aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers/sturmliouville
diff options
context:
space:
mode:
Diffstat (limited to 'buch/papers/sturmliouville')
-rw-r--r--buch/papers/sturmliouville/.gitignore1
-rw-r--r--buch/papers/sturmliouville/Makefile34
-rw-r--r--buch/papers/sturmliouville/Makefile.inc13
-rw-r--r--buch/papers/sturmliouville/eigenschaften.tex118
-rw-r--r--buch/papers/sturmliouville/einleitung.tex124
-rw-r--r--buch/papers/sturmliouville/main.tex48
-rw-r--r--buch/papers/sturmliouville/references.bib13
-rw-r--r--buch/papers/sturmliouville/teil0.tex22
-rw-r--r--buch/papers/sturmliouville/teil1.tex55
-rw-r--r--buch/papers/sturmliouville/teil2.tex40
-rw-r--r--buch/papers/sturmliouville/teil3.tex40
-rw-r--r--buch/papers/sturmliouville/tschebyscheff_beispiel.tex107
-rw-r--r--buch/papers/sturmliouville/waermeleitung_beispiel.tex773
13 files changed, 1196 insertions, 192 deletions
diff --git a/buch/papers/sturmliouville/.gitignore b/buch/papers/sturmliouville/.gitignore
new file mode 100644
index 0000000..f08278d
--- /dev/null
+++ b/buch/papers/sturmliouville/.gitignore
@@ -0,0 +1 @@
+*.pdf \ No newline at end of file
diff --git a/buch/papers/sturmliouville/Makefile b/buch/papers/sturmliouville/Makefile
index da902e7..8d3e0af 100644
--- a/buch/papers/sturmliouville/Makefile
+++ b/buch/papers/sturmliouville/Makefile
@@ -1,9 +1,37 @@
#
-# Makefile -- make file for the paper sturmliouville
+# Makefile -- make file for the paper fm
#
# (c) 2020 Prof Dr Andreas Mueller
#
-images:
- @echo "no images to be created in sturmliouville"
+SOURCES := \
+ einleitung.tex\
+ eigenschaften.tex \
+ beispiele.tex \
+ main.tex
+#TIKZFIGURES := \
+ tikz/atoms-grid-still.tex \
+
+#FIGURES := $(patsubst tikz/%.tex, figures/%.pdf, $(TIKZFIGURES))
+
+#.PHONY: images
+#images: $(FIGURES)
+
+#figures/%.pdf: tikz/%.tex
+# mkdir -p figures
+# pdflatex --output-directory=figures $<
+
+.PHONY: standalone
+standalone: standalone.tex $(SOURCES) #$(FIGURES)
+ mkdir -p standalone
+ cd ../..; \
+ pdflatex \
+ --halt-on-error \
+ --shell-escape \
+ --output-directory=papers/sturmliouville/standalone \
+ --extra-mem-top=10000000 \
+ papers/sturmliouville/standalone.tex;
+ cd standalone; \
+ bibtex standalone; \
+ makeindex standalone; \ No newline at end of file
diff --git a/buch/papers/sturmliouville/Makefile.inc b/buch/papers/sturmliouville/Makefile.inc
index e2039ce..4000fa7 100644
--- a/buch/papers/sturmliouville/Makefile.inc
+++ b/buch/papers/sturmliouville/Makefile.inc
@@ -3,12 +3,11 @@
#
# (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
#
-dependencies-sturmliouville = \
+dependencies-sturmliouville = \
papers/sturmliouville/packages.tex \
- papers/sturmliouville/main.tex \
+ papers/sturmliouville/main.tex \
papers/sturmliouville/references.bib \
- papers/sturmliouville/teil0.tex \
- papers/sturmliouville/teil1.tex \
- papers/sturmliouville/teil2.tex \
- papers/sturmliouville/teil3.tex
-
+ papers/sturmliouville/einleitung.tex \
+ papers/sturmliouville/eigenschaften.tex \
+ papers/sturmliouville/waermeleitung_beispiel.tex \
+ papers/sturmliouville/tschebyscheff_beispiel.tex
diff --git a/buch/papers/sturmliouville/eigenschaften.tex b/buch/papers/sturmliouville/eigenschaften.tex
new file mode 100644
index 0000000..0f1f235
--- /dev/null
+++ b/buch/papers/sturmliouville/eigenschaften.tex
@@ -0,0 +1,118 @@
+%
+% eigenschaften.tex -- Eigenschaften der Lösungen
+% Author: Erik Löffler
+%
+% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
+%
+
+\section{Eigenschaften von Lösungen
+\label{sturmliouville:sec:solution-properties}}
+\rhead{Eigenschaften von Lösungen}
+
+Im Weiteren werden nun die Eigenschaften der Lösung eines
+Sturm-Liouville-Problems diskutiert.
+Im wesentlichen wird darauf eingegangen, wie die Orthogonalität der Lösungen
+zustande kommt, damit diese später in den Beispielen verwendet werden kann.
+Dazu wird zunächst das Eigenwertproblem für Matrizen wiederholt und angeschaut
+unter welchen Voraussetzungen die Lösungen dieses Problems orthogonal sind.
+Dann wird gezeigt, dass das Sturm-Liouville-Problem auch ein Eigenwertproblem
+dieser Art ist und es wird auf au die Orthogonalität der Lösungsfunktionen
+geschlossen.
+
+\subsection{Eigenwertprobleme mit symmetrischen Matrizen
+\label{sturmliouville:sec:eigenvalue-problem-matrix}}
+
+% TODO: intro
+
+Angenomen es sei eine reelle, symmetrische $n \times n$-Matrix $A$ gegeben.
+Dass $A$ symmetrisch ist, bedeutet, dass
+\[
+ \langle Av, w \rangle
+ =
+ \langle v, Aw \rangle
+ \qquad
+ v, w \in \mathbb{R}^n
+\]
+erfüllt ist.
+
+Für reelle, symmetrische Matrizen zeigt dies auch direkt, dass die Matrix
+selbstadjungiert ist.
+Das ist wichtig, da der Spektralsatz~\cite{sturmliouville:spektralsatz-wiki}
+für selbstadjungierte Matrizen formuliert ist. Dieser sagt nun aus, dass die
+Matrix $A$ diagonalisierbar ist.
+In anderen Worten bilden die Eigenvektoren $v_i \in \mathbb{R}^n$ des
+Eigenwertproblems
+\[
+ A v_i
+ =
+ \lambda_i v_i
+ \qquad \lambda_i \in \mathbb{R}
+\]
+eine Orthogonalbasis.
+
+\subsection{Das Sturm-Liouville-Problem als Eigenwertproblem}
+
+In Kapitel~\ref{buch:integrale:subsection:sturm-liouville-problem} wurde bereits
+der Operator
+\[
+ L
+ =
+ \frac{1}{w(x)}\left( -\frac{d}{dx}p(x) \frac{d}{dx} + q(x)\right)
+\]
+eingeführt.
+Dieser wird nun verwendet um die Differenzialgleichung
+\[
+ (p(x)y'(x))' + q(x)y(x)
+ =
+ \lambda w(x) y(x)
+\]
+in das Eigenwertproblem
+\begin{equation}
+ \label{sturmliouville:eq:eigenvalue-problem}
+ L y
+ =
+ \lambda y.
+\end{equation}
+umzuschreiben.
+
+\subsection{Orthogonalität der Lösungsfunktionen}
+
+Nun wird das Eigenwertproblem~\eqref{sturmliouville:eq:eigenvalue-problem} näher
+angeschaut.
+Um auf die Orthogonalität der Lösungsfunktion zu schliessen, wird dafür der
+Operator $L$ genauer betrachtet.
+Analog zur Matrix $A$ aus
+Abschnitt~\ref{sturmliouville:sec:eigenvalue-problem-matrix} kann auch für
+$L$ gezeigt werden, dass dieser Operator selbstadjungiert ist.
+
+Dazu wird das modifizierte Skalarprodukt
+\begin{equation}
+ \label{sturmliouville:eq:modified-dot-product}
+ \langle f, g \rangle_w
+ =
+ \int_a^b f(x)g(x)w(x)\,dx
+\end{equation}
+aus Kapitel~\ref{buch:integrale:subsection:sturm-liouville-problem} verwendet,
+welches auch die Gewichtsfunktion $w(x)$ berücksichtigt.
+Damit $L$ bezüglich dieses Skalarproduktes selbstadjungiert ist, muss also
+\[
+ \langle L u, v\rangle_w
+ =
+ \langle u, L v\rangle_w
+\]
+gelten.
+
+Wie in Kapitel~\ref{buch:integrale:subsection:sturm-liouville-problem} bereits
+gezeigt, ist dies durch die
+Randbedingungen~\eqref{sturmliouville:eq:randbedingungen} des
+Sturm-Liouville-Problems sicher gestellt.
+
+Um nun über den Spektralsatz~\cite{sturmliouville:spektralsatz-wiki} auf die
+Orthogonalität der Lösungsfunktion $y$ zu schliessen, muss der Operator $L$ ein
+sogenannter ''kompakter Operator'' sein.
+Bei einem regulären Sturm-Liouville-Problem ist diese Eigenschaft für $L$
+gegeben und wird im Weiteren nicht näher diskutiert.
+
+Es kann nun also dank dem Spektralsatz darauf geschlossen werden, dass die
+Lösungsfunktion $y$ eines regulären Sturm-Liouville-Problems eine
+Linearkombination aus orthogonalen Basisfunktionen sein muss.
diff --git a/buch/papers/sturmliouville/einleitung.tex b/buch/papers/sturmliouville/einleitung.tex
new file mode 100644
index 0000000..16dba19
--- /dev/null
+++ b/buch/papers/sturmliouville/einleitung.tex
@@ -0,0 +1,124 @@
+%
+% einleitung.tex -- Beispiel-File für die Einleitung
+% Author: Réda Haddouche
+%
+% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
+%
+
+\section{Was ist das Sturm-Liouville-Problem\label{sturmliouville:section:teil0}}
+\rhead{Was ist das Sturm-Liouville-Problem}
+Das Sturm-Liouville-Problem wurde benannt nach dem schweizerisch-französischen
+Mathematiker und Physiker Jacques Charles Fran\c{c}ois Sturm und dem
+französischen Mathematiker Joseph Liouville.
+Gemeinsam haben sie in der mathematischen Physik die Sturm-Liouville-Theorie
+entwickelt.
+Diese gilt für die Lösung von gewöhnlichen Differentialgleichungen.
+Handelt es sich um eine partielle
+Differentialgleichung, kann man sie mittels Separation in
+mehrere gewöhnliche Differentialgleichungen umwandeln.
+
+\begin{definition}
+ \index{Sturm-Liouville-Gleichung}%
+Wenn die lineare homogene Differentialgleichung
+\[
+ \frac{d^2y}{dx^2} + a(x)\frac{dy}{dx} + b(x)y = 0
+\]
+als
+\begin{equation}
+ \label{sturmliouville:eq:sturm-liouville-equation}
+ \frac{d}{dx} \biggl ( p(x) \frac{dy}{dx}\biggr ) + (q(x) +
+ \lambda w(x)) y
+ =
+ 0
+\end{equation}
+geschrieben werden kann, dann wird die
+Gleichung~\eqref{sturmliouville:eq:sturm-liouville-equation} als
+Sturm-Liouville-Gleichung bezeichnet.
+\end{definition}
+Alle homogenen linearen gewöhnlichen Differentialgleichungen 2. Ordnung können
+in die Form der Gleichung \eqref{sturmliouville:eq:sturm-liouville-equation}
+umgewandelt werden.
+
+Damit es sich um ein Sturm-Liouville-Problem handelt, benötigt es noch die
+Randbedingungen, die im nächsten Unterkapitel behandelt werden.
+
+\subsection{Randbedingungen
+\label{sturmliouville:sub:was-ist-das-slp-randbedingungen}}
+Geeignete Randbedingungen sind erforderlich, um die Lösungen einer
+Differentialgleichung eindeutig zu bestimmen.
+Die Sturm-Liouville-Gleichung mit homogenen Randbedingungen des dritten Typs
+\begin{equation}
+ \begin{aligned}
+ \label{sturmliouville:eq:randbedingungen}
+ k_a y(a) + h_a p(a) y'(a) &= 0 \\
+ k_b y(b) + h_b p(b) y'(b) &= 0
+ \end{aligned}
+\end{equation}
+ist das klassische Sturm-Liouville-Problem.
+
+
+\subsection{Koeffizientenfunktionen
+\label{sturmliouville:sub:koeffizientenfunktionen}}
+Die Funktionen $p(x)$, $q(x)$ und $w(x)$ werden als Koeffizientenfunktionen
+bezeichnet.
+Diese Funktionen erhält man, indem man eine Differentialgleichung in die
+Sturm-Liouville-Form bringt und dann die Koeffizientenfunktionen vergleicht.
+Die Funktion $w(x)$ (manchmal auch $r(x)$ genannt) wird als Gewichtsfunktion
+oder Dichtefunktion bezeichnet.
+Die Eigenschaften der Koeffizientenfunktionen haben
+einen großen Einfluss auf die Lösbarkeit des Sturm-Liouville-Problems und werden
+im nächsten Abschnitt diskutiert.
+
+%
+%Kapitel mit "Das reguläre Sturm-Liouville-Problem"
+%
+
+\subsection{Das reguläre und singuläre Sturm-Liouville-Problem
+\label{sturmliouville:sub:reguläre_sturm_liouville_problem}}
+Damit es sich um ein reguläres Sturm-Liouville-Problem handelt, müssen einige
+Bedingungen beachtet werden.
+\begin{definition}
+ \label{sturmliouville:def:reguläres_sturm-liouville-problem}
+ \index{regläres Sturm-Liouville-Problem}
+ Die Bedingungen für ein reguläres Sturm-Liouville-Problem sind:
+ \begin{itemize}
+ \item Die Funktionen $p(x), p'(x), q(x)$ und $w(x)$ müssen stetig und
+ reell sein
+ \item sowie in einem endlichen Intervall $[a,b]$ integrierbar
+ sein.
+ \item $p(x)$ und $w(x)$ sind $>0$.
+ \item Es gelten die Randbedingungen
+ \eqref{sturmliouville:eq:randbedingungen}, wobei
+ $|k_i|^2 + |h_i|^2\ne 0$ mit $i=a,b$.
+ \end{itemize}
+\end{definition}
+Wird eine oder mehrere dieser Bedingungen nicht erfüllt, so handelt es sich um
+ein singuläres Sturm-Liouville-Problem.
+
+\begin{beispiel}
+ Das Randwertproblem
+ \begin{equation}
+ \begin{aligned}
+ x^2y'' + xy' + (\lambda^2x^2 - m^2)y &= 0 \qquad 0<x<a,\\
+ y(a) &= 0
+ \end{aligned}
+ \end{equation}
+ ist kein reguläres Sturm-Liouville-Problem.
+ Wenn man die Gleichung in die Sturm-Liouville Form umformt, dann
+ erhält man
+ die Koeffizientenfunktionen $p(x) = w(x) = x$ und $q(x) = -m^2/x$.
+ Schaut man jetzt die Bedingungen in
+ Definition~\ref{sturmliouville:def:reguläres_sturm-liouville-problem} an und
+ vergleicht diese mit unseren Koeffizientenfunktionen, so erkennt man einige
+ Probleme:
+ \begin{itemize}
+ \item $p(x)$ und $w(x)$ sind nicht positiv, wenn $x = 0$ ist.
+ \item $q(x)$ ist nicht kontinuierlich, wenn $x = 0$ ist.
+ \item Die Randbedingung bei $x = 0$ und $x = a$ fehlt.
+ \end{itemize}
+\end{beispiel}
+
+Bei einem regulärem Problem, besteht die Lösung nur aus Eigenvektoren.
+Handelt es sich um ein singuläres Problem, so besteht die Lösung im Allgemeinen
+nicht mehr nur aus Eigenvektoren.
+
diff --git a/buch/papers/sturmliouville/main.tex b/buch/papers/sturmliouville/main.tex
index a7d2857..b18e220 100644
--- a/buch/papers/sturmliouville/main.tex
+++ b/buch/papers/sturmliouville/main.tex
@@ -1,36 +1,34 @@
+% !TeX root = ../../buch.tex
%
% main.tex -- Paper zum Thema <sturmliouville>
%
% (c) 2020 Hochschule Rapperswil
%
-\chapter{Thema\label{chapter:sturmliouville}}
-\lhead{Thema}
+\chapter{Sturm-Liouville-Problem\label{chapter:sturmliouville}}
+\lhead{Sturm-Liouville-Problem}
\begin{refsection}
-\chapterauthor{Hans Muster}
+\chapterauthor{Réda Haddouche und Erik Löffler}
-Ein paar Hinweise für die korrekte Formatierung des Textes
-\begin{itemize}
-\item
-Absätze werden gebildet, indem man eine Leerzeile einfügt.
-Die Verwendung von \verb+\\+ ist nur in Tabellen und Arrays gestattet.
-\item
-Die explizite Platzierung von Bildern ist nicht erlaubt, entsprechende
-Optionen werden gelöscht.
-Verwenden Sie Labels und Verweise, um auf Bilder hinzuweisen.
-\item
-Beginnen Sie jeden Satz auf einer neuen Zeile.
-Damit ermöglichen Sie dem Versionsverwaltungssysteme, Änderungen
-in verschiedenen Sätzen von verschiedenen Autoren ohne Konflikt
-anzuwenden.
-\item
-Bilden Sie auch für Formeln kurze Zeilen, einerseits der besseren
-Übersicht wegen, aber auch um GIT die Arbeit zu erleichtern.
-\end{itemize}
+In diesem Kapitel wird zunächst nochmals ein Überblick über das
+Sturm-Liouville-Problem und dessen Randbedingungen gegeben.
+Dann wird ein Zusammenhang zwischen reellen symmetrischen Matrizen und
+dem Sturm-Liouville-Operator $L$ hergestellt, um auf die Orthogonalität der
+Lösungsfunktionen zu schliessen.
+Zuletzt wird anhand von zwei Beispielen gezeigt, dass durch das
+Sturm-Liouville-Problem die Eigenschaften der Lösungen bereits vor dem
+vollständingen Lösen der Beispiele bekannt sind.
-\input{papers/sturmliouville/teil0.tex}
-\input{papers/sturmliouville/teil1.tex}
-\input{papers/sturmliouville/teil2.tex}
-\input{papers/sturmliouville/teil3.tex}
+%einleitung "was ist das sturm-liouville-problem"
+\input{papers/sturmliouville/einleitung.tex}
+
+%Eigenschaften von Lösungen eines solchen Problems
+\input{papers/sturmliouville/eigenschaften.tex}
+
+% Fourier: Erik work
+\input{papers/sturmliouville/waermeleitung_beispiel.tex}
+
+% Tschebyscheff
+\input{papers/sturmliouville/tschebyscheff_beispiel.tex}
\printbibliography[heading=subbibliography]
\end{refsection}
diff --git a/buch/papers/sturmliouville/references.bib b/buch/papers/sturmliouville/references.bib
index f66a74d..0c4724b 100644
--- a/buch/papers/sturmliouville/references.bib
+++ b/buch/papers/sturmliouville/references.bib
@@ -4,6 +4,19 @@
% (c) 2020 Autor, Hochschule Rapperswil
%
+@online{sturmliouville:spektralsatz-wiki,
+ title = {Spektralsatz},
+ url = {https://de.wikipedia.org/wiki/Spektralsatz},
+ date = {2020-08-15},
+ year = {2020},
+ month = {8},
+ day = {15}
+}
+
+%
+% examples (not referenced in book)
+%
+
@online{sturmliouville:bibtex,
title = {BibTeX},
url = {https://de.wikipedia.org/wiki/BibTeX},
diff --git a/buch/papers/sturmliouville/teil0.tex b/buch/papers/sturmliouville/teil0.tex
deleted file mode 100644
index ffcb8f3..0000000
--- a/buch/papers/sturmliouville/teil0.tex
+++ /dev/null
@@ -1,22 +0,0 @@
-%
-% einleitung.tex -- Beispiel-File für die Einleitung
-%
-% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
-%
-\section{Teil 0\label{sturmliouville:section:teil0}}
-\rhead{Teil 0}
-Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam
-nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam
-erat, sed diam voluptua \cite{sturmliouville:bibtex}.
-At vero eos et accusam et justo duo dolores et ea rebum.
-Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum
-dolor sit amet.
-
-Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam
-nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam
-erat, sed diam voluptua.
-At vero eos et accusam et justo duo dolores et ea rebum. Stet clita
-kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit
-amet.
-
-
diff --git a/buch/papers/sturmliouville/teil1.tex b/buch/papers/sturmliouville/teil1.tex
deleted file mode 100644
index c23c1d6..0000000
--- a/buch/papers/sturmliouville/teil1.tex
+++ /dev/null
@@ -1,55 +0,0 @@
-%
-% teil1.tex -- Beispiel-File für das Paper
-%
-% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
-%
-\section{Teil 1
-\label{sturmliouville:section:teil1}}
-\rhead{Problemstellung}
-Sed ut perspiciatis unde omnis iste natus error sit voluptatem
-accusantium doloremque laudantium, totam rem aperiam, eaque ipsa
-quae ab illo inventore veritatis et quasi architecto beatae vitae
-dicta sunt explicabo.
-Nemo enim ipsam voluptatem quia voluptas sit aspernatur aut odit
-aut fugit, sed quia consequuntur magni dolores eos qui ratione
-voluptatem sequi nesciunt
-\begin{equation}
-\int_a^b x^2\, dx
-=
-\left[ \frac13 x^3 \right]_a^b
-=
-\frac{b^3-a^3}3.
-\label{sturmliouville:equation1}
-\end{equation}
-Neque porro quisquam est, qui dolorem ipsum quia dolor sit amet,
-consectetur, adipisci velit, sed quia non numquam eius modi tempora
-incidunt ut labore et dolore magnam aliquam quaerat voluptatem.
-
-Ut enim ad minima veniam, quis nostrum exercitationem ullam corporis
-suscipit laboriosam, nisi ut aliquid ex ea commodi consequatur?
-Quis autem vel eum iure reprehenderit qui in ea voluptate velit
-esse quam nihil molestiae consequatur, vel illum qui dolorem eum
-fugiat quo voluptas nulla pariatur?
-
-\subsection{De finibus bonorum et malorum
-\label{sturmliouville:subsection:finibus}}
-At vero eos et accusamus et iusto odio dignissimos ducimus qui
-blanditiis praesentium voluptatum deleniti atque corrupti quos
-dolores et quas molestias excepturi sint occaecati cupiditate non
-provident, similique sunt in culpa qui officia deserunt mollitia
-animi, id est laborum et dolorum fuga \eqref{000tempmlate:equation1}.
-
-Et harum quidem rerum facilis est et expedita distinctio
-\ref{sturmliouville:section:loesung}.
-Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil
-impedit quo minus id quod maxime placeat facere possimus, omnis
-voluptas assumenda est, omnis dolor repellendus
-\ref{sturmliouville:section:folgerung}.
-Temporibus autem quibusdam et aut officiis debitis aut rerum
-necessitatibus saepe eveniet ut et voluptates repudiandae sint et
-molestiae non recusandae.
-Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis
-voluptatibus maiores alias consequatur aut perferendis doloribus
-asperiores repellat.
-
-
diff --git a/buch/papers/sturmliouville/teil2.tex b/buch/papers/sturmliouville/teil2.tex
deleted file mode 100644
index 7fc3d2c..0000000
--- a/buch/papers/sturmliouville/teil2.tex
+++ /dev/null
@@ -1,40 +0,0 @@
-%
-% teil2.tex -- Beispiel-File für teil2
-%
-% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
-%
-\section{Teil 2
-\label{sturmliouville:section:teil2}}
-\rhead{Teil 2}
-Sed ut perspiciatis unde omnis iste natus error sit voluptatem
-accusantium doloremque laudantium, totam rem aperiam, eaque ipsa
-quae ab illo inventore veritatis et quasi architecto beatae vitae
-dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas sit
-aspernatur aut odit aut fugit, sed quia consequuntur magni dolores
-eos qui ratione voluptatem sequi nesciunt. Neque porro quisquam
-est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci
-velit, sed quia non numquam eius modi tempora incidunt ut labore
-et dolore magnam aliquam quaerat voluptatem. Ut enim ad minima
-veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam,
-nisi ut aliquid ex ea commodi consequatur? Quis autem vel eum iure
-reprehenderit qui in ea voluptate velit esse quam nihil molestiae
-consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla
-pariatur?
-
-\subsection{De finibus bonorum et malorum
-\label{sturmliouville:subsection:bonorum}}
-At vero eos et accusamus et iusto odio dignissimos ducimus qui
-blanditiis praesentium voluptatum deleniti atque corrupti quos
-dolores et quas molestias excepturi sint occaecati cupiditate non
-provident, similique sunt in culpa qui officia deserunt mollitia
-animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis
-est et expedita distinctio. Nam libero tempore, cum soluta nobis
-est eligendi optio cumque nihil impedit quo minus id quod maxime
-placeat facere possimus, omnis voluptas assumenda est, omnis dolor
-repellendus. Temporibus autem quibusdam et aut officiis debitis aut
-rerum necessitatibus saepe eveniet ut et voluptates repudiandae
-sint et molestiae non recusandae. Itaque earum rerum hic tenetur a
-sapiente delectus, ut aut reiciendis voluptatibus maiores alias
-consequatur aut perferendis doloribus asperiores repellat.
-
-
diff --git a/buch/papers/sturmliouville/teil3.tex b/buch/papers/sturmliouville/teil3.tex
deleted file mode 100644
index 3aa1b40..0000000
--- a/buch/papers/sturmliouville/teil3.tex
+++ /dev/null
@@ -1,40 +0,0 @@
-%
-% teil3.tex -- Beispiel-File für Teil 3
-%
-% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
-%
-\section{Teil 3
-\label{sturmliouville:section:teil3}}
-\rhead{Teil 3}
-Sed ut perspiciatis unde omnis iste natus error sit voluptatem
-accusantium doloremque laudantium, totam rem aperiam, eaque ipsa
-quae ab illo inventore veritatis et quasi architecto beatae vitae
-dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas sit
-aspernatur aut odit aut fugit, sed quia consequuntur magni dolores
-eos qui ratione voluptatem sequi nesciunt. Neque porro quisquam
-est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci
-velit, sed quia non numquam eius modi tempora incidunt ut labore
-et dolore magnam aliquam quaerat voluptatem. Ut enim ad minima
-veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam,
-nisi ut aliquid ex ea commodi consequatur? Quis autem vel eum iure
-reprehenderit qui in ea voluptate velit esse quam nihil molestiae
-consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla
-pariatur?
-
-\subsection{De finibus bonorum et malorum
-\label{sturmliouville:subsection:malorum}}
-At vero eos et accusamus et iusto odio dignissimos ducimus qui
-blanditiis praesentium voluptatum deleniti atque corrupti quos
-dolores et quas molestias excepturi sint occaecati cupiditate non
-provident, similique sunt in culpa qui officia deserunt mollitia
-animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis
-est et expedita distinctio. Nam libero tempore, cum soluta nobis
-est eligendi optio cumque nihil impedit quo minus id quod maxime
-placeat facere possimus, omnis voluptas assumenda est, omnis dolor
-repellendus. Temporibus autem quibusdam et aut officiis debitis aut
-rerum necessitatibus saepe eveniet ut et voluptates repudiandae
-sint et molestiae non recusandae. Itaque earum rerum hic tenetur a
-sapiente delectus, ut aut reiciendis voluptatibus maiores alias
-consequatur aut perferendis doloribus asperiores repellat.
-
-
diff --git a/buch/papers/sturmliouville/tschebyscheff_beispiel.tex b/buch/papers/sturmliouville/tschebyscheff_beispiel.tex
new file mode 100644
index 0000000..341a358
--- /dev/null
+++ b/buch/papers/sturmliouville/tschebyscheff_beispiel.tex
@@ -0,0 +1,107 @@
+%
+% tschebyscheff_beispiel.tex
+% Author: Réda Haddouche
+%
+% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
+%
+
+\section{Beispiel: Tschebyscheff-Polynome
+\label{sturmliouville:sub:tschebyscheff-polynome}}
+\rhead{Tschebyscheff-Polynome}
+In diesem Unterkapitel wird anhand der
+Tschebyscheff-Differentialgleichung~\eqref{buch:potenzen:tschebyscheff:dgl}
+gezeigt, dass die Tschebyscheff-Polynome orthogonal zueinander sind.
+Zu diesem Zweck werden die Koeffizientenfunktionen nochmals dargestellt, so dass
+überprüft werden kann, ob die Randbedingungen erfüllt werden.
+Sobald feststeht, ob das Problem regulär oder singulär ist, zeigt eine
+kleine Rechnung, dass die Lösungen orthogonal sind.
+
+\subsection*{Definition der Koeffizientenfunktion}
+Im Kapitel \ref{sub:beispiele_sturm_liouville_problem} sind die
+Koeffizientenfunktionen, die man braucht, schon aufgelistet:
+\begin{align*}
+ w(x) &= \frac{1}{\sqrt{1-x^2}}, \\
+ p(x) &= \sqrt{1-x^2}, \\
+ q(x) &= 0.
+\end{align*}
+Da die Sturm-Liouville-Gleichung
+\begin{equation}
+ \label{eq:sturm-liouville-equation-tscheby}
+ \frac{d}{dx} \biggl (\sqrt{1-x^2} \frac{dy}{dx}\biggr ) +
+ \biggl (0 + \lambda \frac{1}{\sqrt{1-x^2}}\biggr ) y
+ =
+ 0
+\end{equation}
+nun mit den Koeffizientenfunktionen aufgestellt werden kann, bleibt die Frage,
+ob es sich um ein reguläres oder singuläres Sturm-Liouville-Problem handelt.
+Zunächst werden jedoch die Randbedingungen betrachtet.
+
+\subsection*{Randwertproblem}
+Für die Verifizierung der Randbedingungen benötigt man erneut $p(x)$.
+Die Randwerte setzt man $a = -1$ und $b = 1$.
+Beim Einsetzen in die Randbedingung \eqref{sturmliouville:eq:randbedingungen},
+erhält man
+\begin{equation}
+ \begin{aligned}
+ k_a y(-1) + h_a p(-1) y'(-1) &= 0\\
+ k_b y(1) + h_b p(1) y'(1) &= 0.
+ \end{aligned}
+\end{equation}
+Die Funktion $y(x)$ und $y'(x)$ sind in diesem Fall die Tschebyscheff Polynome
+(siehe \ref{sub:definiton_der_tschebyscheff-Polynome}).
+Die Funktion $y(x)$ wird nun mit der Funktion $T_n(x)$ ersetzt und für die
+Verifizierung der Randbedingung wählt man $n=0$.
+Somit erhält man
+\begin{equation}
+ \begin{aligned}
+ k_a T_0(-1) + h_a p(-1) T_{0}'(-1) &= k_a = 0\\
+ k_b T_0(1) + h_b p(1) T_{0}'(1) &= k_b = 0.
+ \end{aligned}
+\end{equation}
+Ähnlich wie beim Beispiel der Wärmeleitung in einem homogenen Stab können,
+damit die Bedingung $|k_i|^2 + |h_i|^2\ne 0$ erfüllt ist, beliebige
+$h_a \ne 0$ und $h_b \ne 0$ gewählt werden.
+Es wurde somit gezeigt, dass die Sturm-Liouville-Randbedingungen erfüllt sind.
+
+\subsection*{Handelt es sich um ein reguläres oder singuläres Problem?}
+Für das reguläre Problem muss laut der
+Definition~\ref{sturmliouville:def:reguläres_sturm-liouville-problem} die funktion
+$p(x) = \sqrt{1-x^2}$, $p'(x) = -2x$, $q(x) = 0$ und
+$w(x) = \frac{1}{\sqrt{1-x^2}}$ stetig und reell sein.
+Auf dem Intervall $(-1,1)$ sind die Tschebyscheff-Polynome erster Art
+\begin{equation}
+ T_n(x)
+ =
+ \cos n (\arccos x).
+\end{equation}
+Die nächste Bedingung, laut der Definition \ref{sturmliouville:def:reguläres_sturm-liouville-problem}, beinhaltet, dass die Funktion $p(x)$ und $w(x)>0$ sein
+müssen.
+Die Funktion
+\begin{equation*}
+ p(x)^{-1} = \frac{1}{\sqrt{1-x^2}}
+\end{equation*}
+ist die gleiche wie $w(x)$ und erfüllt die Bedingung.
+Es zeigt sich also, dass $p(x)$, $p'(x)$, $q(x)$ und $w(x)$
+die Bedingungen erfüllen.
+Da auch die Randbedingungen erfüllt sind, handelt es sich um ein reguläres Sturm-Liouville-Problem.
+
+
+\begin{beispiel}
+ In diesem Beispiel wird zuletzt die Orthogonalität der Lösungsfunktion
+ illustriert.
+ Dazu verwendet man das Skalarprodukt
+ \[
+ \int_{a}^{b} w(x) y_m(x) y_n(x) = 0.
+ \]
+ mit $y_m(x) = T_1(x)$ und $y_n(x) = T_2(x)$, sowie $a=-1$ und $b = 1$.
+ Eigesetzt ergibt dies
+ \[
+ \begin{aligned}
+ \int_{-1}^{1} \frac{1}{\sqrt{1-x^2}} x (2x^2-1) dx &=
+ \biggl [ - \frac{\sqrt{1-x^2}(2x^2+1)}{3} \biggr ]_{-1}^{1}\\
+ &= 0.
+ \end{aligned}
+ \]
+ Somit ist gezeigt, dass $T_1(x)$ und $T_2(x)$ orthogonal sind.
+ Analog kann Orthogonalität für alle $y_n(x)$ und $y_m(x)$ mit $n \ne m$ gezeigt werden.
+\end{beispiel}
diff --git a/buch/papers/sturmliouville/waermeleitung_beispiel.tex b/buch/papers/sturmliouville/waermeleitung_beispiel.tex
new file mode 100644
index 0000000..93a1eb0
--- /dev/null
+++ b/buch/papers/sturmliouville/waermeleitung_beispiel.tex
@@ -0,0 +1,773 @@
+%
+% waermeleitung_beispiel.tex -- Beispiel Wärmeleitung in homogenem Stab.
+% Author: Erik Löffler
+%
+% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
+%
+
+\section{Beispiel: Wärmeleitung in homogenem Stab}
+
+In diesem Abschnitt wird das Problem der Wärmeleitung in einem homogenen Stab
+betrachtet, angeschaut wie das Sturm-Liouville-Problem bei der Beschreibung
+dieses physikalischen Phänomens auftritt und hergeleitet wie die Fourierreihe
+als Lösung des Problems zustande kommt.
+
+Zunächst wird ein eindimensionaler homogener Stab der Länge $l$ und
+Wärmeleitkoeffizient $\kappa$ betrachtet, dessen initiale Wärmeverteilung durch
+$u(t=0, x)$ gegeben ist.
+Es ergibt sich für das Wärmeleitungsproblem die partielle Differentialgleichung
+\begin{equation}
+ \label{sturmliouville:eq:example-fourier-heat-equation}
+ \frac{\partial u(t, x)}{\partial t} =
+ \kappa \frac{\partial^{2}u(t, x)}{{\partial x}^{2}},
+\end{equation}
+wobei der Stab in diesem Fall auf der $x$-Achse im Intervall $[0,l]$ liegt.
+
+Damit die Sturm-Liouville-Theorie auf das
+Problem~\eqref{sturmliouville:eq:example-fourier-heat-equation} angewendet
+werden kann, werden noch Randbedingungen benötigt, welche in Kürze
+vorgestellt werden.
+Aus physikalischer Sicht geben diese Randbedingungen vor, ob die Enden des
+Stabes thermisch isoliert sind oder ob sie auf konstanter Temperatur gehalten
+werden.
+
+%
+% Randbedingungen für Stab mit konstanten Endtemperaturen
+%
+\subsection{Randbedingungen}
+\subsubsection{Randbedingungen für Stab mit Enden auf konstanter Temperatur}
+
+Die Enden des Stabes auf konstanter Temperatur zu halten bedeutet, dass die
+Lösungsfunktion $u(t,x)$ bei $x = 0$ und $x = l$ nur die vorgegebene
+Temperatur zurückgeben darf. Diese wird einfachheitshalber als $0$ angenomen.
+Es folgt nun
+\begin{equation}
+ \label{sturmliouville:eq:example-fourier-boundary-condition-ends-constant}
+ u(t,0)
+ =
+ u(t,l)
+ =
+ 0
+\end{equation}
+als Randbedingungen.
+
+%
+% Randbedingungen für Stab mit isolierten Enden
+%
+
+\subsubsection{Randbedingungen für Stab mit isolierten Enden}
+
+Bei isolierten Enden des Stabes können grundsätzlich beliebige Temperaturen für
+$x = 0$ und $x = l$ auftreten.
+Die einzige Einschränkung liefert die initiale Wärmeverteilung $u(0, x)$.
+Im Fall des isolierten Stabes ist es nicht erlaubt, dass Wärme vom Stab
+an die Umgebung oder von der Umgebung an den Stab abgegeben wird.
+
+Aus der Physik ist bekannt, dass Wärme immer von der höheren zur tieferen
+Temperatur fliesst. Um Wärmefluss zu unterdrücken, muss also dafür gesorgt
+werden, dass am Rand des Stabes keine Temperaturdifferenz existiert oder
+dass die partiellen Ableitungen von $u(t,x)$ nach $x$ bei $x = 0$ und $x = l$
+verschwinden.
+Somit folgen
+\begin{equation}
+ \label{sturmliouville:eq:example-fourier-boundary-condition-ends-isolated}
+ \frac{\partial}{\partial x} u(t, 0)
+ =
+ \frac{\partial}{\partial x} u(t, l)
+ =
+ 0
+\end{equation}
+als Randbedingungen.
+
+%
+% Lösung der Differenzialgleichung mittels Separation
+%
+
+\subsection{Separation der Differenzialgleichung
+\label{sturmliouville:subsec:separation}}
+
+Da die Lösungsfunktion $u$ von zwei Variablen abhängig ist, wird die
+Gleichung~\eqref{sturmliouville:eq:example-fourier-heat-equation} zunächst
+mittels Separation in zwei gewöhnliche Differentialgleichungen überführt.
+Dazu wird
+\[
+ u(t,x)
+ =
+ T(t)X(x)
+\]
+in die partielle
+Differenzialgleichung~\eqref{sturmliouville:eq:example-fourier-heat-equation}
+eingesetzt.
+Daraus ergibt sich
+\[
+ T^{\prime}(t)X(x)
+ =
+ \kappa T(t)X^{\prime \prime}(x)
+\]
+als neue Form.
+
+Nun können alle von $t$ abhängigen Ausdrücke auf die linke Seite, sowie alle
+von $x$ abhängigen Ausdrücke auf die rechte Seite gebracht werden und mittels
+der neuen Variablen $\mu$ gekoppelt werden:
+\[
+ \frac{T^{\prime}(t)}{\kappa T(t)}
+ =
+ \frac{X^{\prime \prime}(x)}{X(x)}
+ =
+ \mu.
+\]
+Durch die Einführung von $\mu$ kann das Problem nun in zwei separate
+Differenzialgleichungen aufgeteilt werden:
+\begin{equation}
+ \label{sturmliouville:eq:example-fourier-separated-x}
+ X^{\prime \prime}(x) - \mu X(x)
+ =
+ 0
+\end{equation}
+\begin{equation}
+ \label{sturmliouville:eq:example-fourier-separated-t}
+ T^{\prime}(t) - \kappa \mu T(t)
+ =
+ 0.
+\end{equation}
+
+%
+% Überprüfung SLP, dann Orthogonalität der Lösungen
+%
+
+An dieser Stelle wird nun gezeigt, dass die Gleichung in $x$ ein
+Sturm-Liouville-Problem ist.
+Dazu werden zunächst die Koeffizientenfunktionen $p(x)$, $q(x)$ und $w(x)$
+benötigt.
+Um diese zu erhalten, wird die
+Gleichung~\eqref{sturmliouville:eq:example-fourier-separated-x} mit der
+Sturm-Liouville-Form~\eqref{sturmliouville:eq:sturm-liouville-equation}
+verglichen, was zu
+\[
+\begin{aligned}
+ p(x) &= 1 \\
+ q(x) &= 0 \\
+ w(x) &= 1
+\end{aligned}
+\]
+führt.
+
+Diese können bereits auf die Bedingungen in
+Definition~\ref{sturmliouville:def:reguläres_sturm-liouville-problem} geprüft
+werden.
+Es ist schnell ersichtlich, dass die ersten drei Kriterien erfüllt sind.
+Werden nun auch noch die Randbedingungen erfüllt, handelt es sich also um ein
+reguläres Sturm-Liouville-Problem und es kann bereits die Aussage gemacht
+werden, dass alle Lösungen für die Gleichung in $x$ orthogonal sein werden.
+
+Da die Bedingungen des Stab-Problems nur Anforderungen an $x$ stellen, können
+diese direkt für $X(x)$ übernomen werden.
+Es gilt also beispielsweise wegen
+\eqref{sturmliouville:eq:example-fourier-boundary-condition-ends-constant},
+dass $X(0) = X(l) = 0$.
+
+Damit die Lösungen von $X$ orthogonal sind, müssen also die Gleichungen
+\begin{equation}
+\begin{aligned}
+ \label{sturmliouville:eq:example-fourier-randbedingungen}
+ k_a X(a) + h_a p(a) X'(a) &= 0 \\
+ k_b X(b) + h_b p(b) X'(b) &= 0
+\end{aligned}
+\end{equation}
+erfüllt sein und es muss ausserdem
+\begin{equation}
+\begin{aligned}
+ \label{sturmliouville:eq:example-fourier-coefficient-constraints}
+ |k_a|^2 + |h_a|^2 &\neq 0\\
+ |k_b|^2 + |h_b|^2 &\neq 0\\
+\end{aligned}
+\end{equation}
+gelten.
+
+Es werden nun $p(x)$ und die
+Randbedingungen~\eqref{sturmliouville:eq:example-fourier-boundary-condition-ends-constant}
+des Stab-Problems in \eqref{sturmliouville:eq:example-fourier-randbedingungen}
+eigesetzt und man erhält
+\[
+\begin{aligned}
+ k_a y(0) + h_a y'(0) &= h_a y'(0) = 0 \\
+ k_b y(l) + h_b y'(l) &= h_b y'(l) = 0.
+\end{aligned}
+\]
+Damit die Gleichungen erfüllt sind, müssen $h_a = 0$ und $h_b = 0$ sein.
+Zusätzlich müssen aber die
+Bedingungen~\eqref{sturmliouville:eq:example-fourier-coefficient-constraints}
+erfüllt sein und da $y(0) = 0$ und $y(l) = 0$ sind, können belibige $k_a \neq 0$
+und $k_b \neq 0$ gewählt werden.
+
+Somit ist gezeigt, dass die Randbedingungen des Stab-Problems für Enden auf
+konstanter Temperatur auch die Sturm-Liouville-Randbedingungen erfüllen.
+
+Daraus folg zunächst, dass es sich um ein reguläres Sturm-Liouville-Problem
+handelt und weiter, dass alle daraus resultierenden Lösungen orthogonal sind.
+Analog dazu kann gezeit werden, dass die Randbedingungen für einen Stab mit
+isolierten
+Enden~\eqref{sturmliouville:eq:example-fourier-boundary-condition-ends-isolated}
+ebenfalls die Sturm-Liouville-Randbedingungen erfüllen und
+somit auch zu orthogonalen Lösungen führen.
+
+%
+% Lösung von X(x), Teil mu
+%
+
+\subsection{Lösung der Differentialgleichung in \texorpdfstring{$x$}{x}}
+Als erstes wird auf die
+Gleichung~\eqref{sturmliouville:eq:example-fourier-separated-x} eingegangen.
+Aufgrund der Struktur der Gleichung
+\[
+ X^{\prime \prime}(x) - \mu X(x)
+ =
+ 0
+\]
+wird ein trigonometrischer Ansatz gewählt.
+Die Lösungen für $X(x)$ sind also von der Form
+\[
+ X(x)
+ =
+ A \cos \left( \alpha x\right) + B \sin \left( \beta x\right).
+\]
+
+Dieser Ansatz wird nun solange differenziert, bis alle in
+Gleichung~\eqref{sturmliouville:eq:example-fourier-separated-x} enthaltenen
+Ableitungen vorhanden sind.
+Man erhält also
+\[
+ X^{\prime}(x)
+ =
+ - \alpha A \sin \left( \alpha x \right) +
+ \beta B \cos \left( \beta x \right)
+\]
+und
+\[
+ X^{\prime \prime}(x)
+ =
+ -\alpha^{2} A \cos \left( \alpha x \right) -
+ \beta^{2} B \sin \left( \beta x \right).
+\]
+
+Eingesetzt in Gleichung~\eqref{sturmliouville:eq:example-fourier-separated-x}
+ergibt dies
+\[
+ -\alpha^{2}A\cos(\alpha x) - \beta^{2}B\sin(\beta x) -
+ \mu\left(A\cos(\alpha x) + B\sin(\beta x)\right)
+ =
+ 0
+\]
+und durch Umformen somit
+\[
+ -\alpha^{2}A\cos(\alpha x) - \beta^{2}B\sin(\beta x)
+ =
+ \mu A\cos(\alpha x) + \mu B\sin(\beta x).
+\]
+
+Mittels Koeffizientenvergleich auf beiden Seiten von
+\[
+\begin{aligned}
+ -\alpha^{2}A\cos(\alpha x)
+ &=
+ \mu A\cos(\alpha x)
+ \\
+ -\beta^{2}B\sin(\beta x)
+ &=
+ \mu B\sin(\beta x)
+\end{aligned}
+\]
+ist schnell ersichtlich, dass $ \mu = -\alpha^{2} = -\beta^{2} $ gelten muss für
+$ A \neq 0 $ oder $ B \neq 0 $.
+Zur Berechnung von $ \mu $ bleiben also noch $ \alpha $ und $ \beta $ zu
+bestimmen.
+Dazu werden nochmals die
+Randbedingungen~\eqref{sturmliouville:eq:example-fourier-boundary-condition-ends-constant}
+und \eqref{sturmliouville:eq:example-fourier-boundary-condition-ends-isolated}
+benötigt.
+
+Da die Koeffizienten $A$ und $B$, sowie die Parameter $\alpha$ und $\beta$ im
+Allgemeinen ungleich $0$ sind, müssen die Randbedingungen durch die
+trigonometrischen Funktionen erfüllt werden.
+
+\subsubsection{Einsetzen der
+Randbedingungen~\eqref{sturmliouville:eq:example-fourier-boundary-condition-ends-constant}}
+
+Es werden nun die
+Randbedingungen~\eqref{sturmliouville:eq:example-fourier-boundary-condition-ends-constant}
+für einen Stab mit Enden auf konstanter Temperatur in die
+Gleichung~\eqref{sturmliouville:eq:example-fourier-separated-x} eingesetzt.
+
+Betrachten wir zunächst die Bedingung für $x = 0$.
+Dies führt zu
+\[
+ X(0)
+ =
+ A \cos(0 \alpha) + B \sin(0 \beta)
+ =
+ 0.
+\]
+Da $\cos(0) \neq 0$ ist, muss in diesem Fall $A = 0$ gelten.
+Für den zweiten Summanden ist wegen $\sin(0) = 0$ die Randbedingung erfüllt.
+
+Wird nun die zweite Randbedingung für $x = l$ mit $A = 0$ eingesetzt, ergibt
+sich
+\[
+ X(l)
+ =
+ 0 \cos(\alpha l) + B \sin(\beta l)
+ =
+ B \sin(\beta l)
+ = 0.
+\]
+$\beta$ muss also so gewählt werden, dass $\sin(\beta l) = 0$ gilt.
+Es bleibt noch nach $\beta$ aufzulösen:
+\[
+\begin{aligned}
+ \sin(\beta l) &= 0 \\
+ \beta l &= n \pi \qquad n \in \mathbb{N}_0 \\
+ \beta &= \frac{n \pi}{l} \qquad n \in \mathbb{N}_0.
+\end{aligned}
+\]
+
+Es folgt nun wegen $\mu = -\beta^{2}$, dass
+\[
+ \mu_1 = -\beta^{2} = -\frac{n^{2}\pi^{2}}{l^{2}}
+\]
+sein muss.
+Ausserdem ist zu bemerken, dass dies auch gleich $-\alpha^{2}$ ist.
+Da aber $A = 0$ gilt und der Summand mit $\alpha$ verschwindet, ist dies keine
+Verletzung der Randbedingungen.
+
+\subsubsection{Einsetzen der
+Randbedingungen~\eqref{sturmliouville:eq:example-fourier-boundary-condition-ends-isolated}}
+
+Durch analoges Vorgehen kann nun auch das Problem mit isolierten Enden gelöst
+werden.
+Setzt man die
+Randbedingungen~\eqref{sturmliouville:eq:example-fourier-boundary-condition-ends-isolated}
+in $X^{\prime}$ ein, beginnend mit $x = 0$, ergibt sich
+\[
+ X^{\prime}(0)
+ =
+ -\alpha A \sin(0 \alpha) + \beta B \cos(0 \beta)
+ = 0.
+\]
+In diesem Fall muss $B = 0$ gelten.
+Zusammen mit der Bedignung für $x = l$
+folgt nun
+\[
+ X^{\prime}(l)
+ =
+ - \alpha A \sin(\alpha l) + 0 \beta \cos(\beta l)
+ =
+ - \alpha A \sin(\alpha l)
+ = 0.
+\]
+
+Wiederum muss über die $\sin$-Funktion sicher gestellt werden, dass der
+Ausdruck den Randbedingungen entspricht.
+Es folgt nun
+\[
+\begin{aligned}
+ \sin(\alpha l) &= 0 \\
+ \alpha l &= n \pi \qquad n \in \mathbb{N}_0 \\
+ \alpha &= \frac{n \pi}{l} \qquad n \in \mathbb{N}_0
+\end{aligned}
+\]
+und somit
+\[
+ \mu_2 = -\alpha^{2} = -\frac{n^{2}\pi^{2}}{l^{2}}.
+\]
+
+Es ergibt sich also sowohl für einen Stab mit Enden auf konstanter Temperatur
+wie auch für den Stab mit isolierten Enden
+\begin{equation}
+ \label{sturmliouville:eq:example-fourier-mu-solution}
+ \mu
+ =
+ -\frac{n^{2}\pi^{2}}{l^{2}}.
+\end{equation}
+
+\subsection{Fourierreihe als Lösung}
+
+Das Resultat~\eqref{sturmliouville:eq:example-fourier-mu-solution} gibt nun
+wegen der neuen Variablen $n \in \mathbb{N}_0$ vor, dass es potenziell
+unendlich viele Lösungen gibt.
+Dies bedeutet auch, dass es nicht ein $A$ und ein $B$ gibt, sondern einen
+Koeffizienten für jede Lösungsfunktion.
+Wir schreiben deshalb den Lösungsansatz zur Linearkombination
+\[
+ X(x)
+ =
+ \sum_{n = 0}^{\infty} a_n\cos\left(\frac{n\pi}{l}x\right)
+ +
+ \sum_{n = 0}^{\infty} b_n\sin\left(\frac{n\pi}{l}x\right)
+\]
+aus allen möglichen Lösungen um.
+
+Als nächstes werden noch die Summanden für $n = 0$ aus den Summen herausgezogen.
+Da
+\[
+ \begin{aligned}
+ a_0 \cos\left(\frac{0 \pi}{l}\right) &= a_0 \\
+ b_0 \sin\left(\frac{0 \pi}{l}\right) &= 0
+ \end{aligned}
+\]
+gilt, endet man somit bei
+\[
+ X(x)
+ =
+ a_0
+ +
+ \sum_{n = 1}^{\infty} a_n\cos\left(\frac{n\pi}{l}x\right)
+ +
+ \sum_{n = 1}^{\infty} b_n\sin\left(\frac{n\pi}{l}x\right).
+\]
+Dies ist die allgemeine Fourierreihe, welche unsere Stab-Probleme löst.
+Wie zuvor bereits erwähnt, wissen wir, dass sämtliche Lösungsfunktionen
+orthogonal zueinander sind bezüglich des
+Skalarproduktes~\eqref{sturmliouville:eq:modified-dot-product}.
+Dieses vereinfacht sich noch etwas, da aus
+Abschnitt~\ref{sturmliouville:subsec:separation} bereits $w(x) = 1$ gegeben ist.
+Somit ist das Skalarprodukt
+\begin{equation}
+ \label{sturmliouville:eq:example-fourier-dot-product}
+ \langle f, g \rangle_w
+ =
+ \int_a^b f(x)g(x)w(x)\,dx
+ =
+ \int_a^b f(x)g(x)\,dx.
+\end{equation}
+
+Es gilt also
+\[
+\begin{aligned}
+ \int_{-l}^{l}\cos\left(\frac{n \pi}{l}x\right)
+ \cos\left(\frac{m \pi}{l}x\right)dx
+ &= 0 \qquad n \neq m \\
+ \int_{-l}^{l}\sin\left(\frac{n \pi}{l}x\right)
+ \sin\left(\frac{m \pi}{l}x\right)dx
+ &= 0 \qquad n \neq m \\
+ \int_{-l}^{l}\cos\left(\frac{n \pi}{l}x\right)
+ \sin\left(\frac{m \pi}{l}x\right)dx
+ &= 0.
+\end{aligned}
+\]
+
+\subsubsection{Berechnung der Fourierkoeffizienten}
+
+%
+% Lösung von X(x), Teil: Koeffizienten a_n und b_n mittels skalarprodukt.
+%
+
+Um eine eindeutige Lösung für $X(x)$ zu erhalten wird nun die initiale
+Wärmeverteilung oder $u(0, x) = X(x)$ für $t = 0$ benötigt.
+Es gilt also nun die Gleichung
+\begin{equation}
+ \label{sturmliouville:eq:example-fourier-initial-conditions}
+ u(0, x)
+ =
+ a_0
+ +
+ \sum_{n = 1}^{\infty} a_n\cos\left(\frac{n\pi}{l}x\right)
+ +
+ \sum_{n = 1}^{\infty} b_n\sin\left(\frac{n\pi}{l}x\right)
+\end{equation}
+nach allen $a_n$ und $b_n$ aufzulösen.
+Da aber $a_n$ und $b_n$ jeweils als Faktor zu einer trigonometrischen Funktion
+gehört, von der wir wissen, dass sie orthogonal zu allen anderen
+trigonometrischen Funktionen der Lösung ist, kann direkt das
+Skalarprodukt~\eqref{sturmliouville:eq:example-fourier-dot-product}
+verwendet werden um die Koeffizienten $a_n$ und $b_n$ zu bestimmen.
+Es wird also die Tatsache ausgenutzt, dass die Gleichheit in
+\eqref{sturmliouville:eq:example-fourier-initial-conditions} nach Anwendung des
+Skalarproduktes immernoch gelten muss und dass das Skalaprodukt mit einer
+Basisfunktion sämtliche Summanden auf der rechten Seite auslöscht.
+
+Zur Berechnung von $a_m$ mit $ m \in \mathbb{N} $ wird beidseitig das
+Skalarprodukt mit der Basisfunktion $ \cos\left(\frac{m \pi}{l}x\right)$
+gebildet:
+\begin{equation}
+ \label{sturmliouville:eq:dot-product-cosine}
+ \biggl\langle u(0, x), \cos\left(\frac{m \pi}{l}x\right) \biggr\rangle _w
+ =
+ \biggl\langle a_0
+ +
+ \sum_{n = 1}^{\infty} a_n\cos\left(\frac{n\pi}{l}x\right)
+ +
+ \sum_{n = 1}^{\infty} b_n\sin\left(\frac{n\pi}{l}x\right),
+ \cos\left(\frac{m \pi}{l}x\right)\biggr\rangle _w
+\end{equation}
+
+Bevor diese Form in die Integralform umgeschrieben werden kann, muss überlegt
+sein, welche Integralgrenzen zu verwenden sind.
+In diesem Fall haben die $\sin$ und $\cos$ Terme beispielsweise keine ganze
+Periode im Intervall $x \in [0, l]$ für ungerade $n$ und ungerade $m$.
+Um die Skalarprodukte aber korrekt zu berechnen, muss über ein ganzzahliges
+Vielfaches der Periode der trigonometrischen Funktionen integriert werden.
+Dazu werden die Integralgrenzen $-l$ und $l$ verwendet und es werden ausserdem
+neue Funktionen $\hat{u}_c(0, x)$ für die Berechnung mit Cosinus und
+$\hat{u}_s(0, x)$ für die Berechnung mit Sinus angenomen, welche $u(0, t)$
+gerade, respektive ungerade auf $[-l, 0]$ fortsetzen:
+\[
+\begin{aligned}
+ \hat{u}_c(0, x)
+ &=
+ \begin{cases}
+ u(0, -x) & -l \leq x < 0
+ \\
+ u(0, x) & 0 \leq x \leq l
+ \end{cases}
+ \\
+ \hat{u}_s(0, x)
+ &=
+ \begin{cases}
+ -u(0, -x) & -l \leq x < 0
+ \\
+ u(0, x) & 0 \leq x \leq l
+ \end{cases}.
+\end{aligned}
+\]
+
+Diese Funktionen wurden gerade so gewählt, dass nun das Resultat der Integrale
+um den Faktor $2$ skalliert wurde.
+Es gilt also
+\[
+ \int_{-l}^{l}\hat{u}_c(0, x)\cos\left(\frac{m \pi}{l}x\right)dx
+ =
+ 2\int_{0}^{l}u(0, x)\cos\left(\frac{m \pi}{l}x\right)dx
+\]
+und
+\[
+ \int_{-l}^{l}\hat{u}_s(0, x)\sin\left(\frac{m \pi}{l}x\right)dx
+ =
+ 2\int_{0}^{l}u(0, x)\sin\left(\frac{m \pi}{l}x\right)dx.
+\]
+
+Als nächstes wird nun das
+Skalaprodukt~\eqref{sturmliouville:eq:dot-product-cosine} berechnet:
+\[
+\begin{aligned}
+ \int_{-l}^{l}\hat{u}_c(0, x)\cos\left(\frac{m \pi}{l}x\right)dx
+ =&
+ \int_{-l}^{l} \left[a_0
+ +
+ \sum_{n = 1}^{\infty} a_n\cos\left(\frac{n\pi}{l}x\right)
+ +
+ \sum_{n = 1}^{\infty} b_n\sin\left(\frac{n\pi}{l}x\right)\right]
+ \cos\left(\frac{m \pi}{l}x\right) dx
+ \\
+ 2\int_{0}^{l}u(0, x)\cos\left(\frac{m \pi}{l}x\right)dx
+ =&
+ a_0 \int_{-l}^{l}\cos\left(\frac{m \pi}{l}x\right) dx
+ +
+ \sum_{n = 1}^{\infty}\left[a_n\int_{-l}^{l}\cos\left(\frac{n\pi}{l}x\right)
+ \cos\left(\frac{m \pi}{l}x\right)dx\right]
+ \\
+ &+
+ \sum_{n = 1}^{\infty}\left[b_n\int_{-l}^{l}\sin\left(\frac{n\pi}{l}x\right)
+ \cos\left(\frac{m \pi}{l}x\right)dx\right].
+\end{aligned}
+\]
+
+Betrachtet man nun die Summanden auf der rechten Seite stellt man fest, dass
+nahezu alle Terme verschwinden, denn
+\[
+ \int_{-l}^{l}\cos\left(\frac{m \pi}{l}x\right) dx
+ =
+ 0,
+\]
+da hier über ein ganzzahliges Vielfaches der Periode integriert wird,
+\[
+ \int_{-l}^{l}\cos\left(\frac{n\pi}{l}x\right)
+ \cos\left(\frac{m \pi}{l}x\right)dx
+ =
+ 0
+\]
+für $m\neq n$, da Cosinus-Funktionen mit verschiedenen Kreisfrequenzen
+orthogonal zueinander stehen und
+\[
+ \int_{-l}^{l}\sin\left(\frac{n\pi}{l}x\right)
+ \cos\left(\frac{m \pi}{l}x\right)dx
+ =
+ 0
+\]
+da Sinus- und Cosinus-Funktionen ebenfalls orthogonal zueinander sind.
+
+Es bleibt also lediglich der Summand mit $a_m$ stehen, was die Gleichung zu
+\[
+ 2\int_{0}^{l}u(0, x)\cos\left(\frac{m \pi}{l}x\right)dx
+ =
+ a_m\int_{-l}^{l}\cos^2\left(\frac{m\pi}{l}x\right)dx
+\]
+vereinfacht.
+
+Im nächsten Schritt wird nun das Integral auf der rechten Seite
+berechnet und dann nach $a_m$ aufgelöst.
+Am einfachsten geht dies, wenn zuerst mit $u = \frac{m \pi}{l}x$ substituiert
+wird:
+\[
+ \begin{aligned}
+ 2\int_{0}^{l}u(0, x)\cos\left(\frac{m \pi}{l}x\right)dx
+ &=
+ a_m\frac{l}{m\pi}\int_{-m\pi}^{m\pi}\cos^2\left(u\right)du
+ \\
+ &=
+ a_m\frac{l}{m\pi}\left[\frac{u}{2} +
+ \frac{\sin\left(2u\right)}{4}\right]_{u=-m\pi}^{m\pi}
+ \\
+ &=
+ a_m\frac{l}{m\pi}\biggl(\frac{m\pi}{2} +
+ \underbrace{\frac{\sin\left(2m\pi\right)}{4}}_{\displaystyle = 0} -
+ \frac{-m\pi}{2} -
+ \underbrace{\frac{\sin\left(-2m\pi\right)}{4}}_{\displaystyle = 0}\biggr)
+ \\
+ &=
+ a_m l
+ \\
+ a_m
+ &=
+ \frac{2}{l} \int_{0}^{l}u(0, x)\cos\left(\frac{m \pi}{l}x\right)dx.
+ \end{aligned}
+\]
+
+Analog dazu kann durch das Bilden des Skalarproduktes mit
+$ \sin\left(\frac{m \pi}{l}x\right) $ gezeigt werden, dass
+\[
+ b_m
+ =
+ \frac{2}{l} \int_{0}^{l}u(0, x)\sin\left(\frac{m \pi}{l}x\right)dx
+\]
+gilt.
+
+Etwas anders ist es allerdings bei $a_0$.
+Wie zuvor bereits erwähnt, handelt es sich hierbei um den Koeffizienten
+zur Basisfunktion $\cos\left(\frac{0 \pi}{l}x\right)$ beziehungsweise der
+konstanten Funktion $1$.
+Um einen Ausdruck für $a_0$ zu erhalten, wird wiederum auf beiden Seiten
+der Gleichung~\eqref{sturmliouville:eq:example-fourier-initial-conditions} das
+Skalarprodukt mit der konstanten Basisfunktion $1$ gebildet:
+\[
+\begin{aligned}
+ \int_{-l}^{l}\hat{u}_c(0, x)dx
+ &=
+ \int_{-l}^{l} a_0
+ +
+ \sum_{n = 1}^{\infty} a_n\cos\left(\frac{n\pi}{l}x\right)
+ +
+ \sum_{n = 1}^{\infty} b_n\sin\left(\frac{n\pi}{l}x\right)dx
+ \\
+ 2\int_{0}^{l}u(0, x)dx
+ &=
+ a_0 \int_{-l}^{l}dx
+ +
+ \sum_{n = 1}^{\infty}\left[a_n\int_{-l}^{l}\cos\left(\frac{n\pi}{l}x\right)
+ dx\right] +
+ \sum_{n = 1}^{\infty}\left[b_n\int_{-l}^{l}\sin\left(\frac{n\pi}{l}x\right)
+ dx\right].
+\end{aligned}
+\]
+
+Hier fallen nun alle Terme, die $\sin$ oder $\cos$ beinhalten weg, da jeweils
+über ein ganzzahliges Vielfaches der Periode integriert wird.
+Es bleibt also noch
+\[
+ 2\int_{0}^{l}u(0, x)dx
+ =
+ a_0 \int_{-l}^{l}dx,
+\]
+was sich wie folgt nach $a_0$ auflösen lässt:
+\[
+\begin{aligned}
+ 2\int_{0}^{l}u(0, x)dx
+ &=
+ a_0 \int_{-l}^{l}dx
+ \\
+ &=
+ a_0 \left[x\right]_{x=-l}^{l}
+ \\
+ &=
+ a_0(l - (-l))
+ \\
+ &=
+ a_0 \cdot 2l
+ \\
+ a_0
+ &=
+ \frac{1}{l} \int_{0}^{l}u(0, x)dx.
+\end{aligned}
+\]
+
+%
+% Lösung von T(t)
+%
+
+\subsection{Lösung der Differentialgleichung in \texorpdfstring{$t$}{t}}
+Zuletzt wird die zweite Gleichung der
+Separation~\eqref{sturmliouville:eq:example-fourier-separated-t} betrachtet.
+Dazu nimmt man das charakteristische Polynom
+\[
+ \lambda - \kappa \mu
+ =
+ 0
+\]
+der Gleichung
+\[
+ T^{\prime}(t) - \kappa \mu T(t)
+ =
+ 0
+\]
+und löst dieses.
+
+Es ist direkt ersichtlich, dass $\lambda = \kappa \mu$ gelten muss, was zur
+Lösung
+\[
+ T(t)
+ =
+ e^{\kappa \mu t}
+\]
+führt und mit dem Resultat~\eqref{sturmliouville:eq:example-fourier-mu-solution}
+\[
+ T(t)
+ =
+ e^{-\frac{n^{2}\pi^{2}\kappa}{l^{2}}t}
+\]
+ergibt.
+
+\subsection{Lösung des Wärmeleitungsproblems}
+
+Nun können alle vorhergehenden Resultate zusammengesetzt
+werden um die vollständige Lösung für das Stab-Problem zu erhalten.
+
+\subsubsection{Lösung für einen Stab mit Enden auf konstanter Temperatur}
+\[
+\begin{aligned}
+ u(t,x)
+ &=
+ \sum_{n=1}^{\infty}b_{n}e^{-\frac{n^{2}\pi^{2}\kappa}{l^{2}}t}
+ \sin\left(\frac{n\pi}{l}x\right)
+ \\
+ b_{n}
+ &=
+ \frac{2}{l}\int_{0}^{l}u(0,x)sin\left(\frac{n\pi}{l}x\right) dx
+\end{aligned}
+\]
+
+\subsubsection{Lösung für einen Stab mit isolierten Enden}
+\[
+\begin{aligned}
+ u(t,x)
+ &=
+ a_{0} + \sum_{n=1}^{\infty}a_{n}e^{-\frac{n^{2}\pi^{2}\kappa}{l^{2}}t}
+ \cos\left(\frac{n\pi}{l}x\right)
+ \\
+ a_{0}
+ &=
+ \frac{1}{l}\int_{0}^{l}u(0,x) dx
+ \\
+ a_{n}
+ &=
+ \frac{2}{l}\int_{0}^{l}u(0,x)sin\left(\frac{n\pi}{l}x\right) dx
+\end{aligned}
+\]