diff options
Diffstat (limited to '')
-rw-r--r-- | buch/papers/sturmliouville/waermeleitung_beispiel.tex | 20 |
1 files changed, 10 insertions, 10 deletions
diff --git a/buch/papers/sturmliouville/waermeleitung_beispiel.tex b/buch/papers/sturmliouville/waermeleitung_beispiel.tex index 356e259..f888d02 100644 --- a/buch/papers/sturmliouville/waermeleitung_beispiel.tex +++ b/buch/papers/sturmliouville/waermeleitung_beispiel.tex @@ -5,7 +5,7 @@ % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % -\subsection{Fourierreihe als Lösung des Sturm-Liouville-Problems +\section{Fourierreihe als Lösung des Sturm-Liouville-Problems (Wärmeleitung)} In diesem Abschnitt wird das Problem der Wärmeleitung in einem homogenen Stab @@ -34,7 +34,7 @@ Tempreatur gehalten werden. % % Randbedingungen für Stab mit konstanten Endtemperaturen % -\subsubsection{Randbedingungen für Stab mit Enden auf konstanter Temperatur} +\subsection{Randbedingungen für Stab mit Enden auf konstanter Temperatur} Die Enden des Stabes auf konstanter Temperatur zu halten bedeutet, dass die Lösungsfunktion $u(t,x)$ bei $x = 0$ und $x = l$ nur die vorgegebene @@ -54,7 +54,7 @@ als Randbedingungen. % Randbedingungen für Stab mit isolierten Enden % -\subsubsection{Randbedingungen für Stab mit isolierten Enden} +\subsection{Randbedingungen für Stab mit isolierten Enden} Bei isolierten Enden des Stabes können beliebige Temperaturen für $x = 0$ und $x = l$ auftreten. In diesem Fall ist es nicht erlaubt, dass Wärme vom Stab @@ -80,7 +80,7 @@ als Randbedingungen. % Lösung der Differenzialgleichung mittels Separation % -\subsubsection{Lösung der Differenzialgleichung} +\subsection{Lösung der Differenzialgleichung} Da die Lösungsfunktion von zwei Variablen abhängig ist, wird als Lösungsansatz die Separationsmethode verwendet. @@ -191,7 +191,7 @@ somit auch zu orthogonalen Lösungen führen. % Lösung von X(x), Teil mu % -\subsubsection{Lösund der Differentialgleichung in $x$} +\subsection{Lösund der Differentialgleichung in $x$} Als erstes wird auf die Gleichung~\eqref{sturmliouville:eq:example-fourier-separated-x} eingegangen. Aufgrund der Struktur der Gleichung @@ -360,10 +360,10 @@ wie auch mit isolierten Enden \end{equation} % TODO: infinite base vectors and fourier series -\subsubsection{TODO: Auf Anzahl Lösungen und Fourierreihe eingehen} +\subsection{TODO: Auf Anzahl Lösungen und Fourierreihe eingehen} % TODO: check ease of reading -\subsubsection{Berechnung der Koeffizienten} +\subsection{Berechnung der Koeffizienten} % TODO: move explanation A/B -> a_n/b_n to fourier subsection @@ -625,7 +625,7 @@ Es bleibt also noch % Lösung von T(t) % -\subsubsection{Lösung der Differentialgleichung in $t$} +\subsection{Lösung der Differentialgleichung in $t$} Zuletzt wird die zweite Gleichung der Separation~\eqref{sturmliouville:eq:example-fourier-separated-t} betrachtet. Diese wird über das charakteristische Polynom @@ -656,7 +656,7 @@ werden um die vollständige Lösung für das Stab-Problem zu erhalten. % TODO: elaborate -\subsubsection{Lösung für einen Stab mit Enden auf konstanter Temperatur} +\subsection{Lösung für einen Stab mit Enden auf konstanter Temperatur} \[ \begin{aligned} u(t,x) @@ -670,7 +670,7 @@ werden um die vollständige Lösung für das Stab-Problem zu erhalten. \end{aligned} \] -\subsubsection{Lösung für einen Stab mit isolierten Enden} +\subsection{Lösung für einen Stab mit isolierten Enden} \[ \begin{aligned} u(t,x) |