweiter Ordnung handelt, hat sie nicht nur +%eine sondern zwei Lösungen. +%Die zweite Lösung der Whittaker-Gleichung ist $W_{k,-m} (z)$. +%Somit hat \eqref{parzyl:eq:weberDiffEq} +%\begin{align} +% w_1(k, z) & = z^{-1/2} W_{k,-1/4} \left({\textstyle \frac{1}{2}} z^2\right)\\ +% w_2(k, z) & = z^{-1/2} W_{k,1/4} \left({\textstyle \frac{1}{2}} z^2\right) +%\end{align} +%als Lösungen. +%Mit der Hypergeometrischen Funktion ausgeschrieben ergeben sich die Lösungen +%\begin{align} +% \label{parzyl:eq:solution_dgl} +% w_1(k,z) &= e^{-z^2/4} \, +% {}_{1} F_{1} +% ( +% {\textstyle \frac{1}{4}} +% - k, {\textstyle \frac{1}{2}} ; {\textstyle \frac{1}{2}}z^2) \\ +% w_2(k,z) & = z e^{-z^2/4} \, +% {}_{1} F_{1} +% ({\textstyle \frac{3}{4}} +% - k, {\textstyle \frac{3}{2}} ; {\textstyle \frac{1}{2}}z^2). +%\end{align} +In der Literatur gibt es verschiedene Standartlösungen für +\eqref{parzyl:eq:weberDiffEq}, wobei die Differentialgleichung jeweils +unterschiedlich geschrieben wird. +Whittaker und Watson zeigen in \cite{parzyl:whittaker} die Lösung +\begin{equation} + D_n(x) = 2^{\frac{1}{2}n + \frac{1}{2}} x^{-\frac{1}{2}} W_{n/2 + 1/4, -1/4}\left(\frac{1}{2}x^2\right), +\end{equation} +welche die Differentialgleichung +\begin{equation} + \frac{d^2D_n(x)}{dx^2} + \left(n + \frac{1}{2} - \frac{1}{4} x^2\right)D_n(x) = 0 +\end{equation} +löst. +Mit $M_{k,m}(x)$ geschrieben resultiert +\begin{equation} + D_n(x) = \frac{ + \Gamma \left( {\textstyle \frac{1}{2}}\right) 2^{\frac{1}{2}n + \frac{1}{4}} x^{-\frac{1}{2}} + }{ + \Gamma \left( {\textstyle \frac{1}{2}} - {\textstyle \frac{1}{2}} n \right) + } + M_{\frac{1}{2} n + \frac{1}{4}, - \frac{1}{4}} \left(\frac{1}{2}x^2\right) + + + \frac{ + \Gamma\left(-{\textstyle \frac{1}{2}}\right) 2^{\frac{1}{2}n + \frac{1}{4}} x^{-\frac{1}{2}} + }{ + \Gamma\left(- {\textstyle \frac{1}{2}} n\right) + } + M_{\frac{1}{2} n + \frac{1}{4}, \frac{1}{4}} \left(\frac{1}{2}x^2\right). +\end{equation} +In \cite{parzyl:abramowitz-stegun} sind zwei Lösungen $U(a, x)$ und $V(a,x)$ +\begin{align} + U(a,x) &= + \cos\left[\pi \left({\textstyle \frac{1}{4}} + {\textstyle \frac{1}{2}} a\right)\right] Y_1 + - \sin\left[\pi \left({\textstyle \frac{1}{4}} + {\textstyle \frac{1}{2}} a\right)\right] Y_2 + \label{parzyl:eq:Uaz} + \\ + V(a,x) &= \frac{1}{\Gamma \left({\textstyle \frac{1}{2} - a}\right)} \left\{ + \sin\left[\pi \left({\textstyle \frac{1}{4}} + {\textstyle \frac{1}{2}} a\right)\right] Y_1 + + \cos\left[\pi \left({\textstyle \frac{1}{4}} + {\textstyle \frac{1}{2}} a\right)\right] Y_2 + \right\} + \label{parzyl:eq:Vaz} +\end{align} +mit +\begin{align} + Y_1 &= \frac{1}{\sqrt{\pi}} + \frac{\Gamma\left({\textstyle \frac{1}{4} - + {\textstyle \frac{1}{2}}a}\right)} + {2^{\frac{1}{2} a + \frac{1}{4}}} + e^{-x^2/4} + {}_{1} F_{1} + \left({\textstyle \frac{1}{2}}a + {\textstyle \frac{1}{4}}, + {\textstyle \frac{1}{2}} ; + {\textstyle \frac{1}{2}}x^2\right)\\ + Y_2 &= \frac{1}{\sqrt{\pi}} + \frac{\Gamma\left({\textstyle \frac{3}{4} - + {\textstyle \frac{1}{2}}a}\right)} + {2^{\frac{1}{2} a - \frac{1}{4}}} + x e^{-x^2/4} + {}_{1} F_{1} + \left({\textstyle \frac{1}{2}}a + {\textstyle \frac{3}{4}}, + {\textstyle \frac{3}{2}} ; + {\textstyle \frac{1}{2}}x^2\right) +\end{align} +der Differentialgleichung +\begin{equation} + \frac{d^2 y}{d x^2} - \left(\frac{1}{4} x^2 + a\right) y = 0 +\end{equation} +beschrieben. Die Lösungen $U(a,z)$ und $V(a, z)$ können auch mit $D_n(z)$ +ausgedrückt werden +\begin{align} + U(a,x) &= D_{-a-1/2}(x) \\ + V(a,x) &= \frac{\Gamma \left({\textstyle \frac{1}{2}} + a\right)}{\pi} + \left[\sin\left(\pi a\right) D_{-a-1/2}(x) + D_{-a-1/2}(-x)\right]. +\end{align} +In den Abbildungen \ref{parzyl:fig:dnz} und \ref{parzyl:fig:Vnz} sind +die Funktionen $D_n(x)$ und $V(a,x)$ mit verschiedenen Werten für $a$ abgebildet. +\begin{figure} + \centering + \includegraphics[scale=0.35]{papers/parzyl/img/D_plot.png} + \caption{$D_n(x)$ mit unterschiedlichen Werten für $n$.} + \label{parzyl:fig:dnz} +\end{figure} +\begin{figure} + \centering + \includegraphics[scale=0.35]{papers/parzyl/img/v_plot.png} + \caption{$V(a,x)$ mit unterschiedlichen Werten für $a$.} + \label{parzyl:fig:Vnz} +\end{figure}
\ No newline at end of file diff --git a/buch/papers/parzyl/teil2.tex b/buch/papers/parzyl/teil2.tex index 75ba259..573432a 100644 --- a/buch/papers/parzyl/teil2.tex +++ b/buch/papers/parzyl/teil2.tex @@ -3,38 +3,102 @@ % % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % -\section{Teil 2 +\section{Anwendung in der Physik \label{parzyl:section:teil2}} -\rhead{Teil 2} -Sed ut perspiciatis unde omnis iste natus error sit voluptatem -accusantium doloremque laudantium, totam rem aperiam, eaque ipsa -quae ab illo inventore veritatis et quasi architecto beatae vitae -dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas sit -aspernatur aut odit aut fugit, sed quia consequuntur magni dolores -eos qui ratione voluptatem sequi nesciunt. Neque porro quisquam -est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci -velit, sed quia non numquam eius modi tempora incidunt ut labore -et dolore magnam aliquam quaerat voluptatem. Ut enim ad minima -veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam, -nisi ut aliquid ex ea commodi consequatur? Quis autem vel eum iure -reprehenderit qui in ea voluptate velit esse quam nihil molestiae -consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla -pariatur? - -\subsection{De finibus bonorum et malorum -\label{parzyl:subsection:bonorum}} -At vero eos et accusamus et iusto odio dignissimos ducimus qui -blanditiis praesentium voluptatum deleniti atque corrupti quos -dolores et quas molestias excepturi sint occaecati cupiditate non -provident, similique sunt in culpa qui officia deserunt mollitia -animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis -est et expedita distinctio. Nam libero tempore, cum soluta nobis -est eligendi optio cumque nihil impedit quo minus id quod maxime -placeat facere possimus, omnis voluptas assumenda est, omnis dolor -repellendus. Temporibus autem quibusdam et aut officiis debitis aut -rerum necessitatibus saepe eveniet ut et voluptates repudiandae -sint et molestiae non recusandae. Itaque earum rerum hic tenetur a -sapiente delectus, ut aut reiciendis voluptatibus maiores alias -consequatur aut perferendis doloribus asperiores repellat. - +\rhead{Anwendung in der Physik} +Die parabolischen Zylinderkoordinaten tauchen auf, wenn man das elektrische Feld einer semi-infiniten Platte, wie in Abbildung \ref{parzyl:fig:leiterplatte} gezeigt, finden will. +\begin{figure} + \centering + \includegraphics[width=0.9\textwidth]{papers/parzyl/img/plane.pdf} + \caption{Semi-infinite Leiterplatte} + \label{parzyl:fig:leiterplatte} +\end{figure} +Das dies so ist kann im zwei Dimensionalen mit Hilfe von komplexen Funktionen gezeigt werden. Die Platte ist dann nur eine Linie, was man in Abbildung TODO sieht. +Jede komplexe Funktion $F(z)$ kann geschrieben werden als +\begin{equation} + F(s) = U(x,y) + iV(x,y) \qquad s \in \mathbb{C}; x,y \in \mathbb{R}. +\end{equation} +Dabei müssen, falls die Funktion differenzierbar ist, die Cauchy-Riemann Differentialgleichungen +\begin{equation} + \frac{\partial U(x,y)}{\partial x} + = + \frac{\partial V(x,y)}{\partial y} + \qquad + \frac{\partial V(x,y)}{\partial x} + = + -\frac{\partial U(x,y)}{\partial y} +\end{equation} +gelten. +Aus dieser Bedingung folgt +\begin{equation} + \label{parzyl_e_feld_zweite_ab} + \underbrace{ + \frac{\partial^2 U(x,y)}{\partial x^2} + + + \frac{\partial^2 U(x,y)}{\partial y^2} + = + 0 + }_{\displaystyle{\nabla^2U(x,y)=0}} + \qquad + \underbrace{ + \frac{\partial^2 V(x,y)}{\partial x^2} + + + \frac{\partial^2 V(x,y)}{\partial y^2} + = + 0 + }_{\displaystyle{\nabla^2V(x,y) = 0}}. +\end{equation} +Zusätzlich kann auch gezeigt werden, dass die Funktion $F(z)$ eine winkeltreue Abbildung ist. +Der Zusammenhang zum elektrischen Feld ist jetzt, dass das Potential an einem quellenfreien Punkt gegeben ist als +\begin{equation} + \nabla^2\phi(x,y) = 0. +\end{equation} +Dies ist eine Bedingung welche differenzierbare Funktionen, wie in Gleichung \eqref{parzyl_e_feld_zweite_ab} gezeigt wird, bereits besitzen. +Nun kann zum Beispiel $U(x,y)$ als das Potential angeschaut werden +\begin{equation} + \phi(x,y) = U(x,y). +\end{equation} +Orthogonal zum Potential ist das elektrische Feld +\begin{equation} + E(x,y) = V(x,y). +\end{equation} +Um nun zu den parabolische Zylinderkoordinaten zu gelangen muss nur noch eine geeignete +komplexe Funktion $F(s)$ gefunden werden, +welche eine semi-infinite Platte beschreiben kann. +Die gesuchte Funktion in diesem Fall ist +\begin{equation} + F(s) + = + \sqrt{s} + = + \sqrt{x + iy}. +\end{equation} +Dies kann umgeformt werden zu +\begin{equation} + F(s) + = + \underbrace{\sqrt{\frac{\sqrt{x^2+y^2} + x}{2}}}_{U(x,y)} + + + i\underbrace{\sqrt{\frac{\sqrt{x^2+y^2} - x}{2}}}_{V(x,y)} + . +\end{equation} +Die Äquipotentialflächen können nun betrachtet werden, +indem man die Funktion, welche das Potential beschreibt, gleich eine Konstante setzt, +\begin{equation} + \sigma = U(x,y) = \sqrt{\frac{\sqrt{x^2+y^2} + x}{2}}. +\end{equation} +Die Flächen mit der gleichen elektrischen Feldstärke können als +\begin{equation} + \tau = V(x,y) = \sqrt{\frac{\sqrt{x^2+y^2} - x}{2}} +\end{equation} +beschrieben werden. Diese zwei Gleichungen zeigen nun, wie man vom +kartesischen Koordinatensystem ins parabolische Zylinderkoordinatensystem kommt. +Werden diese Formeln nun nach $x$ und $y$ aufgelöst +\begin{equation} + x = \sigma \tau, +\end{equation} +\begin{equation} + y = \frac{1}{2}\left ( \tau^2 - \sigma^2 \right ), +\end{equation} +so beschreibe sie, wie man aus dem parabolischen Zylinderkoordinatensystem zurück ins kartesische rechnen kann.
\ No newline at end of file diff --git a/buch/papers/parzyl/teil3.tex b/buch/papers/parzyl/teil3.tex index 72c23ca..166eebf 100644 --- a/buch/papers/parzyl/teil3.tex +++ b/buch/papers/parzyl/teil3.tex @@ -3,38 +3,102 @@ % % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % -\section{Teil 3 -\label{parzyl:section:teil3}} -\rhead{Teil 3} -Sed ut perspiciatis unde omnis iste natus error sit voluptatem -accusantium doloremque laudantium, totam rem aperiam, eaque ipsa -quae ab illo inventore veritatis et quasi architecto beatae vitae -dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas sit -aspernatur aut odit aut fugit, sed quia consequuntur magni dolores -eos qui ratione voluptatem sequi nesciunt. Neque porro quisquam -est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci -velit, sed quia non numquam eius modi tempora incidunt ut labore -et dolore magnam aliquam quaerat voluptatem. Ut enim ad minima -veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam, -nisi ut aliquid ex ea commodi consequatur? Quis autem vel eum iure -reprehenderit qui in ea voluptate velit esse quam nihil molestiae -consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla -pariatur? - -\subsection{De finibus bonorum et malorum -\label{parzyl:subsection:malorum}} -At vero eos et accusamus et iusto odio dignissimos ducimus qui -blanditiis praesentium voluptatum deleniti atque corrupti quos -dolores et quas molestias excepturi sint occaecati cupiditate non -provident, similique sunt in culpa qui officia deserunt mollitia -animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis -est et expedita distinctio. Nam libero tempore, cum soluta nobis -est eligendi optio cumque nihil impedit quo minus id quod maxime -placeat facere possimus, omnis voluptas assumenda est, omnis dolor -repellendus. Temporibus autem quibusdam et aut officiis debitis aut -rerum necessitatibus saepe eveniet ut et voluptates repudiandae -sint et molestiae non recusandae. Itaque earum rerum hic tenetur a -sapiente delectus, ut aut reiciendis voluptatibus maiores alias -consequatur aut perferendis doloribus asperiores repellat. +\section{Eigenschaften +\label{parzyl:section:Eigenschaften}} +\rhead{Eigenschaften} +\subsection{Potenzreihenentwicklung + \label{parzyl:potenz}} +%Die parabolischen Zylinderfunktionen, welche in Gleichung \ref{parzyl:eq:solution_dgl} gegeben sind, +%können auch als Potenzreihen geschrieben werden +Die parabolischen Zylinderfunktionen können auch als Potenzreihen geschrieben werden. +Im folgenden Abschnitt werden die Terme welche nur von $n$ oder $a$ abhängig sind vernachlässigt. +Die parabolischen Zylinderfunktionen sind Linearkombinationen aus einem geraden Teil $w_1(\alpha, x)$ +und einem ungeraden Teil $w_2(\alpha, x)$, welche als Potenzreihe +\begin{align} + w_1(\alpha,x) + &= + e^{-x^2/4} \, + {}_{1} F_{1} + ( + \alpha, {\textstyle \frac{1}{2}} ; {\textstyle \frac{1}{2}}x^2) + = + e^{-\frac{x^2}{4}} + \sum^{\infty}_{n=0} + \frac{\left ( \alpha \right )_{n}}{\left ( \frac{1}{2}\right )_{n}} + \frac{\left ( \frac{1}{2} x^2\right )^n}{n!} \\ + &= + e^{-\frac{x^2}{4}} + \left ( + 1 + + + \left ( 2\alpha \right )\frac{x^2}{2!} + + + \left ( 2\alpha \right )\left ( 2 + 2\alpha \right )\frac{x^4}{4!} + + + \dots + \right ) +\end{align} +und +\begin{align} + w_2(\alpha,x) + &= + xe^{-x^2/4} \, + {}_{1} F_{1} + ( + {\textstyle \frac{1}{2}} + + \alpha, {\textstyle \frac{3}{2}} ; {\textstyle \frac{1}{2}}x^2) + = + xe^{-\frac{x^2}{4}} + \sum^{\infty}_{n=0} + \frac{\left ( \frac{3}{4} - k \right )_{n}}{\left ( \frac{3}{2}\right )_{n}} + \frac{\left ( \frac{1}{2} x^2\right )^n}{n!} \\ + &= + e^{-\frac{x^2}{4}} + \left ( + x + + + \left ( 1 + 2\alpha \right )\frac{x^3}{3!} + + + \left ( 1 + 2\alpha \right )\left ( 3 + 2\alpha \right )\frac{x^5}{5!} + + + \dots + \right ) +\end{align} +sind. +Die Potenzreihen sind in der regel unendliche Reihen. +Es gibt allerdings die Möglichkeit für bestimmte $\alpha$ das die Terme in der Klammer gleich null werden +und die Reihe somit eine endliche Anzahl $n$ Summanden hat. +Dies geschieht bei $w_1(\alpha,x)$ falls +\begin{equation} + \alpha = -n \qquad n \in \mathbb{N}_0 +\end{equation} +und bei $w_2(\alpha,x)$ falls +\begin{equation} + \alpha = -\frac{1}{2} - n \qquad n \in \mathbb{N}_0. +\end{equation} +Der Wert des von $\alpha$ ist abhängig, ob man $D_n(x)$ oder $U(a,x)$ / $V(a,x)$ verwendet. +Bei $D_n(x)$ gilt $\alpha = -{\textstyle \frac{1}{2}} n$ und bei $U(a,z)$ oder $V(a,x)$ gilt +$\alpha = {\textstyle \frac{1}{2}} a + {\textstyle \frac{1}{4}}$. +\subsection{Ableitung} +Die Ableitungen $\frac{\partial w_1(\alpha, x)}{\partial x}$ und $\frac{\partial w_2(\alpha, x)}{\partial x}$ +können mit den Eigenschaften der hypergeometrischen Funktionen in Abschnitt +\ref{buch:rekursion:hypergeometrisch:stammableitung} berechnet werden. +Zusammen mit der Produktregel ergeben sich die Ableitungen +\begin{equation} + \frac{\partial w_1(\alpha,x)}{\partial x} = 2\alpha w_2(\alpha + \frac{1}{2}, x) - \frac{1}{2} x w_1(\alpha, x), +\end{equation} +und +%\begin{equation} +% \frac{\partial w_2(z,k)}{\partial z} = w_1(z, k -\frac{1}{2}) - \frac{1}{2} z w_2(z,k). +%\end{equation} +\begin{equation} + \frac{\partial w_2(\alpha,x)}{\partial x} = e^{-x^2/4} \left( + x^{-1} w_2(\alpha, x) - \frac{x}{2} w_2(\alpha, x) + 2 x^2 \left(\frac{\alpha + 1}{3}\right) + {}_{1} F_{1} ( + {\textstyle \frac{3}{2}} + + \alpha, {\textstyle \frac{5}{2}} ; {\textstyle \frac{1}{2}}x^2) + \right) +\end{equation} +Nach dem selben Vorgehen können weitere Ableitungen berechnet werden. |