aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers/sturmliouville/einleitung.tex
diff options
context:
space:
mode:
Diffstat (limited to 'buch/papers/sturmliouville/einleitung.tex')
-rw-r--r--buch/papers/sturmliouville/einleitung.tex124
1 files changed, 124 insertions, 0 deletions
diff --git a/buch/papers/sturmliouville/einleitung.tex b/buch/papers/sturmliouville/einleitung.tex
new file mode 100644
index 0000000..16dba19
--- /dev/null
+++ b/buch/papers/sturmliouville/einleitung.tex
@@ -0,0 +1,124 @@
+%
+% einleitung.tex -- Beispiel-File für die Einleitung
+% Author: Réda Haddouche
+%
+% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
+%
+
+\section{Was ist das Sturm-Liouville-Problem\label{sturmliouville:section:teil0}}
+\rhead{Was ist das Sturm-Liouville-Problem}
+Das Sturm-Liouville-Problem wurde benannt nach dem schweizerisch-französischen
+Mathematiker und Physiker Jacques Charles Fran\c{c}ois Sturm und dem
+französischen Mathematiker Joseph Liouville.
+Gemeinsam haben sie in der mathematischen Physik die Sturm-Liouville-Theorie
+entwickelt.
+Diese gilt für die Lösung von gewöhnlichen Differentialgleichungen.
+Handelt es sich um eine partielle
+Differentialgleichung, kann man sie mittels Separation in
+mehrere gewöhnliche Differentialgleichungen umwandeln.
+
+\begin{definition}
+ \index{Sturm-Liouville-Gleichung}%
+Wenn die lineare homogene Differentialgleichung
+\[
+ \frac{d^2y}{dx^2} + a(x)\frac{dy}{dx} + b(x)y = 0
+\]
+als
+\begin{equation}
+ \label{sturmliouville:eq:sturm-liouville-equation}
+ \frac{d}{dx} \biggl ( p(x) \frac{dy}{dx}\biggr ) + (q(x) +
+ \lambda w(x)) y
+ =
+ 0
+\end{equation}
+geschrieben werden kann, dann wird die
+Gleichung~\eqref{sturmliouville:eq:sturm-liouville-equation} als
+Sturm-Liouville-Gleichung bezeichnet.
+\end{definition}
+Alle homogenen linearen gewöhnlichen Differentialgleichungen 2. Ordnung können
+in die Form der Gleichung \eqref{sturmliouville:eq:sturm-liouville-equation}
+umgewandelt werden.
+
+Damit es sich um ein Sturm-Liouville-Problem handelt, benötigt es noch die
+Randbedingungen, die im nächsten Unterkapitel behandelt werden.
+
+\subsection{Randbedingungen
+\label{sturmliouville:sub:was-ist-das-slp-randbedingungen}}
+Geeignete Randbedingungen sind erforderlich, um die Lösungen einer
+Differentialgleichung eindeutig zu bestimmen.
+Die Sturm-Liouville-Gleichung mit homogenen Randbedingungen des dritten Typs
+\begin{equation}
+ \begin{aligned}
+ \label{sturmliouville:eq:randbedingungen}
+ k_a y(a) + h_a p(a) y'(a) &= 0 \\
+ k_b y(b) + h_b p(b) y'(b) &= 0
+ \end{aligned}
+\end{equation}
+ist das klassische Sturm-Liouville-Problem.
+
+
+\subsection{Koeffizientenfunktionen
+\label{sturmliouville:sub:koeffizientenfunktionen}}
+Die Funktionen $p(x)$, $q(x)$ und $w(x)$ werden als Koeffizientenfunktionen
+bezeichnet.
+Diese Funktionen erhält man, indem man eine Differentialgleichung in die
+Sturm-Liouville-Form bringt und dann die Koeffizientenfunktionen vergleicht.
+Die Funktion $w(x)$ (manchmal auch $r(x)$ genannt) wird als Gewichtsfunktion
+oder Dichtefunktion bezeichnet.
+Die Eigenschaften der Koeffizientenfunktionen haben
+einen großen Einfluss auf die Lösbarkeit des Sturm-Liouville-Problems und werden
+im nächsten Abschnitt diskutiert.
+
+%
+%Kapitel mit "Das reguläre Sturm-Liouville-Problem"
+%
+
+\subsection{Das reguläre und singuläre Sturm-Liouville-Problem
+\label{sturmliouville:sub:reguläre_sturm_liouville_problem}}
+Damit es sich um ein reguläres Sturm-Liouville-Problem handelt, müssen einige
+Bedingungen beachtet werden.
+\begin{definition}
+ \label{sturmliouville:def:reguläres_sturm-liouville-problem}
+ \index{regläres Sturm-Liouville-Problem}
+ Die Bedingungen für ein reguläres Sturm-Liouville-Problem sind:
+ \begin{itemize}
+ \item Die Funktionen $p(x), p'(x), q(x)$ und $w(x)$ müssen stetig und
+ reell sein
+ \item sowie in einem endlichen Intervall $[a,b]$ integrierbar
+ sein.
+ \item $p(x)$ und $w(x)$ sind $>0$.
+ \item Es gelten die Randbedingungen
+ \eqref{sturmliouville:eq:randbedingungen}, wobei
+ $|k_i|^2 + |h_i|^2\ne 0$ mit $i=a,b$.
+ \end{itemize}
+\end{definition}
+Wird eine oder mehrere dieser Bedingungen nicht erfüllt, so handelt es sich um
+ein singuläres Sturm-Liouville-Problem.
+
+\begin{beispiel}
+ Das Randwertproblem
+ \begin{equation}
+ \begin{aligned}
+ x^2y'' + xy' + (\lambda^2x^2 - m^2)y &= 0 \qquad 0<x<a,\\
+ y(a) &= 0
+ \end{aligned}
+ \end{equation}
+ ist kein reguläres Sturm-Liouville-Problem.
+ Wenn man die Gleichung in die Sturm-Liouville Form umformt, dann
+ erhält man
+ die Koeffizientenfunktionen $p(x) = w(x) = x$ und $q(x) = -m^2/x$.
+ Schaut man jetzt die Bedingungen in
+ Definition~\ref{sturmliouville:def:reguläres_sturm-liouville-problem} an und
+ vergleicht diese mit unseren Koeffizientenfunktionen, so erkennt man einige
+ Probleme:
+ \begin{itemize}
+ \item $p(x)$ und $w(x)$ sind nicht positiv, wenn $x = 0$ ist.
+ \item $q(x)$ ist nicht kontinuierlich, wenn $x = 0$ ist.
+ \item Die Randbedingung bei $x = 0$ und $x = a$ fehlt.
+ \end{itemize}
+\end{beispiel}
+
+Bei einem regulärem Problem, besteht die Lösung nur aus Eigenvektoren.
+Handelt es sich um ein singuläres Problem, so besteht die Lösung im Allgemeinen
+nicht mehr nur aus Eigenvektoren.
+