diff options
Diffstat (limited to '')
-rw-r--r-- | buch/papers/sturmliouville/waermeleitung_beispiel.tex | 668 |
1 files changed, 668 insertions, 0 deletions
diff --git a/buch/papers/sturmliouville/waermeleitung_beispiel.tex b/buch/papers/sturmliouville/waermeleitung_beispiel.tex new file mode 100644 index 0000000..14c0d9a --- /dev/null +++ b/buch/papers/sturmliouville/waermeleitung_beispiel.tex @@ -0,0 +1,668 @@ +% +% waermeleitung_beispiel.tex -- Beispiel Wärmeleitung in homogenem Stab. +% +% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil +% + +\subsection{Wärmeleitung in einem Homogenen Stab} + +In diesem Abschnitt wird das Problem der Wärmeleitung in einem homogenen Stab +betrachtet und wie das Sturm-Liouville-Problem bei der Beschreibung dieses +physikalischen Phänomenes auftritt. + +Zunächst wird ein eindimensionaler homogener Stab der Länge $l$ und +Wärmeleitkoeffizient $\kappa$ betrachtet. +Es ergibt sich für das Wärmeleitungsproblem +die partielle Differentialgleichung +\begin{equation} + \label{eq:slp-example-fourier-heat-equation} + \frac{\partial u}{\partial t} = + \kappa \frac{\partial^{2}u}{{\partial x}^{2}} +\end{equation} +wobei der Stab in diesem Fall auf der X-Achse im Intervall $[0,l]$ liegt. + +Da diese Differentialgleichung das Problem allgemein für einen homogenen +Stab beschreibt, werden zusätzliche Bedingungen benötigt, um beispielsweise +die Lösung für einen Stab zu finden, bei dem die Enden auf konstanter +Tempreatur gehalten werden. + +% +% Randbedingungen für Stab mit konstanten Endtemperaturen +% +\subsubsection{Randbedingungen für Stab mit Enden auf konstanter Temperatur} + +Die Enden des Stabes auf konstanter Temperatur zu halten bedeutet, dass die +Lösungsfunktion $u(t,x)$ bei $x = 0$ und $x = l$ nur die vorgegebene +Temperatur zurückgeben darf. Diese wird einfachheitshalber als $0$ angenomen. +Es folgen nun +\begin{equation} + \label{eq:slp-example-fourier-boundary-condition-ends-constant} + u(t,0) + = + u(t,l) + = + 0 +\end{equation} +als Randbedingungen. + +% +% Randbedingungen für Stab mit isolierten Enden +% + +\subsubsection{Randbedingungen für Stab mit isolierten Enden} + +Bei isolierten Enden des Stabes können belibige Temperaturen für $x = 0$ und +$x = l$ auftreten. In diesem Fall ist es nicht erlaubt, dass Wärme vom Stab +an die Umgebung oder von der Umgebung an den Stab abgegeben wird. + +Aus der Physik ist bekannt, dass Wärme immer von der höheren zur tieferen +Temperatur fliesst. Um Wärmefluss zu unterdrücken, muss also dafür gesorgt +werden, dass am Rand des Stabes keine Temperaturdifferenz existiert oder +dass die partiellen Ableitungen von $u(t,x)$ nach $x$ bei $x = 0$ und $x = l$ +verschwinden. +Somit folgen +\begin{equation} + \label{eq:slp-example-fourier-boundary-condition-ends-isolated} + \frac{\partial}{\partial x} u(t, 0) + = + \frac{\partial}{\partial x} u(t, l) + = + 0 +\end{equation} +als Randbedingungen. + +% +% Lösung der Differenzialgleichung mittels Separation +% + +\subsubsection{Lösung der Differenzialgleichung} + +Da die Lösungsfunktion von zwei Variablen abhängig ist, wird als Lösungsansatz +die Separationsmethode verwendet. +Dazu wird +\[ + u(t,x) + = + T(t)X(x) +\] +in die partielle Differenzialgleichung +\eqref{eq:slp-example-fourier-heat-equation} eingesetzt. +Daraus ergibt sich +\[ + T^{\prime}(t)X(x) + = + \kappa T(t)X^{\prime \prime}(x) +\] +als neue Form. + +Nun können alle von $t$ abhängigen Ausdrücke auf die linke Seite, sowie alle +von $x$ abhängigen Ausdrücke auf die rechte Seite gebracht werden und mittels +der neuen Variablen $\mu$ gekoppelt werden: +\[ + \frac{T^{\prime}(t)}{\kappa T(t)} + = + \frac{X^{\prime \prime}(x)}{X(x)} + = + \mu +\] +Durch die Einführung von $\mu$ kann das Problem nun in zwei separate +Differenzialgleichungen aufgeteilt werden: +\begin{equation} + \label{eq:slp-example-fourier-separated-x} + X^{\prime \prime}(x) - \mu X(x) + = + 0 +\end{equation} +\begin{equation} + \label{eq:slp-example-fourier-separated-t} + T^{\prime}(t) - \kappa \mu T(t) + = + 0 +\end{equation} + +% +% Überprüfung Orthogonalität der Lösungen +% + +Es ist an dieser Stelle zu bemerken, dass die Gleichung in $x$ in +Sturm-Liouville-Form ist. +Erfüllen die Randbedingungen des Stab-Problems auch die Randbedingungen des +Sturm-Liouville-Problems, kann bereits die Aussage getroffen werden, dass alle +Lösungen für die Gleichung in $x$ orthogonal sein werden. + +Da die Bedingungen des Stab-Problem nur Anforderungen an $x$ stellen, können +diese direkt für $X(x)$ übernomen werden. Es gilt also $X(0) = X(l) = 0$. +Damit die Lösungen von $X$ orthogonal sind, müssen also die Gleichungen +\begin{equation} +\begin{aligned} + \label{eq:slp-example-fourier-randbedingungen} + k_a X(a) + h_a p(a) X'(a) &= 0 \\ + k_b X(b) + h_b p(b) X'(b) &= 0 +\end{aligned} +\end{equation} +erfüllt sein und es muss ausserdem +\begin{equation} +\begin{aligned} + \label{eq:slp-example-fourier-coefficient-constraints} + |k_a|^2 + |h_a|^2 &\neq 0\\ + |k_b|^2 + |h_b|^2 &\neq 0\\ +\end{aligned} +\end{equation} +gelten. + +Um zu verifizieren, ob die Randbedingungen erfüllt sind, wird zunächst +$p(x)$ +benötigt. +Dazu wird die Gleichung \eqref{eq:slp-example-fourier-separated-x} mit der +Sturm-Liouville-Form \eqref{eq:sturm-liouville-equation} verglichen, was zu +$p(x) = 1$ führt. + +Werden nun $p(x)$ und die Randbedingungen +\eqref{eq:slp-example-fourier-boundary-condition-ends-constant} in +\eqref{eq:slp-example-fourier-randbedingungen} eigesetzt, erhält man +\[ +\begin{aligned} + k_a y(0) + h_a y'(0) &= h_a y'(0) = 0 \\ + k_b y(l) + h_b y'(l) &= h_b y'(l) = 0. +\end{aligned} +\] +Damit die Gleichungen erfüllt sind, müssen $h_a = 0$ und $h_b = 0$ sein. +Zusätzlich müssen aber die Bedingungen +\eqref{eq:slp-example-fourier-coefficient-constraints} erfüllt sein und +da $y(0) = 0$ und $y(l) = 0$ sind, können belibige $k_a \neq 0$ und $k_b \neq 0$ +gewählt werden. + +Somit ist gezeigt, dass die Randbedingungen des Stab-Problems für Enden auf +konstanter Temperatur auch die Sturm-Liouville-Randbedingungen erfüllen und +alle daraus reultierenden Lösungen orthogonal sind. +Analog dazu kann gezeit werden, dass die Randbedingungen für einen Stab mit +isolierten Enden ebenfalls die Sturm-Liouville-Randbedingungen erfüllen und +somit auch zu orthogonalen Lösungen führen. + +% +% Lösung von X(x), Teil mu +% + +\subsubsection{Lösund der Differentialgleichung in x} +Als erstes wird auf die erste erste Gleichung eingegangen. +Aufgrund der Struktur der Gleichung +\[ + X^{\prime \prime}(x) - \mu X(x) + = + 0 +\] +wird ein trigonometrischer Ansatz gewählt. +Die Lösungen für $X(x)$ sind also von der Form +\[ + X(x) + = + A \cos \left( \alpha x\right) + B \sin \left( \beta x\right). +\] + +Dieser Ansatz wird nun solange differenziert, bis alle in Gleichung +\eqref{eq:slp-example-fourier-separated-x} enthaltenen Ableitungen vorhanden +sind. +Man erhält also +\[ + X^{\prime}(x) + = + - \alpha A \sin \left( \alpha x \right) + + \beta B \cos \left( \beta x \right) +\] +und +\[ + X^{\prime \prime}(x) + = + -\alpha^{2} A \cos \left( \alpha x \right) - + \beta^{2} B \sin \left( \beta x \right). +\] + +Eingesetzt in Gleichung \eqref{eq:slp-example-fourier-separated-x} ergibt dies +\[ + -\alpha^{2}A\cos(\alpha x) - \beta^{2}B\sin(\beta x) - + \mu\left(A\cos(\alpha x) + B\sin(\beta x)\right) + = + 0 +\] +und durch umformen somit +\[ + -\alpha^{2}A\cos(\alpha x) - \beta^{2}B\sin(\beta x) + = + \mu A\cos(\alpha x) + \mu B\sin(\beta x). +\] + +Mittels Koeffizientenvergleich von +\[ +\begin{aligned} + -\alpha^{2}A\cos(\alpha x) + &= + \mu A\cos(\alpha x) + \\ + -\beta^{2}B\sin(\beta x) + &= + \mu B\sin(\beta x) +\end{aligned} +\] +ist schnell ersichtlich, dass $ \mu = -\alpha^{2} = -\beta^{2} $ gelten muss für +$ A \neq 0 $ oder $ B \neq 0 $. +Zur Berechnung von $ \mu $ bleiben also noch $ \alpha $ und $ \beta $ zu +bestimmen. +Dazu werden nochmals die Randbedingungen +\eqref{eq:slp-example-fourier-boundary-condition-ends-constant} und +\eqref{eq:slp-example-fourier-boundary-condition-ends-isolated} benötigt. + +Da die Koeffizienten $A$ und $B$, sowie die Parameter $\alpha$ uns $\beta$ im +allgemeninen ungleich $0$ sind, müssen die Randbedingungen durch die +trigonometrischen Funktionen erfüllt werden. + +Es werden nun die Randbedingungen +\eqref{eq:slp-example-fourier-boundary-condition-ends-constant} für einen Stab +mit Enden auf konstanter Temperatur in die Gleichung +\eqref{eq:slp-example-fourier-separated-x} eingesetzt. +Betrachten wir zunächst die Bedingung für $x = 0$. +Dies fürht zu +\[ + X(0) + = + A \cos(0 \alpha) + B \sin(0 \beta) + = + 0. +\] +Da $\cos(0) \neq 0$ ist, muss in diesem Fall $A = 0$ gelten. +Für den zweiten Summanden ist wegen $\sin(0) = 0$ die Randbedingung erfüllt. + +Wird nun die zweite Randbedingung für $x = l$ mit $A = 0$ eingesetzt, ergibt +sich +\[ + X(l) + = + 0 \cos(\alpha l) + B \sin(\beta l) + = + B \sin(\beta l) + = 0. +\] + +$\beta$ muss also so gewählt werden, dass $\sin(\beta l) = 0$ gilt. +Es bleibt noch nach $\beta$ aufzulösen: +\[ +\begin{aligned} + \sin(\beta l) &= 0 \\ + \beta l &= n \pi \qquad n \in \mathbb{N} \\ + \beta &= \frac{n \pi}{l} \qquad n \in \mathbb{N} +\end{aligned} +\] + +Es folgt nun wegen $\mu = -\beta^{2}$, dass +\[ + \mu_1 = -\beta^{2} = -\frac{n^{2}\pi^{2}}{l^{2}} +\] +sein muss. +Ausserdem ist zu bemerken, dass dies auch gleich $-\alpha^{2}$ ist. +Da aber $A = 0$ gilt und der Summand mit $\alpha$ verschwindet, ist dies keine +Verletzung der Randbedingungen. + +Durch alanoges Vorgehen kann nun auch das Problem mit isolierten Enden gelöst +werden. +Setzt man nun die Randbedingungen +\eqref{eq:slp-example-fourier-boundary-condition-ends-isolated} in $X^{\prime}$ +ein, beginnend für $x = 0$. Es ergibt sich +\[ + X^{\prime}(0) + = + -\alpha A \sin(0 \alpha) + \beta B \cos(0 \beta) + = 0. +\] +In diesem Fall muss $B = 0$ gelten. +Zusammen mit der Bedignung für $x = l$ +folgt nun +\[ + X^{\prime}(l) + = + - \alpha A \sin(\alpha l) + 0 \beta \cos(\beta l) + = + - \alpha A \sin(\alpha l) + = 0. +\] + +Wiedrum muss über die $ \sin $-Funktion sicher gestellt werden, dass der +Ausdruck den Randbedingungen entspricht. +Es folgt nun +\[ +\begin{aligned} + \sin(\alpha l) &= 0 \\ + \alpha l &= n \pi \qquad n \in \mathbb{N} \\ + \alpha &= \frac{n \pi}{l} \qquad n \in \mathbb{N} +\end{aligned} +\] +und somit +\[ + \mu_2 = -\alpha^{2} = -\frac{n^{2}\pi^{2}}{l^{2}}. +\] + +Es ergibt sich also sowohl für einen Stab mit Enden auf konstanter Temperatur +wie auch mit isolierten Enden +\begin{equation} + \label{eq:slp-example-fourier-mu-solution} + \mu + = + -\frac{n^{2}\pi^{2}}{l^{2}}. +\end{equation} + +% +% Lösung von X(x), Teil: Koeffizienten a_n und b_n mittels skalarprodukt. +% + +Bisher wurde über die Koeffizienten $A$ und $B$ noch nicht viel ausgesagt. +Zunächst ist wegen vorhergehender Rechnung ersichtlich, dass es sich bei +$A$ und $B$ nicht um einzelne Koeffizienten handelt. +Stattdessen können die Koeffizienten für jedes $n \in \mathbb{N}$ +unterschiedlich sein. +Die Lösung $X(x)$ wird nun umgeschrieben zu +\[ + X(x) + = + a_0 + + + \sum_{n = 1}^{\infty} a_n\cos\left(\frac{n\pi}{l}x\right) + + + \sum_{n = 1}^{\infty} b_n\sin\left(\frac{n\pi}{l}x\right). +\] + +Um eine eindeutige Lösung für $ X(x) $ zu erhalten werden noch weitere +Bedingungen benötigt. +Diese sind die Startbedingungen oder $u(0, x) = X(x)$ für $t = 0$. +Es gilt also nun die Gleichung +\begin{equation} + \label{eq:slp-example-fourier-initial-conditions} + u(0, x) + = + a_0 + + + \sum_{n = 1}^{\infty} a_n\cos\left(\frac{n\pi}{l}x\right) + + + \sum_{n = 1}^{\infty} b_n\sin\left(\frac{n\pi}{l}x\right) +\end{equation} +nach allen $a_n$ und $b_n$ aufzulösen. +Da aber $a_n$ und $b_n$ jeweils als Faktor zu einer trigonometrischen Funktion +gehört, von der wir wissen, dass sie orthogonal zu allen anderen +trigonometrischen Funktionen der Lösung ist, kann direkt das Skalarprodukt +verwendet werden um die Koeffizienten $a_n$ und $b_n$ zu bestimmen. +Es wird also die Tatsache ausgenutzt, dass die Gleichheit in +\eqref{eq:slp-example-fourier-initial-conditions} nach Anwendung des +Skalarproduktes immernoch gelten muss und dass das Skalaprodukt mit einer +Basisfunktion sämtliche Summanden auf der rechten Seite auslöscht. + +Zur Berechnung von $a_m$ mit $ m \in \mathbb{N} $ wird beidseitig das +Skalarprodukt mit der Basisfunktion $ \cos\left(\frac{m \pi}{l}x\right)$ +gebildet: +\begin{equation} + \label{eq:slp-dot-product-cosine} + \langle u(0, x), \cos\left(\frac{m \pi}{l}x\right) \rangle + = + \langle a_0 + + + \sum_{n = 1}^{\infty} a_n\cos\left(\frac{n\pi}{l}x\right) + + + \sum_{n = 1}^{\infty} b_n\sin\left(\frac{n\pi}{l}x\right), + \cos\left(\frac{m \pi}{l}x\right)\rangle +\end{equation} + +Bevor diese Form in die Integralform umgeschrieben werden kann, muss überlegt +sein, welche Integralgrenzen zu verwenden sind. +In diesem Fall haben die $ \sin $ und $ \cos $ Terme beispielsweise keine ganze +Periode im Intervall $ x \in [0, l] $ für ungerade $ n $ und $ m $. +Um die Skalarprodukte aber korrekt zu berechnen, muss über ein ganzzahliges +Vielfaches der Periode der triginimetrischen Funktionen integriert werden. +Dazu werden die Integralgrenzen $-l$ und $l$ verwendet und es werden ausserdem +neue Funktionen $ \hat{u}_c(0, x) $ für die Berechnung mit Cosinus und +$ \hat{u}_s(0, x) $ für die Berechnung mit Sinus angenomen, welche $ u(0, t) $ +gerade, respektive ungerade auf $[-l, l]$ fortsetzen: +\[ +\begin{aligned} + \hat{u}_c(0, x) + &= + \begin{cases} + u(0, -x) & -l \leq x < 0 + \\ + u(0, x) & 0 \leq x \leq l + \end{cases} + \\ + \hat{u}_s(0, x) + &= + \begin{cases} + -u(0, -x) & -l \leq x < 0 + \\ + u(0, x) & 0 \leq x \leq l + \end{cases}. +\end{aligned} +\] + +Die Konsequenz davon ist, dass nun das Resultat der Integrale um den Faktor zwei +skalliert wurde, also gilt nun +\[ +\begin{aligned} + \int_{-l}^{l}\hat{u}_c(0, x)\cos\left(\frac{m \pi}{l}x\right)dx + &= + 2\int_{0}^{l}u(0, x)\cos\left(\frac{m \pi}{l}x\right)dx + \\ + \int_{-l}^{l}\hat{u}_s(0, x)\sin\left(\frac{m \pi}{l}x\right)dx + &= + 2\int_{0}^{l}u(0, x)\sin\left(\frac{m \pi}{l}x\right)dx. +\end{aligned} +\] + +Zunächst wird nun das Skalaprodukt \eqref{eq:slp-dot-product-cosine} berechnet: +\[ +\begin{aligned} + \int_{-l}^{l}\hat{u}_c(0, x)\cos\left(\frac{m \pi}{l}x\right)dx + =& + \int_{-l}^{l} \left[a_0 + + + \sum_{n = 1}^{\infty} a_n\cos\left(\frac{n\pi}{l}x\right) + + + \sum_{n = 1}^{\infty} b_n\sin\left(\frac{n\pi}{l}x\right)\right] + \cos\left(\frac{m \pi}{l}x\right) dx + \\ + 2\int_{0}^{l}u(0, x)\cos\left(\frac{m \pi}{l}x\right)dx + =& + a_0 \int_{-l}^{l}cos\left(\frac{m \pi}{l}x\right) dx + + + \sum_{n = 1}^{\infty}\left[a_n\int_{-l}^{l}\cos\left(\frac{n\pi}{l}x\right) + \cos\left(\frac{m \pi}{l}x\right)dx\right] + \\ + &+ + \sum_{n = 1}^{\infty}\left[b_n\int_{-l}^{l}\sin\left(\frac{n\pi}{l}x\right) + \cos\left(\frac{m \pi}{l}x\right)dx\right]. +\end{aligned} +\] + +Betrachtet man nun die Summanden auf der rechten Seite stellt man fest, dass +nahezu alle Terme verschwinden, denn +\[ + \int_{-l}^{l}cos\left(\frac{m \pi}{l}x\right) dx + = + 0 +\] +da hier über ein ganzzahliges Vielfaches der Periode integriert wird, +\[ + \int_{-l}^{l}\cos\left(\frac{n\pi}{l}x\right) + \cos\left(\frac{m \pi}{l}x\right)dx + = + 0 +\] +für $m\neq n$, da Cosinus-Funktionen mit verschiedenen Kreisfrequenzen +orthogonal zueinander stehen und +\[ + \int_{-l}^{l}\sin\left(\frac{n\pi}{l}x\right) + \cos\left(\frac{m \pi}{l}x\right)dx + = + 0 +\] +da Sinus- und Cosinus-Funktionen ebenfalls orthogonal zueinander sind. + +Es bleibt also lediglich der Summand für $a_m$ stehen, was die Gleichung zu +\[ + 2\int_{0}^{l}u(0, x)\cos\left(\frac{m \pi}{l}x\right)dx + = + a_m\int_{-l}^{l}\cos^2\left(\frac{m\pi}{l}x\right)dx +\] +vereinfacht. Im nächsten Schritt wird nun das Integral auf der rechten Seite +berechnet und dann nach $a_m$ aufgelöst. Am einnfachsten geht dies, wenn zuerst +mit $u = \frac{m \pi}{l}x$ substituiert wird: +\[ + \begin{aligned} + 2\int_{0}^{l}u(0, x)\cos\left(\frac{m \pi}{l}x\right)dx + &= + a_m\frac{l}{m\pi}\int_{-m\pi}^{m\pi}\cos^2\left(u\right)du + \\ + &= + a_m\frac{l}{m\pi}\left[\frac{u}{2} + + \frac{\sin\left(2u\right)}{4}\right]_{u=-m\pi}^{m\pi} + \\ + &= + a_m\frac{l}{m\pi}\left(\frac{m\pi}{2} + + \underbrace{\frac{\sin\left(2m\pi\right)}{4}}_{\displaystyle = 0} - + \frac{-m\pi}{2} - + \underbrace{\frac{\sin\left(-2m\pi\right)}{4}}_{\displaystyle = 0}\right) + \\ + &= + a_m l + \\ + a_m + &= + \frac{2}{l} \int_{0}^{l}u(0, x)\cos\left(\frac{m \pi}{l}x\right)dx + \end{aligned} +\] + +Analog dazu kann durch das Bilden des Skalarproduktes mit +$ \sin\left(\frac{m \pi}{l}x\right) $ gezeigt werden, dass +\[ + b_m + = + \frac{2}{l} \int_{0}^{l}u(0, x)\sin\left(\frac{m \pi}{l}x\right)dx +\] +gilt. + +Etwas anders ist es allerdings bei $a_0$. +Wie der Name bereits suggeriert, handelt es sich hierbei um den Koeffizienten +zur Basisfunktion $ \cos\left(\frac{0 \pi}{l}x\right) $ beziehungsweise der +konstanten Funktion $1$. +Um einen Ausdruck für $ a_0 $ zu erhalten, wird wiederum auf beiden Seiten +der Gleichung \eqref{eq:slp-example-fourier-initial-conditions} das +Skalarprodukt mit der konstanten Basisfunktion $ 1 $ gebildet: +\[ +\begin{aligned} + \int_{-l}^{l}\hat{u}_c(0, x)dx + &= + \int_{-l}^{l} a_0 + + + \sum_{n = 1}^{\infty} a_n\cos\left(\frac{n\pi}{l}x\right) + + + \sum_{n = 1}^{\infty} b_n\sin\left(\frac{n\pi}{l}x\right)dx + \\ + 2\int_{0}^{l}u(0, x)dx + &= + a_0 \int_{-l}^{l}dx + + + \sum_{n = 1}^{\infty}\left[a_n\int_{-l}^{l}\cos\left(\frac{n\pi}{l}x\right) + dx\right] + + \sum_{n = 1}^{\infty}\left[b_n\int_{-l}^{l}\sin\left(\frac{n\pi}{l}x\right) + dx\right]. +\end{aligned} +\] + +Hier fallen nun alle Terme, die $\sin$ oder $\cos$ beinhalten weg, da jeweils +über ein Vielfaches der Periode integriert wird. +Es bleibt also noch +\[ + 2\int_{0}^{l}u(0, x)dx + = + a_0 \int_{-l}^{l}dx +\] +, was sich wie folgt nach $a_0$ auflösen lässt: +\[ +\begin{aligned} + 2\int_{0}^{l}u(0, x)dx + &= + a_0 \int_{-l}^{l}dx + \\ + &= + a_0 \left[x\right]_{x=-l}^{l} + \\ + &= + a_0(l - (-l)) + \\ + &= + a_0 \cdot 2l + \\ + a_0 + &= + \frac{1}{l} \int_{0}^{l}u(0, x)dx +\end{aligned} +\] + +% +% Lösung von T(t) +% + +\subsubsection{Lösund der Differentialgleichung in t} +Zuletzt wird die zweite Gleichung der Separation +\eqref{eq:slp-example-fourier-separated-t} betrachtet. +Diese wird über das charakteristische Polynom +\[ + \lambda - \kappa \mu + = + 0 +\] +gelöst. + +Es ist direkt ersichtlich, dass $\lambda = \kappa \mu$ gelten muss, was zur +Lösung +\[ + T(t) + = + e^{-\kappa \mu t} +\] +führt. +Und mit dem Resultat \eqref{eq:slp-example-fourier-mu-solution} +\[ + T(t) + = + e^{-\frac{n^{2}\pi^{2}\kappa}{l^{2}}t} +\] +ergibt. + +Dieses Resultat kann nun mit allen vorhergehenden Resultaten zudammengesetzt +werden um die vollständige Lösung für das Stab-Problem zu erhalten. + +\subsubsection{Lösung für einen Stab mit Enden auf konstanter Temperatur} +\[ +\begin{aligned} + u(t,x) + &= + \sum_{n=1}^{\infty}b_{n}e^{-\frac{n^{2}\pi^{2}\kappa}{l^{2}}t} + \sin\left(\frac{n\pi}{l}x\right) + \\ + b_{n} + &= + \frac{2}{l}\int_{0}^{l}u(0,x)sin\left(\frac{n\pi}{l}x\right) dx +\end{aligned} +\] + +\subsubsection{Lösung für einen Stab mit isolierten Enden} +\[ +\begin{aligned} + u(t,x) + &= + a_{0} + \sum_{n=1}^{\infty}a_{n}e^{-\frac{n^{2}\pi^{2}\kappa}{l^{2}}t} + \cos\left(\frac{n\pi}{l}x\right) + \\ + a_{0} + &= + \frac{1}{l}\int_{0}^{l}u(0,x) dx + \\ + a_{n} + &= + \frac{2}{l}\int_{0}^{l}u(0,x)sin\left(\frac{n\pi}{l}x\right) dx +\end{aligned} +\] |