aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers/sturmliouville
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--buch/papers/sturmliouville/eigenschaften.tex87
-rw-r--r--buch/papers/sturmliouville/einleitung.tex27
-rw-r--r--buch/papers/sturmliouville/main.tex5
-rw-r--r--buch/papers/sturmliouville/tschebyscheff_beispiel.tex12
-rw-r--r--buch/papers/sturmliouville/waermeleitung_beispiel.tex231
5 files changed, 164 insertions, 198 deletions
diff --git a/buch/papers/sturmliouville/eigenschaften.tex b/buch/papers/sturmliouville/eigenschaften.tex
index cef276b..8616172 100644
--- a/buch/papers/sturmliouville/eigenschaften.tex
+++ b/buch/papers/sturmliouville/eigenschaften.tex
@@ -116,90 +116,5 @@ Bei einem regulären Sturm-Liouville-Problem ist diese Eigenschaft für $L$
gegeben und wird im Weiteren nicht näher diskutiert.
Es kann nun also dank dem Spektralsatz darauf geschlossen werden, dass die
-Lösungsfunktion $y$ eises regulären Sturm-Liouville-Problems eine
+Lösungsfunktion $y$ eines regulären Sturm-Liouville-Problems eine
Linearkombination aus orthogonalen Basisfunktionen sein muss.
-
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% OLD section %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-
-\iffalse
-
-\section{OLD: Eigenschaften von Lösungen
-%\label{sturmliouville:section:solution-properties}
-}
-\rhead{Eigenschaften von Lösungen}
-
-Im weiteren werden nun die Eigenschaften der Lösungen eines
-Sturm-Liouville-Problems diskutiert und aufgezeigt, wie diese Eigenschaften
-zustande kommen.
-
-Dazu wird der Operator $L_0$ welcher bereits in
-Kapitel~\ref{buch:integrale:subsection:sturm-liouville-problem} betrachtet
-wurde, noch etwas genauer angeschaut.
-Es wird also im Folgenden
-\[
- L_0
- =
- -\frac{d}{dx}p(x)\frac{d}{dx}
-\]
-zusammen mit den Randbedingungen
-\[
- \begin{aligned}
- k_a y(a) + h_a p(a) y'(a) &= 0 \\
- k_b y(b) + h_b p(b) y'(b) &= 0
- \end{aligned}
-\]
-verwendet.
-Wie im Kapitel~\ref{buch:integrale:subsection:sturm-liouville-problem} bereits
-gezeigt, resultieren die Randbedingungen aus der Anforderung den Operator $L_0$
-selbsadjungiert zu machen.
-Es wurde allerdings noch nicht darauf eingegangen, welche Eigenschaften dies
-für die Lösungen des Sturm-Liouville-Problems zur Folge hat.
-
-\subsubsection{Exkurs zum Spektralsatz}
-
-Um zu verstehen welche Eigenschaften der selbstadjungierte Operator $L_0$ in
-den Lösungen hervorbringt, wird der Spektralsatz benötigt.
-
-Dieser wird in der linearen Algebra oft verwendet um zu zeigen, dass eine Matrix
-diagonalisierbar ist, beziehungsweise dass eine Orthonormalbasis existiert.
-
-Im Fall einer gegebenen $n\times n$-Matrix $A$ mit reellen Einträgen wird dazu
-zunächst gezeigt, dass $A$ selbstadjungiert ist, also dass
-\[
- \langle Av, w \rangle
- =
- \langle v, Aw \rangle
-\]
-für $ v, w \in \mathbb{R}^n$ gilt.
-Ist dies der Fall, kann die Aussage des Spektralsatzes
-\cite{sturmliouville:spektralsatz-wiki} verwended werden.
-Daraus folgt dann, dass eine Orthonormalbasis aus Eigenvektoren existiert,
-wenn $A$ nur Eigenwerte aus $\mathbb{R}$ besitzt.
-
-Dies ist allerdings nicht die Einzige Version des Spektralsatzes.
-Unter anderen gibt es den Spektralsatz für kompakte Operatoren
-\cite{sturmliouville:spektralsatz-wiki}, welcher für das
-Sturm-Liouville-Problem von Bedeutung ist.
-Welche Voraussetzungen erfüllt sein müssen, um diese Version des
-Satzes verwenden zu können, wird hier aber nicht diskutiert und kann bei den
-Beispielen in diesem Kapitel als gegeben betrachtet werden.
-Grundsätzlich ist die Aussage in dieser Version dieselbe, wie bei den Matrizen,
-also dass für ein Operator eine Orthonormalbasis aus Eigenvektoren existiert,
-falls er selbstadjungiert ist.
-
-\subsubsection{Anwendung des Spektralsatzes auf $L_0$}
-
-Der Spektralsatz besagt also, dass, weil $L_0$ selbstadjungiert ist, eine
-Orthonormalbasis aus Eigenvektoren existiert.
-Genauer bedeutet dies, dass alle Eigenvektoren, beziehungsweise alle Lösungen
-des Sturm-Liouville-Problems orthogonal zueinander sind bezüglich des
-Skalarprodukts, in dem $L_0$ selbstadjungiert ist.
-
-Erfüllt also eine Differenzialgleichung die in
-Abschnitt~\ref{sturmliouville:section:teil0} präsentierten Eigenschaften und
-erfüllen die Randbedingungen der Differentialgleichung die Randbedingungen
-des Sturm-Liouville-Problems, kann bereits geschlossen werden, dass die
-Lösungsfunktion des Problems eine Linearkombination aus orthogonalen
-Basisfunktionen ist.
-
-\fi
diff --git a/buch/papers/sturmliouville/einleitung.tex b/buch/papers/sturmliouville/einleitung.tex
index 9912595..16dba19 100644
--- a/buch/papers/sturmliouville/einleitung.tex
+++ b/buch/papers/sturmliouville/einleitung.tex
@@ -1,19 +1,10 @@
%
% einleitung.tex -- Beispiel-File für die Einleitung
+% Author: Réda Haddouche
%
% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
%
-% TODO:
-% order:
-% 1. State goal of showing examples in intro
-% 2. Show Sturm-Liouville form
-% 3. Explain boundary conditions as necessary in regards to examples
-% (make singular property brief)
-%
-% Remove Eigenvaluedecomposition -> is discussed in properties of solutions
-% Check for readability
-
\section{Was ist das Sturm-Liouville-Problem\label{sturmliouville:section:teil0}}
\rhead{Was ist das Sturm-Liouville-Problem}
Das Sturm-Liouville-Problem wurde benannt nach dem schweizerisch-französischen
@@ -21,10 +12,9 @@ Mathematiker und Physiker Jacques Charles Fran\c{c}ois Sturm und dem
französischen Mathematiker Joseph Liouville.
Gemeinsam haben sie in der mathematischen Physik die Sturm-Liouville-Theorie
entwickelt.
-Dieses gilt für die Lösung von gewöhnlichen Differentialgleichungen oder
-partielle Differentialgleichung.
-Wenn es sich um eine partielle
-Differentialgleichung handelt, kann man sie mittels Separation in
+Diese gilt für die Lösung von gewöhnlichen Differentialgleichungen.
+Handelt es sich um eine partielle
+Differentialgleichung, kann man sie mittels Separation in
mehrere gewöhnliche Differentialgleichungen umwandeln.
\begin{definition}
@@ -41,8 +31,9 @@ als
=
0
\end{equation}
-geschrieben werden kann, dann wird die Gleichung \eqref{sturmliouville:eq:sturm-liouville-equation} als Sturm-Liouville-Gleichung
-bezeichnet.
+geschrieben werden kann, dann wird die
+Gleichung~\eqref{sturmliouville:eq:sturm-liouville-equation} als
+Sturm-Liouville-Gleichung bezeichnet.
\end{definition}
Alle homogenen linearen gewöhnlichen Differentialgleichungen 2. Ordnung können
in die Form der Gleichung \eqref{sturmliouville:eq:sturm-liouville-equation}
@@ -101,8 +92,8 @@ Bedingungen beachtet werden.
$|k_i|^2 + |h_i|^2\ne 0$ mit $i=a,b$.
\end{itemize}
\end{definition}
-Wird eine oder mehrere dieser Bedingungen nicht erfüllt, so handelt es sich um ein singuläres
-Sturm-Liouville-Problem.
+Wird eine oder mehrere dieser Bedingungen nicht erfüllt, so handelt es sich um
+ein singuläres Sturm-Liouville-Problem.
\begin{beispiel}
Das Randwertproblem
diff --git a/buch/papers/sturmliouville/main.tex b/buch/papers/sturmliouville/main.tex
index 9d4ce96..b18e220 100644
--- a/buch/papers/sturmliouville/main.tex
+++ b/buch/papers/sturmliouville/main.tex
@@ -9,11 +9,6 @@
\begin{refsection}
\chapterauthor{Réda Haddouche und Erik Löffler}
-% TODO: Leser Übersicht geben
-% -> Repetition: Was ist Sturm-Liouville-Problem
-% -> Eigenschaften der Lösungen
-% -> Beispiele erwähnen
-
In diesem Kapitel wird zunächst nochmals ein Überblick über das
Sturm-Liouville-Problem und dessen Randbedingungen gegeben.
Dann wird ein Zusammenhang zwischen reellen symmetrischen Matrizen und
diff --git a/buch/papers/sturmliouville/tschebyscheff_beispiel.tex b/buch/papers/sturmliouville/tschebyscheff_beispiel.tex
index d5c2dc6..c509b96 100644
--- a/buch/papers/sturmliouville/tschebyscheff_beispiel.tex
+++ b/buch/papers/sturmliouville/tschebyscheff_beispiel.tex
@@ -1,5 +1,6 @@
%
% tschebyscheff_beispiel.tex
+% Author: Réda Haddouche
%
% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
%
@@ -8,9 +9,10 @@
\label{sturmliouville:sub:tschebyscheff-polynome}}
\rhead{Tschebyscheff-Polynome}
In diesem Unterkapitel wird anhand der
-Tschebyscheff-Differentialgleichung~\eqref{buch:potenzen:tschebyscheff:dgl} gezeigt, dass die Tschebyscheff-Polynome orthogonal zueinander sind.
+Tschebyscheff-Differentialgleichung~\eqref{buch:potenzen:tschebyscheff:dgl}
+gezeigt, dass die Tschebyscheff-Polynome orthogonal zueinander sind.
Zu diesem Zweck werden die Koeffizientenfunktionen nochmals dargestellt, so dass
-überprüft werden kann, ob die Randbedingungen erfüllt werden können.
+überprüft werden kann, ob die Randbedingungen erfüllt werden.
Sobald feststeht, ob das Problem regulär oder singulär ist, zeigt eine
kleine Rechnung, dass die Lösungen orthogonal sind.
@@ -42,7 +44,7 @@ erhält man
\begin{equation}
\begin{aligned}
k_a y(-1) + h_a p(-1) y'(-1) &= 0\\
- k_b y(1) + h_b p(1) y'(-1) &= 0.
+ k_b y(1) + h_b p(1) y'(1) &= 0.
\end{aligned}
\end{equation}
Die Funktion $y(x)$ und $y'(x)$ sind in diesem Fall die Tschebyscheff Polynome
@@ -91,8 +93,8 @@ Da auch die Randbedingungen erfüllt sind, handelt es sich um ein reguläres Stu
\[
\int_{a}^{b} w(x) y_m(x) y_n(x) = 0.
\]
- Eigesetzt ergibt dies $y_m(x) = T_1(x)$ und $y_n(x) = T_2(x)$, sowie $a=-1$ und $b = 1$
- ergibt
+ mit $y_m(x) = T_1(x)$ und $y_n(x) = T_2(x)$, sowie $a=-1$ und $b = 1$.
+ Eigesetzt ergibt dies
\[
\begin{aligned}
\int_{-1}^{1} \frac{1}{\sqrt{1-x^2}} x (2x^2-1) dx &=
diff --git a/buch/papers/sturmliouville/waermeleitung_beispiel.tex b/buch/papers/sturmliouville/waermeleitung_beispiel.tex
index f888d02..290bf35 100644
--- a/buch/papers/sturmliouville/waermeleitung_beispiel.tex
+++ b/buch/papers/sturmliouville/waermeleitung_beispiel.tex
@@ -9,27 +9,28 @@
(Wärmeleitung)}
In diesem Abschnitt wird das Problem der Wärmeleitung in einem homogenen Stab
-betrachtet und wie das Sturm-Liouville-Problem bei der Beschreibung dieses
-physikalischen Phänomenes auftritt.
-
-% TODO: u is dependent on 2 variables (t, x)
-% TODO: mention initial conditions u(0, x)
+betrachtet, angeschaut wie das Sturm-Liouville-Problem bei der Beschreibung
+dieses physikalischen Phänomenes auftritt und hergeleitet wie die Fourierreihe
+als Lösung des Problems zustande kommt.
Zunächst wird ein eindimensionaler homogener Stab der Länge $l$ und
-Wärmeleitkoeffizient $\kappa$ betrachtet.
-Es ergibt sich für das Wärmeleitungsproblem
-die partielle Differentialgleichung
+Wärmeleitkoeffizient $\kappa$ betrachtet, dessen initiale Wärmeverteilung durch
+$u(t=0, x)$ gegeben ist.
+Es ergibt sich für das Wärmeleitungsproblem die partielle Differentialgleichung
\begin{equation}
\label{sturmliouville:eq:example-fourier-heat-equation}
- \frac{\partial u}{\partial t} =
- \kappa \frac{\partial^{2}u}{{\partial x}^{2}},
+ \frac{\partial u(t, x)}{\partial t} =
+ \kappa \frac{\partial^{2}u(t, x)}{{\partial x}^{2}},
\end{equation}
wobei der Stab in diesem Fall auf der $x$-Achse im Intervall $[0,l]$ liegt.
-Da diese Differentialgleichung das Problem allgemein für einen homogenen
-Stab beschreibt, werden zusätzliche Bedingungen benötigt, um beispielsweise
-die Lösung für einen Stab zu finden, bei dem die Enden auf konstanter
-Tempreatur gehalten werden.
+Damit die Sturm-Liouville-Theorie auf das
+Problem~\eqref{sturmliouville:eq:example-fourier-heat-equation} angewendet
+werden kann, werden noch Randbedingungen benötigt, welche in Kürze
+vorgestellt werden.
+Aus physikalischer Sicht geben diese Randbedingungen vor, ob die Enden des
+Stabes thermisch isoliert sind oder ob sie auf konstanter Temperatur gehalten
+werden.
%
% Randbedingungen für Stab mit konstanten Endtemperaturen
@@ -56,8 +57,10 @@ als Randbedingungen.
\subsection{Randbedingungen für Stab mit isolierten Enden}
-Bei isolierten Enden des Stabes können beliebige Temperaturen für $x = 0$ und
-$x = l$ auftreten. In diesem Fall ist es nicht erlaubt, dass Wärme vom Stab
+Bei isolierten Enden des Stabes können grundsätzlich beliebige Temperaturen für
+$x = 0$ und $x = l$ auftreten.
+Die einzige Einschränkung liefert die initiale Wärmeverteilung $u(0, x)$.
+Im Fall des isolierten Stabes ist es nicht erlaubt, dass Wärme vom Stab
an die Umgebung oder von der Umgebung an den Stab abgegeben wird.
Aus der Physik ist bekannt, dass Wärme immer von der höheren zur tieferen
@@ -82,15 +85,16 @@ als Randbedingungen.
\subsection{Lösung der Differenzialgleichung}
-Da die Lösungsfunktion von zwei Variablen abhängig ist, wird als Lösungsansatz
-die Separationsmethode verwendet.
+Da die Lösungsfunktion $u$ von zwei Variablen abhängig ist, wird die
+Gleichung~\eqref{sturmliouville:eq:example-fourier-heat-equation} zunächst
+mittels Separation in zwei gewöhnliche Differentialgleichungen überführt.
Dazu wird
\[
u(t,x)
=
T(t)X(x)
\]
-in die partielle
+in die partielle
Differenzialgleichung~\eqref{sturmliouville:eq:example-fourier-heat-equation}
eingesetzt.
Daraus ergibt sich
@@ -136,9 +140,13 @@ Erfüllen die Randbedingungen des Stab-Problems auch die Randbedingungen des
Sturm-Liouville-Problems, kann bereits die Aussage getroffen werden, dass alle
Lösungen für die Gleichung in $x$ orthogonal sein werden.
-Da die Bedingungen des Stab-Problem nur Anforderungen an $x$ stellen, können
-diese direkt für $X(x)$ übernomen werden. Es gilt also $X(0) = X(l) = 0$.
-Damit die Lösungen von $X$ orthogonal sind, müssen also die Gleichungen
+Da die Bedingungen des Stab-Problems nur Anforderungen an $x$ stellen, können
+diese direkt für $X(x)$ übernomen werden.
+Es gilt also beispielsweise wegen
+\eqref{sturmliouville:eq:example-fourier-boundary-condition-ends-constant},
+dass $X(0) = X(l) = 0$.
+
+Damit die Lösungen von $X$ orthogonal sind, müssen nun also die Gleichungen
\begin{equation}
\begin{aligned}
\label{sturmliouville:eq:example-fourier-randbedingungen}
@@ -156,18 +164,32 @@ erfüllt sein und es muss ausserdem
\end{equation}
gelten.
-Um zu verifizieren, ob die Randbedingungen erfüllt sind, wird zunächst
-$p(x)$
-benötigt.
+Um zu verifizieren, dass die Randbedingungen erfüllt sind, werden also die
+Koeffizientenfunktionen $p(x)$, $q(x)$ und $w(x)$ benötigt.
Dazu wird die Gleichung~\eqref{sturmliouville:eq:example-fourier-separated-x}
mit der
Sturm-Liouville-Form~\eqref{sturmliouville:eq:sturm-liouville-equation}
-verglichen, was zu $p(x) = 1$ führt.
+verglichen, was zu
+\[
+\begin{aligned}
+ p(x) &= 1 \\
+ q(x) &= 0 \\
+ w(x) &= 1
+\end{aligned}
+\]
+führt.
-Werden nun $p(x)$ und die
+Diese können bereits auf die Bedingungen in
+Definition~\ref{sturmliouville:def:reguläres_sturm-liouville-problem} geprüft
+werden.
+Es ist schnell ersichtlich, dass die ersten drei Kriterien erfüllt sind.
+Werden nun auch noch die Randbedingungen erfüllt, handelt es sich also um ein
+reguläres Sturm-Liouville-Problem.
+
+Es werden nun $p(x)$ und die
Randbedingungen~\eqref{sturmliouville:eq:example-fourier-boundary-condition-ends-constant}
-in \eqref{sturmliouville:eq:example-fourier-randbedingungen} eigesetzt, erhält
-man
+des Stab-Problems in \eqref{sturmliouville:eq:example-fourier-randbedingungen}
+eigesetzt und man erhält
\[
\begin{aligned}
k_a y(0) + h_a y'(0) &= h_a y'(0) = 0 \\
@@ -181,10 +203,13 @@ erfüllt sein und da $y(0) = 0$ und $y(l) = 0$ sind, können belibige $k_a \neq
und $k_b \neq 0$ gewählt werden.
Somit ist gezeigt, dass die Randbedingungen des Stab-Problems für Enden auf
-konstanter Temperatur auch die Sturm-Liouville-Randbedingungen erfüllen und
-alle daraus reultierenden Lösungen orthogonal sind.
+konstanter Temperatur auch die Sturm-Liouville-Randbedingungen erfüllen.
+Daraus folg zunächst, dass es sich um ein reguläres Sturm-Liouville-Problem
+handelt und weiter, dass alle daraus resultierenden Lösungen orthogonal sind.
Analog dazu kann gezeit werden, dass die Randbedingungen für einen Stab mit
-isolierten Enden ebenfalls die Sturm-Liouville-Randbedingungen erfüllen und
+isolierten
+Enden~\eqref{sturmliouville:eq:example-fourier-boundary-condition-ends-isolated}
+ebenfalls die Sturm-Liouville-Randbedingungen erfüllen und
somit auch zu orthogonalen Lösungen führen.
%
@@ -262,14 +287,15 @@ Randbedingungen~\eqref{sturmliouville:eq:example-fourier-boundary-condition-ends
und \eqref{sturmliouville:eq:example-fourier-boundary-condition-ends-isolated}
benötigt.
-Da die Koeffizienten $A$ und $B$, sowie die Parameter $\alpha$ uns $\beta$ im
-allgemeninen ungleich $0$ sind, müssen die Randbedingungen durch die
+Da die Koeffizienten $A$ und $B$, sowie die Parameter $\alpha$ und $\beta$ im
+allgemeinen ungleich $0$ sind, müssen die Randbedingungen durch die
trigonometrischen Funktionen erfüllt werden.
Es werden nun die
Randbedingungen~\eqref{sturmliouville:eq:example-fourier-boundary-condition-ends-constant}
für einen Stab mit Enden auf konstanter Temperatur in die
Gleichung~\eqref{sturmliouville:eq:example-fourier-separated-x} eingesetzt.
+
Betrachten wir zunächst die Bedingung für $x = 0$.
Dies fürht zu
\[
@@ -292,14 +318,13 @@ sich
B \sin(\beta l)
= 0.
\]
-
$\beta$ muss also so gewählt werden, dass $\sin(\beta l) = 0$ gilt.
Es bleibt noch nach $\beta$ aufzulösen:
\[
\begin{aligned}
\sin(\beta l) &= 0 \\
- \beta l &= n \pi \qquad n \in \mathbb{N} \\
- \beta &= \frac{n \pi}{l} \qquad n \in \mathbb{N}
+ \beta l &= n \pi \qquad n \in \mathbb{N}_0 \\
+ \beta &= \frac{n \pi}{l} \qquad n \in \mathbb{N}_0
\end{aligned}
\]
@@ -312,11 +337,11 @@ Ausserdem ist zu bemerken, dass dies auch gleich $-\alpha^{2}$ ist.
Da aber $A = 0$ gilt und der Summand mit $\alpha$ verschwindet, ist dies keine
Verletzung der Randbedingungen.
-Durch alanoges Vorgehen kann nun auch das Problem mit isolierten Enden gelöst
+Durch analoges Vorgehen kann nun auch das Problem mit isolierten Enden gelöst
werden.
-Setzt man nun die
+Setzt man die
Randbedingungen~\eqref{sturmliouville:eq:example-fourier-boundary-condition-ends-isolated}
-in $X^{\prime}$ ein, beginnend für $x = 0$. Es ergibt sich
+in $X^{\prime}$ ein, beginnend mit $x = 0$, ergibt sich
\[
X^{\prime}(0)
=
@@ -335,14 +360,14 @@ folgt nun
= 0.
\]
-Wiedrum muss über die $\sin$-Funktion sicher gestellt werden, dass der
+Wiederum muss über die $\sin$-Funktion sicher gestellt werden, dass der
Ausdruck den Randbedingungen entspricht.
Es folgt nun
\[
\begin{aligned}
\sin(\alpha l) &= 0 \\
- \alpha l &= n \pi \qquad n \in \mathbb{N} \\
- \alpha &= \frac{n \pi}{l} \qquad n \in \mathbb{N}
+ \alpha l &= n \pi \qquad n \in \mathbb{N}_0 \\
+ \alpha &= \frac{n \pi}{l} \qquad n \in \mathbb{N}_0
\end{aligned}
\]
und somit
@@ -351,7 +376,7 @@ und somit
\]
Es ergibt sich also sowohl für einen Stab mit Enden auf konstanter Temperatur
-wie auch mit isolierten Enden
+wie auch für den Stab mit isolierten Enden
\begin{equation}
\label{sturmliouville:eq:example-fourier-mu-solution}
\mu
@@ -359,24 +384,32 @@ wie auch mit isolierten Enden
-\frac{n^{2}\pi^{2}}{l^{2}}.
\end{equation}
-% TODO: infinite base vectors and fourier series
-\subsection{TODO: Auf Anzahl Lösungen und Fourierreihe eingehen}
+\subsection{Fourierreihe als Lösung}
-% TODO: check ease of reading
-\subsection{Berechnung der Koeffizienten}
-
-% TODO: move explanation A/B -> a_n/b_n to fourier subsection
-
-%
-% Lösung von X(x), Teil: Koeffizienten a_n und b_n mittels skalarprodukt.
-%
+Das Resultat~\eqref{sturmliouville:eq:example-fourier-mu-solution} gibt nun
+wegen der neuen Variablen $n \in \mathbb{N}_0$ vor, dass es potenziell
+unendlich viele Lösungen gibt.
+Dies bedeutet auch, dass es nicht ein $A$ und ein $B$ gibt, sondern einen
+Koeffizienten für jede Lösungsfunktion.
+Wir schreiben deshalb den Lösungsansatz zur Linearkombination
+\[
+ X(x)
+ =
+ \sum_{n = 0}^{\infty} a_n\cos\left(\frac{n\pi}{l}x\right)
+ +
+ \sum_{n = 0}^{\infty} b_n\sin\left(\frac{n\pi}{l}x\right)
+\]
+aus allen möglichen Lösungen um.
-Bisher wurde über die Koeffizienten $A$ und $B$ noch nicht viel ausgesagt.
-Zunächst ist wegen vorhergehender Rechnung ersichtlich, dass es sich bei
-$A$ und $B$ nicht um einzelne Koeffizienten handelt.
-Stattdessen können die Koeffizienten für jedes $n \in \mathbb{N}$
-unterschiedlich sein.
-Die Lösung $X(x)$ wird nun umgeschrieben zu
+Als nächstes werden noch die Summanden für $n = 0$ aus den Summen herausgezogen.
+Da
+\[
+ \begin{aligned}
+ a_0 \cos\left(\frac{0 \pi}{l}\right) &= a_0 \\
+ b_0 \sin\left(\frac{0 \pi}{l}\right) &= 0
+ \end{aligned}
+\]
+gilt, endet man somit bei
\[
X(x)
=
@@ -386,10 +419,33 @@ Die Lösung $X(x)$ wird nun umgeschrieben zu
+
\sum_{n = 1}^{\infty} b_n\sin\left(\frac{n\pi}{l}x\right).
\]
+Dies ist die allgemeine Fourierreihe, welche unsere Stab-Probleme löst.
+Wie zuvor bereits erwähnt, wissen wir dass sämtliche Lösungsfunktionen
+orthogonal zueinander sind, da es sich hier um die Lösung eines
+Sturm-Liouville-Problems handelt.
+Es gilt also
+\[
+\begin{aligned}
+ \int_{-l}^{l}\cos\left(\frac{n \pi}{l}x\right)
+ \cos\left(\frac{m \pi}{l}x\right)dx
+ &= 0 \qquad n \neq m \\
+ \int_{-l}^{l}\sin\left(\frac{n \pi}{l}x\right)
+ \sin\left(\frac{m \pi}{l}x\right)dx
+ &= 0 \qquad n \neq m \\
+ \int_{-l}^{l}\cos\left(\frac{n \pi}{l}x\right)
+ \sin\left(\frac{m \pi}{l}x\right)dx
+ &= 0.
+\end{aligned}
+\]
+
+\subsubsection{Berechnung der Fourierkoeffizienten}
-Um eine eindeutige Lösung für $X(x)$ zu erhalten werden noch weitere
-Bedingungen benötigt.
-Diese sind die Startbedingungen oder $u(0, x) = X(x)$ für $t = 0$.
+%
+% Lösung von X(x), Teil: Koeffizienten a_n und b_n mittels skalarprodukt.
+%
+
+Um eine eindeutige Lösung für $X(x)$ zu erhalten wird nun die initiale
+Wärmeverteilung oder $u(0, x) = X(x)$ für $t = 0$ benötigt.
Es gilt also nun die Gleichung
\begin{equation}
\label{sturmliouville:eq:example-fourier-initial-conditions}
@@ -429,13 +485,13 @@ gebildet:
Bevor diese Form in die Integralform umgeschrieben werden kann, muss überlegt
sein, welche Integralgrenzen zu verwenden sind.
In diesem Fall haben die $\sin$ und $\cos$ Terme beispielsweise keine ganze
-Periode im Intervall $x \in [0, l]$ für ungerade $n$ und $m$.
+Periode im Intervall $x \in [0, l]$ für ungerade $n$ und ungerade $m$.
Um die Skalarprodukte aber korrekt zu berechnen, muss über ein ganzzahliges
Vielfaches der Periode der trigonometrischen Funktionen integriert werden.
Dazu werden die Integralgrenzen $-l$ und $l$ verwendet und es werden ausserdem
neue Funktionen $\hat{u}_c(0, x)$ für die Berechnung mit Cosinus und
$\hat{u}_s(0, x)$ für die Berechnung mit Sinus angenomen, welche $u(0, t)$
-gerade, respektive ungerade auf $[-l, l]$ fortsetzen:
+gerade, respektive ungerade auf $[-l, 0]$ fortsetzen:
\[
\begin{aligned}
\hat{u}_c(0, x)
@@ -456,22 +512,23 @@ gerade, respektive ungerade auf $[-l, l]$ fortsetzen:
\end{aligned}
\]
-Die Konsequenz davon ist, dass nun das Resultat der Integrale um den Faktor zwei
-skalliert wurde, also gilt nun
+Diese Funktionen wurden gerade so gewählt, dass nun das Resultat der Integrale
+um den Faktor zwei skalliert wurde.
+Es gilt also
\[
-\begin{aligned}
\int_{-l}^{l}\hat{u}_c(0, x)\cos\left(\frac{m \pi}{l}x\right)dx
- &=
+ =
2\int_{0}^{l}u(0, x)\cos\left(\frac{m \pi}{l}x\right)dx
- \\
+\]
+und
+\[
\int_{-l}^{l}\hat{u}_s(0, x)\sin\left(\frac{m \pi}{l}x\right)dx
- &=
+ =
2\int_{0}^{l}u(0, x)\sin\left(\frac{m \pi}{l}x\right)dx.
-\end{aligned}
\]
-Zunächst wird nun das Skalaprodukt~\eqref{sturmliouville:eq:dot-product-cosine}
-berechnet:
+Als nächstes wird nun das
+Skalaprodukt~\eqref{sturmliouville:eq:dot-product-cosine} berechnet:
\[
\begin{aligned}
\int_{-l}^{l}\hat{u}_c(0, x)\cos\left(\frac{m \pi}{l}x\right)dx
@@ -520,13 +577,15 @@ orthogonal zueinander stehen und
\]
da Sinus- und Cosinus-Funktionen ebenfalls orthogonal zueinander sind.
-Es bleibt also lediglich der Summand für $a_m$ stehen, was die Gleichung zu
+Es bleibt also lediglich der Summand mit $a_m$ stehen, was die Gleichung zu
\[
2\int_{0}^{l}u(0, x)\cos\left(\frac{m \pi}{l}x\right)dx
=
a_m\int_{-l}^{l}\cos^2\left(\frac{m\pi}{l}x\right)dx
\]
-vereinfacht. Im nächsten Schritt wird nun das Integral auf der rechten Seite
+vereinfacht.
+
+Im nächsten Schritt wird nun das Integral auf der rechten Seite
berechnet und dann nach $a_m$ aufgelöst. Am einnfachsten geht dies, wenn zuerst
mit $u = \frac{m \pi}{l}x$ substituiert wird:
\[
@@ -564,7 +623,7 @@ $ \sin\left(\frac{m \pi}{l}x\right) $ gezeigt werden, dass
gilt.
Etwas anders ist es allerdings bei $a_0$.
-Wie der Name bereits suggeriert, handelt es sich hierbei um den Koeffizienten
+Wie zuvor bereits erwähnt, handelt es sich hierbei um den Koeffizienten
zur Basisfunktion $\cos\left(\frac{0 \pi}{l}x\right)$ beziehungsweise der
konstanten Funktion $1$.
Um einen Ausdruck für $a_0$ zu erhalten, wird wiederum auf beiden Seiten
@@ -592,14 +651,14 @@ Skalarprodukt mit der konstanten Basisfunktion $1$ gebildet:
\]
Hier fallen nun alle Terme, die $\sin$ oder $\cos$ beinhalten weg, da jeweils
-über ein Vielfaches der Periode integriert wird.
+über ein ganzzahliges Vielfaches der Periode integriert wird.
Es bleibt also noch
\[
2\int_{0}^{l}u(0, x)dx
=
- a_0 \int_{-l}^{l}dx
+ a_0 \int_{-l}^{l}dx,
\]
-, was sich wie folgt nach $a_0$ auflösen lässt:
+was sich wie folgt nach $a_0$ auflösen lässt:
\[
\begin{aligned}
2\int_{0}^{l}u(0, x)dx
@@ -628,13 +687,19 @@ Es bleibt also noch
\subsection{Lösung der Differentialgleichung in $t$}
Zuletzt wird die zweite Gleichung der
Separation~\eqref{sturmliouville:eq:example-fourier-separated-t} betrachtet.
-Diese wird über das charakteristische Polynom
+Dazu betrachtet man das charakteristische Polynom
\[
\lambda - \kappa \mu
=
0
\]
-gelöst.
+der Gleichung
+\[
+ T^{\prime}(t) - \kappa \mu T(t)
+ =
+ 0
+\]
+und löst dieses.
Es ist direkt ersichtlich, dass $\lambda = \kappa \mu$ gelten muss, was zur
Lösung
@@ -654,8 +719,6 @@ ergibt.
Dieses Resultat kann nun mit allen vorhergehenden Resultaten zusammengesetzt
werden um die vollständige Lösung für das Stab-Problem zu erhalten.
-% TODO: elaborate
-
\subsection{Lösung für einen Stab mit Enden auf konstanter Temperatur}
\[
\begin{aligned}