aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers/sturmliouville/waermeleitung_beispiel.tex
diff options
context:
space:
mode:
Diffstat (limited to 'buch/papers/sturmliouville/waermeleitung_beispiel.tex')
-rw-r--r--buch/papers/sturmliouville/waermeleitung_beispiel.tex34
1 files changed, 18 insertions, 16 deletions
diff --git a/buch/papers/sturmliouville/waermeleitung_beispiel.tex b/buch/papers/sturmliouville/waermeleitung_beispiel.tex
index b22d5f5..a72c562 100644
--- a/buch/papers/sturmliouville/waermeleitung_beispiel.tex
+++ b/buch/papers/sturmliouville/waermeleitung_beispiel.tex
@@ -1,5 +1,6 @@
%
-% waermeleitung_beispiel.tex -- Beispiel Wärmeleitung in homogenem Stab.
+% waermeleitung_beispiel.tex -- Beispiel Wärmeleitung in homogenem Stab.
+% Author: Erik Löffler
%
% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
%
@@ -17,9 +18,9 @@ die partielle Differentialgleichung
\begin{equation}
\label{sturmliouville:eq:example-fourier-heat-equation}
\frac{\partial u}{\partial t} =
- \kappa \frac{\partial^{2}u}{{\partial x}^{2}}
+ \kappa \frac{\partial^{2}u}{{\partial x}^{2}},
\end{equation}
-wobei der Stab in diesem Fall auf der X-Achse im Intervall $[0,l]$ liegt.
+wobei der Stab in diesem Fall auf der $X$-Achse im Intervall $[0,l]$ liegt.
Da diese Differentialgleichung das Problem allgemein für einen homogenen
Stab beschreibt, werden zusätzliche Bedingungen benötigt, um beispielsweise
@@ -34,7 +35,7 @@ Tempreatur gehalten werden.
Die Enden des Stabes auf konstanter Temperatur zu halten bedeutet, dass die
Lösungsfunktion $u(t,x)$ bei $x = 0$ und $x = l$ nur die vorgegebene
Temperatur zurückgeben darf. Diese wird einfachheitshalber als $0$ angenomen.
-Es folgen nun
+Es folgt nun
\begin{equation}
\label{sturmliouville:eq:example-fourier-boundary-condition-ends-constant}
u(t,0)
@@ -51,7 +52,7 @@ als Randbedingungen.
\subsubsection{Randbedingungen für Stab mit isolierten Enden}
-Bei isolierten Enden des Stabes können belibige Temperaturen für $x = 0$ und
+Bei isolierten Enden des Stabes können beliebige Temperaturen für $x = 0$ und
$x = l$ auftreten. In diesem Fall ist es nicht erlaubt, dass Wärme vom Stab
an die Umgebung oder von der Umgebung an den Stab abgegeben wird.
@@ -186,8 +187,9 @@ somit auch zu orthogonalen Lösungen führen.
% Lösung von X(x), Teil mu
%
-\subsubsection{Lösund der Differentialgleichung in x}
-Als erstes wird auf die erste erste Gleichung eingegangen.
+\subsubsection{Lösund der Differentialgleichung in $x$}
+Als erstes wird auf die
+Gleichung~\eqref{sturmliouville:eq:example-fourier-separated-x} eingegangen.
Aufgrund der Struktur der Gleichung
\[
X^{\prime \prime}(x) - \mu X(x)
@@ -417,7 +419,7 @@ sein, welche Integralgrenzen zu verwenden sind.
In diesem Fall haben die $\sin$ und $\cos$ Terme beispielsweise keine ganze
Periode im Intervall $x \in [0, l]$ für ungerade $n$ und $m$.
Um die Skalarprodukte aber korrekt zu berechnen, muss über ein ganzzahliges
-Vielfaches der Periode der triginimetrischen Funktionen integriert werden.
+Vielfaches der Periode der trigonometrischen Funktionen integriert werden.
Dazu werden die Integralgrenzen $-l$ und $l$ verwendet und es werden ausserdem
neue Funktionen $\hat{u}_c(0, x)$ für die Berechnung mit Cosinus und
$\hat{u}_s(0, x)$ für die Berechnung mit Sinus angenomen, welche $u(0, t)$
@@ -471,7 +473,7 @@ berechnet:
\\
2\int_{0}^{l}u(0, x)\cos\left(\frac{m \pi}{l}x\right)dx
=&
- a_0 \int_{-l}^{l}cos\left(\frac{m \pi}{l}x\right) dx
+ a_0 \int_{-l}^{l}\cos\left(\frac{m \pi}{l}x\right) dx
+
\sum_{n = 1}^{\infty}\left[a_n\int_{-l}^{l}\cos\left(\frac{n\pi}{l}x\right)
\cos\left(\frac{m \pi}{l}x\right)dx\right]
@@ -485,9 +487,9 @@ berechnet:
Betrachtet man nun die Summanden auf der rechten Seite stellt man fest, dass
nahezu alle Terme verschwinden, denn
\[
- \int_{-l}^{l}cos\left(\frac{m \pi}{l}x\right) dx
+ \int_{-l}^{l}\cos\left(\frac{m \pi}{l}x\right) dx
=
- 0
+ 0,
\]
da hier über ein ganzzahliges Vielfaches der Periode integriert wird,
\[
@@ -526,10 +528,10 @@ mit $u = \frac{m \pi}{l}x$ substituiert wird:
\frac{\sin\left(2u\right)}{4}\right]_{u=-m\pi}^{m\pi}
\\
&=
- a_m\frac{l}{m\pi}\left(\frac{m\pi}{2} +
+ a_m\frac{l}{m\pi}\biggl(\frac{m\pi}{2} +
\underbrace{\frac{\sin\left(2m\pi\right)}{4}}_{\displaystyle = 0} -
\frac{-m\pi}{2} -
- \underbrace{\frac{\sin\left(-2m\pi\right)}{4}}_{\displaystyle = 0}\right)
+ \underbrace{\frac{\sin\left(-2m\pi\right)}{4}}_{\displaystyle = 0}\biggr)
\\
&=
a_m l
@@ -611,7 +613,7 @@ Es bleibt also noch
% Lösung von T(t)
%
-\subsubsection{Lösund der Differentialgleichung in t}
+\subsubsection{Lösung der Differentialgleichung in $t$}
Zuletzt wird die zweite Gleichung der
Separation~\eqref{sturmliouville:eq:example-fourier-separated-t} betrachtet.
Diese wird über das charakteristische Polynom
@@ -627,7 +629,7 @@ Lösung
\[
T(t)
=
- e^{-\kappa \mu t}
+ e^{\kappa \mu t}
\]
führt und mit dem Resultat~\eqref{sturmliouville:eq:example-fourier-mu-solution}
\[
@@ -637,7 +639,7 @@ führt und mit dem Resultat~\eqref{sturmliouville:eq:example-fourier-mu-solution
\]
ergibt.
-Dieses Resultat kann nun mit allen vorhergehenden Resultaten zudammengesetzt
+Dieses Resultat kann nun mit allen vorhergehenden Resultaten zusammengesetzt
werden um die vollständige Lösung für das Stab-Problem zu erhalten.
\subsubsection{Lösung für einen Stab mit Enden auf konstanter Temperatur}