diff options
Diffstat (limited to '')
-rw-r--r-- | buch/papers/000template/main.tex | 5 | ||||
-rw-r--r-- | buch/papers/000template/teil0.tex | 3 | ||||
-rw-r--r-- | buch/papers/000template/teil1.tex | 3 | ||||
-rw-r--r-- | buch/papers/000template/teil2.tex | 3 | ||||
-rw-r--r-- | buch/papers/000template/teil3.tex | 3 | ||||
-rw-r--r-- | buch/papers/dreieck/images/beta.pdf | bin | 100791 -> 109717 bytes | |||
-rw-r--r-- | buch/papers/dreieck/images/beta.tex | 208 | ||||
-rw-r--r-- | buch/papers/dreieck/images/betadist.m | 24 | ||||
-rw-r--r-- | buch/papers/dreieck/teil1.tex | 411 | ||||
-rw-r--r-- | buch/papers/kugel/Makefile.inc | 8 | ||||
-rw-r--r-- | buch/papers/kugel/main.tex | 57 | ||||
-rw-r--r-- | buch/papers/kugel/teil0.tex | 22 | ||||
-rw-r--r-- | buch/papers/kugel/teil1.tex | 55 | ||||
-rw-r--r-- | buch/papers/kugel/teil2.tex | 40 | ||||
-rw-r--r-- | buch/papers/kugel/teil3.tex | 40 | ||||
-rw-r--r-- | buch/papers/lambertw/Bilder/something.svg | 1 | ||||
-rw-r--r-- | buch/papers/lambertw/packages.tex | 2 | ||||
-rw-r--r-- | buch/papers/lambertw/teil0.tex | 21 | ||||
-rw-r--r-- | buch/papers/lambertw/teil1.tex | 109 | ||||
-rw-r--r-- | buch/papers/transfer/main.tex | 23 |
20 files changed, 301 insertions, 737 deletions
diff --git a/buch/papers/000template/main.tex b/buch/papers/000template/main.tex index 87a5685..91b6d6e 100644 --- a/buch/papers/000template/main.tex +++ b/buch/papers/000template/main.tex @@ -1,7 +1,10 @@ % % main.tex -- Paper zum Thema <000template> % -% (c) 2020 Hochschule Rapperswil +% (c) 2020 Autor, OST Ostschweizer Fachhochschule +% +% !TEX root = ../../buch.tex +% !TEX encoding = UTF-8 % \chapter{Thema\label{chapter:000template}} \lhead{Thema} diff --git a/buch/papers/000template/teil0.tex b/buch/papers/000template/teil0.tex index 7b9f088..65d7ae1 100644 --- a/buch/papers/000template/teil0.tex +++ b/buch/papers/000template/teil0.tex @@ -3,6 +3,9 @@ % % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % +% !TEX root = ../../buch.tex +% !TEX encoding = UTF-8 +% \section{Teil 0\label{000template:section:teil0}} \rhead{Teil 0} Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam diff --git a/buch/papers/000template/teil1.tex b/buch/papers/000template/teil1.tex index 00d3058..0f8dfae 100644 --- a/buch/papers/000template/teil1.tex +++ b/buch/papers/000template/teil1.tex @@ -3,6 +3,9 @@ % % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % +% !TEX root = ../../buch.tex +% !TEX encoding = UTF-8 +% \section{Teil 1 \label{000template:section:teil1}} \rhead{Problemstellung} diff --git a/buch/papers/000template/teil2.tex b/buch/papers/000template/teil2.tex index 471adae..496557f 100644 --- a/buch/papers/000template/teil2.tex +++ b/buch/papers/000template/teil2.tex @@ -3,6 +3,9 @@ % % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % +% !TEX root = ../../buch.tex +% !TEX encoding = UTF-8 +% \section{Teil 2 \label{000template:section:teil2}} \rhead{Teil 2} diff --git a/buch/papers/000template/teil3.tex b/buch/papers/000template/teil3.tex index 4697813..ef2aa75 100644 --- a/buch/papers/000template/teil3.tex +++ b/buch/papers/000template/teil3.tex @@ -3,6 +3,9 @@ % % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % +% !TEX root = ../../buch.tex +% !TEX encoding = UTF-8 +% \section{Teil 3 \label{000template:section:teil3}} \rhead{Teil 3} diff --git a/buch/papers/dreieck/images/beta.pdf b/buch/papers/dreieck/images/beta.pdf Binary files differindex c3ab4f6..cd5ed80 100644 --- a/buch/papers/dreieck/images/beta.pdf +++ b/buch/papers/dreieck/images/beta.pdf diff --git a/buch/papers/dreieck/images/beta.tex b/buch/papers/dreieck/images/beta.tex index 50509ee..f0ffdf0 100644 --- a/buch/papers/dreieck/images/beta.tex +++ b/buch/papers/dreieck/images/beta.tex @@ -23,7 +23,8 @@ \definecolor{coloreight}{rgb}{0.0,0.8,0.8} \definecolor{colornine}{rgb}{0.0,0.8,0.2} \definecolor{colorten}{rgb}{0.2,0.4,0.0} -\definecolor{coloreleven}{rgb}{1.0,0.8,0.4} +\definecolor{coloreleven}{rgb}{0.6,1.0,0.0} +\definecolor{colortwelve}{rgb}{1.0,0.8,0.4} \def\achsen{ \foreach \x in {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9}{ @@ -47,24 +48,24 @@ } \def\farbcoord#1#2{ - ({\dx*(0.7+((#1-1)/4)*0.27)},{\dx*(0.15+((#2-1)/4)*0.27)}) + ({\dx*(0.63+((#1)/5)*0.27)},{\dx*(0.18+((#2)/5)*0.27)}) } \def\farbviereck{ - \foreach \x in {1,2,3,4,5}{ - \draw[color=gray!30] \farbcoord{\x}{1} -- \farbcoord{\x}{5}; - \draw[color=gray!30] \farbcoord{1}{\x} -- \farbcoord{5}{\x}; + \foreach \x in {1,2,3,4}{ + \draw[color=gray!30] \farbcoord{\x}{0} -- \farbcoord{\x}{4}; + \draw[color=gray!30] \farbcoord{0}{\x} -- \farbcoord{4}{\x}; } - \draw[->] \farbcoord{1}{1} -- \farbcoord{5.4}{1} + \draw[->] \farbcoord{0}{0} -- \farbcoord{4.4}{0} coordinate[label={$a$}]; - \draw[->] \farbcoord{1}{1} -- \farbcoord{1}{5.4} + \draw[->] \farbcoord{0}{0} -- \farbcoord{0}{4.4} coordinate[label={left: $b$}]; - \foreach \x in {1,2,3,4,5}{ - \node[color=gray] at \farbcoord{5}{\x} [right] {\tiny $b=\x$}; - \fill[color=white,opacity=0.7] - \farbcoord{(\x-0.1)}{4.3} - rectangle - \farbcoord{(\x+0.1)}{5}; - \node[color=gray] at \farbcoord{\x}{5} [left,rotate=90] + \foreach \x in {1,2,3,4}{ + \node[color=gray] at \farbcoord{4}{\x} [right] {\tiny $b=\x$}; + %\fill[color=white,opacity=0.7] + % \farbcoord{(\x-0.1)}{3.3} + % rectangle + % \farbcoord{(\x+0.1)}{4}; + \node[color=gray] at \farbcoord{\x}{4} [right,rotate=90] {\tiny $a=\x$}; } } @@ -74,23 +75,26 @@ \begin{tikzpicture}[>=latex,thick,scale=\skala] -\def\dx{1} +\def\dx{1.1} \def\dy{0.1} \def\opa{0.1} -\def\betamax{4.2} - -\fill[color=colorone,opacity=\opa] (0,0) -- \betaaa -- (\dx,0) -- cycle; -\fill[color=colortwo,opacity=\opa] (0,0) -- \betabb -- (\dx,0) -- cycle; -\fill[color=colorthree,opacity=\opa] (0,0) -- \betacc -- (\dx,0) -- cycle; -\fill[color=colorfour,opacity=\opa] (0,0) -- \betadd -- (\dx,0) -- cycle; -\fill[color=colorfive,opacity=\opa] (0,0) -- \betaee -- (\dx,0) -- cycle; -\fill[color=colorsix,opacity=\opa] (0,0) -- \betaff -- (\dx,0) -- cycle; -\fill[color=colorseven,opacity=\opa] (0,0) -- \betagg -- (\dx,0) -- cycle; -\fill[color=coloreight,opacity=\opa] (0,0) -- \betahh -- (\dx,0) -- cycle; -\fill[color=colornine,opacity=\opa] (0,0) -- \betaii -- (\dx,0) -- cycle; -\fill[color=colorten,opacity=\opa] (0,0) -- \betajj -- (\dx,0) -- cycle; +\def\betamax{4.9} + +\begin{scope} +\clip (0,0) rectangle ({1*\dx},{\betamax*\dy}); +\fill[color=colorone,opacity=\opa] (0,0) -- \betaaa -- (\dx,0) -- cycle; +\fill[color=colortwo,opacity=\opa] (0,0) -- \betabb -- (\dx,0) -- cycle; +\fill[color=colorthree,opacity=\opa] (0,0) -- \betacc -- (\dx,0) -- cycle; +\fill[color=colorfour,opacity=\opa] (0,0) -- \betadd -- (\dx,0) -- cycle; +\fill[color=colorfive,opacity=\opa] (0,0) -- \betaee -- (\dx,0) -- cycle; +\fill[color=colorsix,opacity=\opa] (0,0) -- \betaff -- (\dx,0) -- cycle; +\fill[color=colorseven,opacity=\opa] (0,0) -- \betagg -- (\dx,0) -- cycle; +\fill[color=coloreight,opacity=\opa] (0,0) -- \betahh -- (\dx,0) -- cycle; +\fill[color=colornine,opacity=\opa] (0,0) -- \betaii -- (\dx,0) -- cycle; +\fill[color=colorten,opacity=\opa] (0,0) -- \betajj -- (\dx,0) -- cycle; \fill[color=coloreleven,opacity=\opa] (0,0) -- \betakk -- (\dx,0) -- cycle; +\fill[color=colortwelve,opacity=\opa] (0,0) -- \betall -- (\dx,0) -- cycle; \draw[color=colorone] \betaaa; \draw[color=colortwo] \betabb; @@ -103,11 +107,15 @@ \draw[color=colornine] \betaii; \draw[color=colorten] \betajj; \draw[color=coloreleven] \betakk; +\draw[color=colortwelve] \betall; + +\end{scope} \achsen \farbviereck +\farbpunkt{\alphatwelve}{\betatwelve}{colortwelve} \farbpunkt{\alphaeleven}{\betaeleven}{coloreleven} \farbpunkt{\alphaten}{\betaten}{colorten} \farbpunkt{\alphanine}{\betanine}{colornine} @@ -124,88 +132,102 @@ \def\betamax{4.9} \begin{scope}[yshift=-0.6cm] -\fill[color=colorone,opacity=\opa] (0,0) -- \betaaa -- (\dx,0) -- cycle; -\fill[color=colortwo,opacity=\opa] (0,0) -- \betaab -- (\dx,0) -- cycle; -\fill[color=colorthree,opacity=\opa] (0,0) -- \betaac -- (\dx,0) -- cycle; -\fill[color=colorfour,opacity=\opa] (0,0) -- \betaad -- (\dx,0) -- cycle; -\fill[color=colorfive,opacity=\opa] (0,0) -- \betaae -- (\dx,0) -- cycle; -\fill[color=colorsix,opacity=\opa] (0,0) -- \betaaf -- (\dx,0) -- cycle; -\fill[color=colorseven,opacity=\opa] (0,0) -- \betaag -- (\dx,0) -- cycle; -\fill[color=coloreight,opacity=\opa] (0,0) -- \betaah -- (\dx,0) -- cycle; -\fill[color=colornine,opacity=\opa] (0,0) -- \betaai -- (\dx,0) -- cycle; -\fill[color=colorten,opacity=\opa] (0,0) -- \betaaj -- (\dx,0) -- cycle; -\fill[color=coloreleven,opacity=\opa] (0,0) -- \betaak -- (\dx,0) -- cycle; -\draw[color=colorone] \betaaa; -\draw[color=colortwo] \betaab; -\draw[color=colorthree] \betaac; -\draw[color=colorfour] \betaad; -\draw[color=colorfive] \betaae; -\draw[color=colorsix] \betaaf; -\draw[color=colorseven] \betaag; -\draw[color=coloreight] \betaah; -\draw[color=colornine] \betaai; -\draw[color=colorten] \betaaj; -\draw[color=coloreleven] \betaak; +\begin{scope} +\clip (0,0) rectangle ({1*\dx},{\betamax*\dy}); +\fill[color=colorone,opacity=\opa] (0,0) -- \betaea -- (\dx,0) -- cycle; +\fill[color=colortwo,opacity=\opa] (0,0) -- \betaeb -- (\dx,0) -- cycle; +\fill[color=colorthree,opacity=\opa] (0,0) -- \betaec -- (\dx,0) -- cycle; +\fill[color=colorfour,opacity=\opa] (0,0) -- \betaed -- (\dx,0) -- cycle; +\fill[color=colorfive,opacity=\opa] (0,0) -- \betaee -- (\dx,0) -- cycle; +\fill[color=colorsix,opacity=\opa] (0,0) -- \betaef -- (\dx,0) -- cycle; +\fill[color=colorseven,opacity=\opa] (0,0) -- \betaeg -- (\dx,0) -- cycle; +\fill[color=coloreight,opacity=\opa] (0,0) -- \betaeh -- (\dx,0) -- cycle; +\fill[color=colornine,opacity=\opa] (0,0) -- \betaei -- (\dx,0) -- cycle; +\fill[color=colorten,opacity=\opa] (0,0) -- \betaej -- (\dx,0) -- cycle; +\fill[color=coloreleven,opacity=\opa] (0,0) -- \betaek -- (\dx,0) -- cycle; +\fill[color=colortwelve,opacity=\opa] (0,0) -- \betael -- (\dx,0) -- cycle; + +\draw[color=colorone] \betaea; +\draw[color=colortwo] \betaeb; +\draw[color=colorthree] \betaec; +\draw[color=colorfour] \betaed; +\draw[color=colorfive] \betaee; +\draw[color=colorsix] \betaef; +\draw[color=colorseven] \betaeg; +\draw[color=coloreight] \betaeh; +\draw[color=colornine] \betaei; +\draw[color=colorten] \betaej; +\draw[color=coloreleven] \betaek; +\draw[color=colortwelve] \betael; +\end{scope} \achsen \farbviereck -\farbpunkt{\alphaone}{\betaeleven}{coloreleven} -\farbpunkt{\alphaone}{\betaten}{colorten} -\farbpunkt{\alphaone}{\betanine}{colornine} -\farbpunkt{\alphaone}{\betaeight}{coloreight} -\farbpunkt{\alphaone}{\betaseven}{colorseven} -\farbpunkt{\alphaone}{\betasix}{colorsix} -\farbpunkt{\alphaone}{\betafive}{colorfive} -\farbpunkt{\alphaone}{\betafour}{colorfour} -\farbpunkt{\alphaone}{\betathree}{colorthree} -\farbpunkt{\alphaone}{\betatwo}{colortwo} -\farbpunkt{\alphaone}{\betaone}{colorone} +\farbpunkt{\alphafive}{\betatwelve}{colortwelve} +\farbpunkt{\alphafive}{\betaeleven}{coloreleven} +\farbpunkt{\alphafive}{\betaten}{colorten} +\farbpunkt{\alphafive}{\betanine}{colornine} +\farbpunkt{\alphafive}{\betaeight}{coloreight} +\farbpunkt{\alphafive}{\betaseven}{colorseven} +\farbpunkt{\alphafive}{\betasix}{colorsix} +\farbpunkt{\alphafive}{\betafive}{colorfive} +\farbpunkt{\alphafive}{\betafour}{colorfour} +\farbpunkt{\alphafive}{\betathree}{colorthree} +\farbpunkt{\alphafive}{\betatwo}{colortwo} +\farbpunkt{\alphafive}{\betaone}{colorone} \end{scope} \begin{scope}[yshift=-1.2cm] -\fill[color=colorone,opacity=\opa] (0,0) -- \betaak -- (\dx,0) -- cycle; -\fill[color=colortwo,opacity=\opa] (0,0) -- \betabk -- (\dx,0) -- cycle; -\fill[color=colorthree,opacity=\opa] (0,0) -- \betack -- (\dx,0) -- cycle; -\fill[color=colorfour,opacity=\opa] (0,0) -- \betadk -- (\dx,0) -- cycle; -\fill[color=colorfive,opacity=\opa] (0,0) -- \betaek -- (\dx,0) -- cycle; -\fill[color=colorsix,opacity=\opa] (0,0) -- \betafk -- (\dx,0) -- cycle; -\fill[color=colorseven,opacity=\opa] (0,0) -- \betagk -- (\dx,0) -- cycle; -\fill[color=coloreight,opacity=\opa] (0,0) -- \betahk -- (\dx,0) -- cycle; -\fill[color=colornine,opacity=\opa] (0,0) -- \betaik -- (\dx,0) -- cycle; -\fill[color=colorten,opacity=\opa] (0,0) -- \betajk -- (\dx,0) -- cycle; -\fill[color=coloreleven,opacity=\opa] (0,0) -- \betakk -- (\dx,0) -- cycle; -\draw[color=colorone] \betaak; -\draw[color=colortwo] \betabk; -\draw[color=colorthree] \betack; -\draw[color=colorfour] \betadk; -\draw[color=colorfive] \betaek; -\draw[color=colorsix] \betafk; -\draw[color=colorseven] \betagk; -\draw[color=coloreight] \betahk; -\draw[color=colornine] \betaik; -\draw[color=colorten] \betajk; -\draw[color=coloreleven] \betakk; +\begin{scope} +\clip (0,0) rectangle ({1*\dx},{\betamax*\dy}); +\fill[color=colorone,opacity=\opa] (0,0) -- \betaal -- (\dx,0) -- cycle; +\fill[color=colortwo,opacity=\opa] (0,0) -- \betabl -- (\dx,0) -- cycle; +\fill[color=colorthree,opacity=\opa] (0,0) -- \betacl -- (\dx,0) -- cycle; +\fill[color=colorfour,opacity=\opa] (0,0) -- \betadl -- (\dx,0) -- cycle; +\fill[color=colorfive,opacity=\opa] (0,0) -- \betael -- (\dx,0) -- cycle; +\fill[color=colorsix,opacity=\opa] (0,0) -- \betafl -- (\dx,0) -- cycle; +\fill[color=colorseven,opacity=\opa] (0,0) -- \betagl -- (\dx,0) -- cycle; +\fill[color=coloreight,opacity=\opa] (0,0) -- \betahl -- (\dx,0) -- cycle; +\fill[color=colornine,opacity=\opa] (0,0) -- \betail -- (\dx,0) -- cycle; +\fill[color=colorten,opacity=\opa] (0,0) -- \betajl -- (\dx,0) -- cycle; +\fill[color=coloreleven,opacity=\opa] (0,0) -- \betakl -- (\dx,0) -- cycle; +\fill[color=colortwelve,opacity=\opa] (0,0) -- \betall -- (\dx,0) -- cycle; + +\draw[color=colorone] \betaal; +\draw[color=colortwo] \betabl; +\draw[color=colorthree] \betacl; +\draw[color=colorfour] \betadl; +\draw[color=colorfive] \betael; +\draw[color=colorsix] \betafl; +\draw[color=colorseven] \betagl; +\draw[color=coloreight] \betahl; +\draw[color=colornine] \betail; +\draw[color=colorten] \betajl; +\draw[color=coloreleven] \betakl; +\draw[color=colortwelve] \betall; +\end{scope} \achsen \farbviereck -\farbpunkt{\alphaeleven}{\betaeleven}{coloreleven} -\farbpunkt{\alphaten}{\betaeleven}{colorten} -\farbpunkt{\alphanine}{\betaeleven}{colornine} -\farbpunkt{\alphaeight}{\betaeleven}{coloreight} -\farbpunkt{\alphaseven}{\betaeleven}{colorseven} -\farbpunkt{\alphasix}{\betaeleven}{colorsix} -\farbpunkt{\alphafive}{\betaeleven}{colorfive} -\farbpunkt{\alphafour}{\betaeleven}{colorfour} -\farbpunkt{\alphathree}{\betaeleven}{colorthree} -\farbpunkt{\alphatwo}{\betaeleven}{colortwo} -\farbpunkt{\alphaone}{\betaeleven}{colorone} +\farbpunkt{\alphatwelve}{\betatwelve}{colortwelve} +\farbpunkt{\alphaeleven}{\betatwelve}{coloreleven} +\farbpunkt{\alphaten}{\betatwelve}{colorten} +\farbpunkt{\alphanine}{\betatwelve}{colornine} +\farbpunkt{\alphaeight}{\betatwelve}{coloreight} +\farbpunkt{\alphaseven}{\betatwelve}{colorseven} +\farbpunkt{\alphasix}{\betatwelve}{colorsix} +\farbpunkt{\alphafive}{\betatwelve}{colorfive} +\farbpunkt{\alphafour}{\betatwelve}{colorfour} +\farbpunkt{\alphathree}{\betatwelve}{colorthree} +\farbpunkt{\alphatwo}{\betatwelve}{colortwo} +\farbpunkt{\alphaone}{\betatwelve}{colorone} \end{scope} diff --git a/buch/papers/dreieck/images/betadist.m b/buch/papers/dreieck/images/betadist.m index 9ff78ed..5b466a6 100644 --- a/buch/papers/dreieck/images/betadist.m +++ b/buch/papers/dreieck/images/betadist.m @@ -5,24 +5,32 @@ # global N; N = 201; -global n; -n = 11; +global nmin; +global nmax; +nmin = -4; +nmax = 7; +n = nmax - nmin + 1 +A = 3; -t = (0:n-1) / (n-1) -alpha = 1 + 4 * t.^2 +t = (nmin:nmax) / nmax; +alpha = 1 + A * t .* abs(t) +#alpha(1) = 0.01; #alpha = [ 1, 1.03, 1.05, 1.1, 1.25, 1.5, 2, 2.5, 3, 4, 5 ]; beta = alpha; names = [ "one"; "two"; "three"; "four"; "five"; "six"; "seven"; "eight"; - "nine"; "ten"; "eleven" ] + "nine"; "ten"; "eleven"; "twelve" ] function retval = Beta(a, b, x) retval = x^(a-1) * (1-x)^(b-1) / beta(a, b); + if (retval > 100) + retval = 100 + end end function plotbeta(fn, a, b, name) global N; - fprintf(fn, "\\def\\beta%s{\n", name); + fprintf(fn, "\\def\\beta%s{\n", strtrim(name)); fprintf(fn, "\t({%.4f*\\dx},{%.4f*\\dy})", 0, Beta(a, b, 0)); for x = (1:N-1)/(N-1) X = (1-cos(pi * x))/2; @@ -35,8 +43,8 @@ end fn = fopen("betapaths.tex", "w"); for i = (1:n) - fprintf(fn, "\\def\\alpha%s{%f}\n", names(i,:), alpha(i)); - fprintf(fn, "\\def\\beta%s{%f}\n", names(i,:), beta(i)); + fprintf(fn, "\\def\\alpha%s{%f}\n", strtrim(names(i,:)), alpha(i)); + fprintf(fn, "\\def\\beta%s{%f}\n", strtrim(names(i,:)), beta(i)); end for i = (1:n) diff --git a/buch/papers/dreieck/teil1.tex b/buch/papers/dreieck/teil1.tex index 5e7090b..4abe2e1 100644 --- a/buch/papers/dreieck/teil1.tex +++ b/buch/papers/dreieck/teil1.tex @@ -5,416 +5,7 @@ % \section{Ordnungsstatistik und Beta-Funktion \label{dreieck:section:ordnungsstatistik}} -\rhead{Ordnungsstatistik und Beta-Funktion} -In diesem Abschnitt ist $X$ eine Zufallsvariable mit der Verteilungsfunktion -$F_X(x)$, und $X_i$, $1\le i\le n$ sei ein Stichprobe von unabhängigen -Zufallsvariablen, die wie $X$ verteilt sind. -Ziel ist, die Verteilungsfunktion und die Wahrscheinlichkeitsdichte -des grössten, zweitgrössten, $k$-t-grössten Wertes in der Stichprobe -zu finden. -Wir schreiben $[n]=\{1,\dots,n\}$ für die Menge der natürlichen -Zahlen von zwischen $1$ und $n$. +\rhead{} -\subsection{Verteilung von $\operatorname{max}(X_1,\dots,X_n)$ und -$\operatorname{min}(X_1,\dots,X_n)$ -\label{dreieck:subsection:minmax}} -Die Verteilungsfunktion von $\operatorname{max}(X_1,\dots,X_n)$ hat -den Wert -\begin{align*} -F_{\operatorname{max}(X_1,\dots,X_n)}(x) -&= -P(\operatorname{max}(X_1,\dots,X_n) \le x) -\\ -&= -P(X_1\le x\wedge \dots \wedge X_n\le x) -\\ -&= -P(X_1\le x) \cdot \ldots \cdot P(X_n\le x) -\\ -&= -P(X\le x)^n -= -F_X(x)^n. -\end{align*} -Für die Gleichverteilung ist -\[ -F_{\text{equi}}(x) -= -\begin{cases} -0&\qquad x< 0 -\\ -x&\qquad 0\le x\le 1 -\\ -1&\qquad 1<x. -\end{cases} -\] -In diesem Fall ist Verteilung des Maximums -\[ -F_{\operatorname{max}(X_1,\dots,X_n)}(x) -= -\begin{cases} -0&\qquad x<0\\ -x^n&\qquad 0\le x\le 1\\ -1&\qquad 1 < x. -\end{cases} -\] -Mit der zugehörigen Wahrscheinlichkeitsdichte -\[ -\varphi_{\operatorname{max}(X_1,\dots,X_n)} -= -\frac{d}{dx} -F_{\operatorname{max}(X_1,\dots,X_n)}(x) -= -\begin{cases} -nx^{n-1}&\qquad 0\le x\le 1\\ -0 &\qquad \text{sonst} -\end{cases} -\] -kann man zum Beispiel den Erwartungswert -\[ -E(\operatorname{max}(X_1,\dots,X_n)) -= -\int_{-\infty}^\infty -x -\varphi_{\operatorname{X_1,\dots,X_n}}(x) -\,dx -= -\int_{0}^1 x\cdot nx^{n-1}\,dt -= -\biggl[ -\frac{n}{n+1}x^{n+1} -\biggr]_0^1 -= -\frac{n}{n+1} -\] -berechnen. - -Ganz analog kann man auch die Verteilungsfunktion von -$\operatorname{min}(X_1,\dots,X_n)$ bestimmen. -Sie ist -\begin{align*} -F_{\operatorname{min}(X_1,\dots,X_n)}(x) -&= -P(x\le X_1\vee \dots \vee x\le X_n) -\\ -&= -1- -P(x > X_1\wedge \dots \wedge x > X_n) -\\ -&= -1- -(1-P(x\le X_1)) \cdot\ldots\cdot (1-P(x\le X_n)) -\\ -&= -1-(1-F_X(x))^n, -\end{align*} -Im Speziellen für im Intervall $[0,1]$ gleichverteilte $X_i$ ist die -Verteilungsfunktion des Minimums -\[ -F_{\operatorname{min}(X_1,\dots,X_n)}(x) -= -\begin{cases} -0 &\qquad x<0 \\ -1-(1-x)^n&\qquad 0\le x\le 1\\ -1 &\qquad 1 < x -\end{cases} -\] -mit Wahrscheinlichkeitsdichte -\[ -\varphi_{\operatorname{min}(X_1,\dots,X_n)} -= -\frac{d}{dx} -F_{\operatorname{min}(X_1,\dots,X_n)} -= -\begin{cases} -n(1-x)^{n-1}&\qquad 0\le x\le 1\\ -0 &\qquad \text{sonst} -\end{cases} -\] -und Erwartungswert -\begin{align*} -E(\operatorname{min}(X_1,\dots,X_n) -&= -\int_{-\infty}^\infty x\varphi_{\operatorname{min}(X_1,\dots,X_n)}(x)\,dx -= -\int_0^1 x\cdot n(1-x)^{n-1}\,dx -\\ -&= -\bigl[ -x(1-x)^n \bigr]_0^1 + \int_0^1 (1-x)^n\,dx -= -\biggl[ -- -\frac{1}{n+1} -(1-x)^{n+1} -\biggr]_0^1 -= -\frac{1}{n+1}. -\end{align*} -Es ergibt sich daraus als natürlich Verallgemeinerung die Frage nach -der Verteilung des zweitegrössten oder zweitkleinsten Wertes unter den -Werten $X_i$. - -\subsection{Der $k$-t-grösste Wert} -Sie wieder $X_i$ eine Stichprobe von $n$ unabhängigen wie $X$ verteilten -Zufallsvariablen. -Diese werden jetzt der Grösse nach sortiert, die sortierten Werte werden -mit -\[ -X_{1:n} \le X_{2:n} \le \dots \le X_{(n-1):n} \le X_{n:n} -\] -bezeichnet. -Die Grössen $X_{k:n}$ sind Zufallsvariablen, sie heissen die $k$-ten -Ordnungsstatistiken. -Die in Abschnitt~\ref{dreieck:subsection:minmax} behandelten Zufallsvariablen -$\operatorname{min}(X_1,\dots,X_n)$ -und -$\operatorname{max}(X_1,\dots,X_n)$ -sind die Fälle -\begin{align*} -X_{1:n} &= \operatorname{min}(X_1,\dots,X_n) \\ -X_{n:n} &= \operatorname{max}(X_1,\dots,X_n). -\end{align*} - -Um den Wert der Verteilungsfunktion von $X_{k:n}$ zu berechnen, müssen wir -die Wahrscheinlichkeit bestimmen, dass $k$ der $n$ Werte $X_i$ $x$ nicht -übersteigen. -Der $k$-te Wert $X_{k:n}$ übersteigt genau dann $x$ nicht, wenn -mindestens $k$ der Zufallswerte $X_i$ $x$ nicht übersteigen, also -\[ -P(X_{k:n} \le x) -= -P\left( -|\{i\in[n]\,|\, X_i\le x\}| \ge k -\right). -\] - -Das Ereignis $\{X_i\le x\}$ ist eine Bernoulli-Experiment, welches mit -Wahrscheinlichkeit $F_X(x)$ eintritt. -Die Anzahl der Zufallsvariablen $X_i$, die $x$ übertreffen, ist also -Binomialverteilt mit $p=F_X(x)$. -Damit haben wir gefunden, dass mit Wahrscheinlichkeit -\begin{equation} -F_{X_{k:n}}(x) -= -P(X_{k:n}\le x) -= -\sum_{i=k}^n \binom{n}{i}F_X(x)^i (1-F_X(x))^{n-i} -\label{dreieck:eqn:FXkn} -\end{equation} -mindestens $k$ der Zufallsvariablen den Wert $x$ überschreiten. - -\subsubsection{Wahrscheinlichkeitsdichte der Ordnungsstatistik} -Die Wahrscheinlichkeitsdichte der Ordnungsstatistik kann durch Ableitung -von \eqref{dreieck:eqn:FXkn} gefunden, werden, sie ist -\begin{align*} -\varphi_{X_{k:n}}(x) -&= -\frac{d}{dx} -F_{X_{k:n}}(x) -\\ -&= -\sum_{i=k}^n -\binom{n}{i} -\bigl( -iF_X(x)^{i-1}\varphi_X(x) (1-F_X(x))^{n-i} -- -F_X(x)^k -(n-i) -(1-F_X(x))^{n-i-1} -\varphi_X(x) -\bigr) -\\ -&= -\sum_{i=k}^n -\binom{n}{i} -\varphi_X(x) -F_X(x)^{i-1}(1-F_X(x))^{n-i-1} -\bigl( -iF_X(x)-(n-i)(1-F_X(x)) -\bigr) -\\ -&= -\varphi_X(x) -\biggl( -\sum_{i=k}^n i\binom{n}{i} F_X(x)^{i-1}(1-F_X(x))^{n-i} -- -\sum_{j=k}^n (n-j)\binom{n}{j} F_X(x)^{j}(1-F_X(x))^{n-j-1} -\biggr) -\\ -&= -\varphi_X(x) -\biggl( -\sum_{i=k}^n i\binom{n}{i} F_X(x)^{i-1}(1-F_X(x))^{n-i} -- -\sum_{i=k+1}^{n+1} (n-i+1)\binom{n}{i-1} F_X(x)^{i-1}(1-F_X(x))^{n-i} -\biggr) -\\ -&= -\varphi_X(x) -\biggl( -k\binom{n}{k}F_X(x)^{k-1}(1-F_X(x))^{n-k} -+ -\sum_{i=k+1}^{n+1} -\left( -i\binom{n}{i} -- -(n-i+1)\binom{n}{i-1} -\right) -F_X(x)^{i-1}(1-F_X(x))^{n-i} -\biggr) -\end{align*} -Mit den wohlbekannten Identitäten für die Binomialkoeffizienten -\begin{align*} -i\binom{n}{i} -- -(n-i+1)\binom{n}{i-1} -&= -n\binom{n-1}{i-1} -- -n -\binom{n-1}{i-1} -= -0 -\end{align*} -folgt jetzt -\begin{align*} -\varphi_{X_{k:n}}(x) -&= -\varphi_X(x)k\binom{n}{k} F_X(x)^{k-1}(1-F_X(x))^{n-k}(x). -\intertext{Im Speziellen für gleichverteilte Zufallsvariablen $X_i$ ist -} -\varphi_{X_{k:n}}(x) -&= -k\binom{n}{k} x^{k-1}(1-x)^{n-k}. -\end{align*} -Dies ist die Wahrscheinlichkeitsdichte einer Betaverteilung -\[ -\beta(k,n-k+1)(x) -= -\frac{1}{B(k,n-k+1)} -x^{k-1}(1-x)^{n-k}. -\] -Tatsächlich ist die Normierungskonstante -\begin{align} -\frac{1}{B(k,n-k+1)} -&= -\frac{\Gamma(n+1)}{\Gamma(k)\Gamma(n-k+1)} -= -\frac{n!}{(k-1)!(n-k)!}. -\label{dreieck:betaverteilung:normierung1} -\end{align} -Andererseits ist -\[ -k\binom{n}{k} -= -k\frac{n!}{k!(n-k)!} -= -\frac{n!}{(k-1)!(n-k)!}, -\] -in Übereinstimmung mit~\eqref{dreieck:betaverteilung:normierung1}. -Die Verteilungsfunktion und die Wahrscheinlichkeitsdichte der -Ordnungsstatistik sind in Abbildung~\ref{dreieck:fig:order} dargestellt. - -\begin{figure} -\centering -\includegraphics{papers/dreieck/images/order.pdf} -\caption{Verteilungsfunktion und Wahrscheinlichkeitsdichte der -Ordnungsstatistiken $X_{k:n}$ einer gleichverteilung Zuvallsvariable -mit $n=10$. -\label{dreieck:fig:order}} -\end{figure} - -\subsubsection{Erwartungswert} -Mit der Wahrscheinlichkeitsdichte kann man jetzt auch den Erwartungswerte -der $k$-ten Ordnungsstatistik bestimmen. -Die Rechnung ergibt: -\begin{align*} -E(X_{k:n}) -&= -\int_0^1 x\cdot k\binom{n}{k} x^{k-1}(1-x)^{n-k}\,dx -= -k -\binom{n}{k} -\int_0^1 -x^{k}(1-x)^{n-k}\,dx. -\intertext{Dies ist das Beta-Integral} -&= -k\binom{n}{k} -B(k+1,n-k+1) -\intertext{welches man durch Gamma-Funktionen bzw.~durch Fakultäten wie in} -&= -k\frac{n!}{k!(n-k)!} -\frac{\Gamma(k+1)\Gamma(n-k+1)}{n+2} -= -k\frac{n!}{k!(n-k)!} -\frac{k!(n-k)!}{(n+1)!} -= -\frac{k}{n+1} -\end{align*} -ausdrücken kann. -Die Erwartungswerte haben also regelmässige Abstände, sie sind in -Abbildung~\ref{dreieck:fig:order} als blaue vertikale Linien eingezeichnet. - -\subsubsection{Varianz} -Auch die Varianz lässt sich einfach berechnen, dazu muss zunächst -der Erwartungswert von $X_{k:n}^2$ bestimmt werden. -Er ist -\begin{align*} -E(X_{k:n}^2) -&= -\int_0^1 x^2\cdot k\binom{n}{k} x^{k-1}(1-x)^{n-k}\,dx -= -k -\binom{n}{k} -\int_0^1 -x^{k+1}(1-x)^{n-k}\,dx. -\intertext{Auch dies ist ein Beta-Integral, nämlich} -&= -k\binom{n}{k} -B(k+2,n-k+1) -= -k\frac{n!}{k!(n-k)!} -\frac{(k+1)!(n-k)!}{(n+2)!} -= -\frac{k(k+1)}{(n+1)(n+2)}. -\end{align*} -Die Varianz wird damit -\begin{align} -\operatorname{var}(X_{k:n}) -&= -E(X_{k:n}^2) - E(X_{k:n})^2 -\notag -\\ -& -= -\frac{k(k+1)}{(n+1)(n+2)}-\frac{k^2}{(n+1)^2} -= -\frac{k(k+1)(n+1)-k^2(n+2)}{(n+1)^2(n+2)} -= -\frac{k(n-k+1)}{(n+1)^2(n+2)}. -\label{dreieck:eqn:ordnungsstatistik:varianz} -\end{align} -In Abbildung~\ref{dreieck:fig:order} ist die Varianz der -Ordnungsstatistik $X_{k:n}$ für $k=7$ und $n=10$ als oranges -Rechteck dargestellt. - -\begin{figure} -\centering -\includegraphics[width=0.84\textwidth]{papers/dreieck/images/beta.pdf} -\caption{Wahrscheinlichkeitsdichte der Beta-Verteilung -$\beta(a,b,x)$ -für verschiedene Werte der Parameter $a$ und $b$. -Die Werte des Parameters für einen Graphen einer Beta-Verteilung -sind als Punkt im kleinen Quadrat rechts -im Graphen als Punkt mit der gleichen Farbe dargestellt. -\label{dreieck:fig:betaverteilungn}} -\end{figure} - -Die Formel~\eqref{dreieck:eqn:ordnungsstatistik:varianz} -besagt auch, dass die Varianz der proportional ist zu $k((n+1)-k)$. -Dieser Ausdruck ist am grössten für $k=(n+1)/2$, die Varianz ist -also grösser für die ``mittleren'' Ordnungstatistiken als für die -extremen $X_{1:n}=\operatorname{min}(X_1,\dots,X_n)$ und -$X_{n:n}=\operatorname{max}(X_1,\dots,X_n)$. diff --git a/buch/papers/kugel/Makefile.inc b/buch/papers/kugel/Makefile.inc index d926229..50d6825 100644 --- a/buch/papers/kugel/Makefile.inc +++ b/buch/papers/kugel/Makefile.inc @@ -4,11 +4,7 @@ # (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule # dependencies-kugel = \ - papers/kugel/packages.tex \ + papers/kugel/packages.tex \ papers/kugel/main.tex \ - papers/kugel/references.bib \ - papers/kugel/teil0.tex \ - papers/kugel/teil1.tex \ - papers/kugel/teil2.tex \ - papers/kugel/teil3.tex + papers/kugel/references.bib diff --git a/buch/papers/kugel/main.tex b/buch/papers/kugel/main.tex index 0e632ec..06368af 100644 --- a/buch/papers/kugel/main.tex +++ b/buch/papers/kugel/main.tex @@ -1,36 +1,39 @@ % + % main.tex -- Paper zum Thema <kugel> % % (c) 2020 Hochschule Rapperswil % -\chapter{Thema\label{chapter:kugel}} -\lhead{Thema} +\chapter{Recurrence Relations for Spherical Harmonics in Quantum Mechanics\label{chapter:kugel}} +\lhead{Recurrence Relations in Quantum Mechanics} \begin{refsection} -\chapterauthor{Hans Muster} - -Ein paar Hinweise für die korrekte Formatierung des Textes -\begin{itemize} -\item -Absätze werden gebildet, indem man eine Leerzeile einfügt. -Die Verwendung von \verb+\\+ ist nur in Tabellen und Arrays gestattet. -\item -Die explizite Platzierung von Bildern ist nicht erlaubt, entsprechende -Optionen werden gelöscht. -Verwenden Sie Labels und Verweise, um auf Bilder hinzuweisen. -\item -Beginnen Sie jeden Satz auf einer neuen Zeile. -Damit ermöglichen Sie dem Versionsverwaltungssysteme, Änderungen -in verschiedenen Sätzen von verschiedenen Autoren ohne Konflikt -anzuwenden. -\item -Bilden Sie auch für Formeln kurze Zeilen, einerseits der besseren -Übersicht wegen, aber auch um GIT die Arbeit zu erleichtern. -\end{itemize} - -\input{papers/kugel/teil0.tex} -\input{papers/kugel/teil1.tex} -\input{papers/kugel/teil2.tex} -\input{papers/kugel/teil3.tex} +\chapterauthor{Manuel Cattaneo, Naoki Pross} + +\begin{verbatim} + +Ideas and current research goals +-------------------------------- + +- Recurrence relations for spherical harmonics +- Associated Legendre polynomials +- Rodrigues' type formula aka Rodrigues' formula +- Applications: + * Quantization of angular momentum + * Gravitational field measurements (NASA ebb and flow, ESA goce) + * Literally anything that needs basis functions on the surface of a sphere + +Literature +---------- + +- Nichtkommutative Bildverarbeitung, T. Mendez, p57+ +- Linear Algebra Done Right, S. Axler, p212,221,231,237 +- Introduction to Quantum Mechanics, D. J. Griffith, p201+ +- Seminar Quantenmechanik, A. Müller, p101,106,114,121 +- Introduction to Partial Differential Equations, J. Oliver, p510+ +- Partial Differential Equations in Engineering Problems, K. Miller, p175,190 + +\end{verbatim} + \printbibliography[heading=subbibliography] \end{refsection} diff --git a/buch/papers/kugel/teil0.tex b/buch/papers/kugel/teil0.tex deleted file mode 100644 index f921a82..0000000 --- a/buch/papers/kugel/teil0.tex +++ /dev/null @@ -1,22 +0,0 @@ -% -% einleitung.tex -- Beispiel-File für die Einleitung -% -% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil -% -\section{Teil 0\label{kugel:section:teil0}} -\rhead{Teil 0} -Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam -nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam -erat, sed diam voluptua \cite{kugel:bibtex}. -At vero eos et accusam et justo duo dolores et ea rebum. -Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum -dolor sit amet. - -Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam -nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam -erat, sed diam voluptua. -At vero eos et accusam et justo duo dolores et ea rebum. Stet clita -kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit -amet. - - diff --git a/buch/papers/kugel/teil1.tex b/buch/papers/kugel/teil1.tex deleted file mode 100644 index e56bb18..0000000 --- a/buch/papers/kugel/teil1.tex +++ /dev/null @@ -1,55 +0,0 @@ -% -% teil1.tex -- Beispiel-File für das Paper -% -% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil -% -\section{Teil 1 -\label{kugel:section:teil1}} -\rhead{Problemstellung} -Sed ut perspiciatis unde omnis iste natus error sit voluptatem -accusantium doloremque laudantium, totam rem aperiam, eaque ipsa -quae ab illo inventore veritatis et quasi architecto beatae vitae -dicta sunt explicabo. -Nemo enim ipsam voluptatem quia voluptas sit aspernatur aut odit -aut fugit, sed quia consequuntur magni dolores eos qui ratione -voluptatem sequi nesciunt -\begin{equation} -\int_a^b x^2\, dx -= -\left[ \frac13 x^3 \right]_a^b -= -\frac{b^3-a^3}3. -\label{kugel:equation1} -\end{equation} -Neque porro quisquam est, qui dolorem ipsum quia dolor sit amet, -consectetur, adipisci velit, sed quia non numquam eius modi tempora -incidunt ut labore et dolore magnam aliquam quaerat voluptatem. - -Ut enim ad minima veniam, quis nostrum exercitationem ullam corporis -suscipit laboriosam, nisi ut aliquid ex ea commodi consequatur? -Quis autem vel eum iure reprehenderit qui in ea voluptate velit -esse quam nihil molestiae consequatur, vel illum qui dolorem eum -fugiat quo voluptas nulla pariatur? - -\subsection{De finibus bonorum et malorum -\label{kugel:subsection:finibus}} -At vero eos et accusamus et iusto odio dignissimos ducimus qui -blanditiis praesentium voluptatum deleniti atque corrupti quos -dolores et quas molestias excepturi sint occaecati cupiditate non -provident, similique sunt in culpa qui officia deserunt mollitia -animi, id est laborum et dolorum fuga \eqref{000tempmlate:equation1}. - -Et harum quidem rerum facilis est et expedita distinctio -\ref{kugel:section:loesung}. -Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil -impedit quo minus id quod maxime placeat facere possimus, omnis -voluptas assumenda est, omnis dolor repellendus -\ref{kugel:section:folgerung}. -Temporibus autem quibusdam et aut officiis debitis aut rerum -necessitatibus saepe eveniet ut et voluptates repudiandae sint et -molestiae non recusandae. -Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis -voluptatibus maiores alias consequatur aut perferendis doloribus -asperiores repellat. - - diff --git a/buch/papers/kugel/teil2.tex b/buch/papers/kugel/teil2.tex deleted file mode 100644 index cb9e427..0000000 --- a/buch/papers/kugel/teil2.tex +++ /dev/null @@ -1,40 +0,0 @@ -% -% teil2.tex -- Beispiel-File für teil2 -% -% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil -% -\section{Teil 2 -\label{kugel:section:teil2}} -\rhead{Teil 2} -Sed ut perspiciatis unde omnis iste natus error sit voluptatem -accusantium doloremque laudantium, totam rem aperiam, eaque ipsa -quae ab illo inventore veritatis et quasi architecto beatae vitae -dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas sit -aspernatur aut odit aut fugit, sed quia consequuntur magni dolores -eos qui ratione voluptatem sequi nesciunt. Neque porro quisquam -est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci -velit, sed quia non numquam eius modi tempora incidunt ut labore -et dolore magnam aliquam quaerat voluptatem. Ut enim ad minima -veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam, -nisi ut aliquid ex ea commodi consequatur? Quis autem vel eum iure -reprehenderit qui in ea voluptate velit esse quam nihil molestiae -consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla -pariatur? - -\subsection{De finibus bonorum et malorum -\label{kugel:subsection:bonorum}} -At vero eos et accusamus et iusto odio dignissimos ducimus qui -blanditiis praesentium voluptatum deleniti atque corrupti quos -dolores et quas molestias excepturi sint occaecati cupiditate non -provident, similique sunt in culpa qui officia deserunt mollitia -animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis -est et expedita distinctio. Nam libero tempore, cum soluta nobis -est eligendi optio cumque nihil impedit quo minus id quod maxime -placeat facere possimus, omnis voluptas assumenda est, omnis dolor -repellendus. Temporibus autem quibusdam et aut officiis debitis aut -rerum necessitatibus saepe eveniet ut et voluptates repudiandae -sint et molestiae non recusandae. Itaque earum rerum hic tenetur a -sapiente delectus, ut aut reiciendis voluptatibus maiores alias -consequatur aut perferendis doloribus asperiores repellat. - - diff --git a/buch/papers/kugel/teil3.tex b/buch/papers/kugel/teil3.tex deleted file mode 100644 index 734fff9..0000000 --- a/buch/papers/kugel/teil3.tex +++ /dev/null @@ -1,40 +0,0 @@ -% -% teil3.tex -- Beispiel-File für Teil 3 -% -% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil -% -\section{Teil 3 -\label{kugel:section:teil3}} -\rhead{Teil 3} -Sed ut perspiciatis unde omnis iste natus error sit voluptatem -accusantium doloremque laudantium, totam rem aperiam, eaque ipsa -quae ab illo inventore veritatis et quasi architecto beatae vitae -dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas sit -aspernatur aut odit aut fugit, sed quia consequuntur magni dolores -eos qui ratione voluptatem sequi nesciunt. Neque porro quisquam -est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci -velit, sed quia non numquam eius modi tempora incidunt ut labore -et dolore magnam aliquam quaerat voluptatem. Ut enim ad minima -veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam, -nisi ut aliquid ex ea commodi consequatur? Quis autem vel eum iure -reprehenderit qui in ea voluptate velit esse quam nihil molestiae -consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla -pariatur? - -\subsection{De finibus bonorum et malorum -\label{kugel:subsection:malorum}} -At vero eos et accusamus et iusto odio dignissimos ducimus qui -blanditiis praesentium voluptatum deleniti atque corrupti quos -dolores et quas molestias excepturi sint occaecati cupiditate non -provident, similique sunt in culpa qui officia deserunt mollitia -animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis -est et expedita distinctio. Nam libero tempore, cum soluta nobis -est eligendi optio cumque nihil impedit quo minus id quod maxime -placeat facere possimus, omnis voluptas assumenda est, omnis dolor -repellendus. Temporibus autem quibusdam et aut officiis debitis aut -rerum necessitatibus saepe eveniet ut et voluptates repudiandae -sint et molestiae non recusandae. Itaque earum rerum hic tenetur a -sapiente delectus, ut aut reiciendis voluptatibus maiores alias -consequatur aut perferendis doloribus asperiores repellat. - - diff --git a/buch/papers/lambertw/Bilder/something.svg b/buch/papers/lambertw/Bilder/something.svg new file mode 100644 index 0000000..e9d5656 --- /dev/null +++ b/buch/papers/lambertw/Bilder/something.svg @@ -0,0 +1 @@ +<svg xmlns:xlink="http://www.w3.org/1999/xlink" width="812" height="715" xmlns="http://www.w3.org/2000/svg" version="1.1"><defs><clipPath id="VERnTSIdNFBN"><path fill="none" stroke="none" d="M 0 0 L 812 0 L 812 715 L 0 715 L 0 0 Z" /></clipPath></defs><g clip-path="url("#VERnTSIdNFBN")" transform="scale(1)"><g><rect fill="rgb(255, 255, 255)" fill-opacity="1" stroke="none" x="0" y="0" width="812" height="715" /><path fill="none" stroke="rgb(192, 192, 192)" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10" stroke-opacity="1" d="M 14.5 0.5 L 14.5 715.5 M 14.5 0.5 L 14.5 715.5 M 65.5 0.5 L 65.5 715.5 M 115.5 0.5 L 115.5 715.5 M 165.5 0.5 L 165.5 715.5 M 265.5 0.5 L 265.5 715.5 M 315.5 0.5 L 315.5 715.5 M 365.5 0.5 L 365.5 715.5 M 415.5 0.5 L 415.5 715.5 M 465.5 0.5 L 465.5 715.5 M 515.5 0.5 L 515.5 715.5 M 565.5 0.5 L 565.5 715.5 M 615.5 0.5 L 615.5 715.5 M 665.5 0.5 L 665.5 715.5 M 715.5 0.5 L 715.5 715.5 M 765.5 0.5 L 765.5 715.5" paint-order="fill stroke markers" /><path fill="none" stroke="rgb(192, 192, 192)" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10" stroke-opacity="0.235294" d="M 4.5 0.5 L 4.5 715.5 M 24.5 0.5 L 24.5 715.5 M 35.5 0.5 L 35.5 715.5 M 45.5 0.5 L 45.5 715.5 M 55.5 0.5 L 55.5 715.5 M 75.5 0.5 L 75.5 715.5 M 85.5 0.5 L 85.5 715.5 M 95.5 0.5 L 95.5 715.5 M 105.5 0.5 L 105.5 715.5 M 125.5 0.5 L 125.5 715.5 M 135.5 0.5 L 135.5 715.5 M 145.5 0.5 L 145.5 715.5 M 155.5 0.5 L 155.5 715.5 M 175.5 0.5 L 175.5 715.5 M 185.5 0.5 L 185.5 715.5 M 195.5 0.5 L 195.5 715.5 M 205.5 0.5 L 205.5 715.5 M 225.5 0.5 L 225.5 715.5 M 235.5 0.5 L 235.5 715.5 M 245.5 0.5 L 245.5 715.5 M 255.5 0.5 L 255.5 715.5 M 275.5 0.5 L 275.5 715.5 M 285.5 0.5 L 285.5 715.5 M 295.5 0.5 L 295.5 715.5 M 305.5 0.5 L 305.5 715.5 M 325.5 0.5 L 325.5 715.5 M 335.5 0.5 L 335.5 715.5 M 345.5 0.5 L 345.5 715.5 M 355.5 0.5 L 355.5 715.5 M 375.5 0.5 L 375.5 715.5 M 385.5 0.5 L 385.5 715.5 M 395.5 0.5 L 395.5 715.5 M 405.5 0.5 L 405.5 715.5 M 425.5 0.5 L 425.5 715.5 M 435.5 0.5 L 435.5 715.5 M 445.5 0.5 L 445.5 715.5 M 455.5 0.5 L 455.5 715.5 M 475.5 0.5 L 475.5 715.5 M 485.5 0.5 L 485.5 715.5 M 495.5 0.5 L 495.5 715.5 M 505.5 0.5 L 505.5 715.5 M 525.5 0.5 L 525.5 715.5 M 535.5 0.5 L 535.5 715.5 M 545.5 0.5 L 545.5 715.5 M 555.5 0.5 L 555.5 715.5 M 575.5 0.5 L 575.5 715.5 M 585.5 0.5 L 585.5 715.5 M 595.5 0.5 L 595.5 715.5 M 605.5 0.5 L 605.5 715.5 M 625.5 0.5 L 625.5 715.5 M 635.5 0.5 L 635.5 715.5 M 645.5 0.5 L 645.5 715.5 M 655.5 0.5 L 655.5 715.5 M 675.5 0.5 L 675.5 715.5 M 685.5 0.5 L 685.5 715.5 M 695.5 0.5 L 695.5 715.5 M 705.5 0.5 L 705.5 715.5 M 725.5 0.5 L 725.5 715.5 M 735.5 0.5 L 735.5 715.5 M 745.5 0.5 L 745.5 715.5 M 755.5 0.5 L 755.5 715.5 M 775.5 0.5 L 775.5 715.5 M 785.5 0.5 L 785.5 715.5 M 795.5 0.5 L 795.5 715.5 M 805.5 0.5 L 805.5 715.5" paint-order="fill stroke markers" /><path fill="none" stroke="rgb(192, 192, 192)" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10" stroke-opacity="1" d="M 0.5 12.5 L 812.5 12.5 M 0.5 12.5 L 812.5 12.5 M 0.5 62.5 L 812.5 62.5 M 0.5 112.5 L 812.5 112.5 M 0.5 162.5 L 812.5 162.5 M 0.5 212.5 L 812.5 212.5 M 0.5 262.5 L 812.5 262.5 M 0.5 312.5 L 812.5 312.5 M 0.5 362.5 L 812.5 362.5 M 0.5 462.5 L 812.5 462.5 M 0.5 512.5 L 812.5 512.5 M 0.5 562.5 L 812.5 562.5 M 0.5 612.5 L 812.5 612.5 M 0.5 662.5 L 812.5 662.5 M 0.5 712.5 L 812.5 712.5" paint-order="fill stroke markers" /><path fill="none" stroke="rgb(192, 192, 192)" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10" stroke-opacity="0.235294" d="M 0.5 2.5 L 812.5 2.5 M 0.5 2.5 L 812.5 2.5 M 0.5 22.5 L 812.5 22.5 M 0.5 32.5 L 812.5 32.5 M 0.5 42.5 L 812.5 42.5 M 0.5 52.5 L 812.5 52.5 M 0.5 72.5 L 812.5 72.5 M 0.5 82.5 L 812.5 82.5 M 0.5 92.5 L 812.5 92.5 M 0.5 102.5 L 812.5 102.5 M 0.5 122.5 L 812.5 122.5 M 0.5 132.5 L 812.5 132.5 M 0.5 142.5 L 812.5 142.5 M 0.5 152.5 L 812.5 152.5 M 0.5 172.5 L 812.5 172.5 M 0.5 182.5 L 812.5 182.5 M 0.5 192.5 L 812.5 192.5 M 0.5 202.5 L 812.5 202.5 M 0.5 222.5 L 812.5 222.5 M 0.5 232.5 L 812.5 232.5 M 0.5 242.5 L 812.5 242.5 M 0.5 252.5 L 812.5 252.5 M 0.5 272.5 L 812.5 272.5 M 0.5 282.5 L 812.5 282.5 M 0.5 292.5 L 812.5 292.5 M 0.5 302.5 L 812.5 302.5 M 0.5 322.5 L 812.5 322.5 M 0.5 332.5 L 812.5 332.5 M 0.5 342.5 L 812.5 342.5 M 0.5 352.5 L 812.5 352.5 M 0.5 372.5 L 812.5 372.5 M 0.5 382.5 L 812.5 382.5 M 0.5 392.5 L 812.5 392.5 M 0.5 402.5 L 812.5 402.5 M 0.5 422.5 L 812.5 422.5 M 0.5 432.5 L 812.5 432.5 M 0.5 442.5 L 812.5 442.5 M 0.5 452.5 L 812.5 452.5 M 0.5 472.5 L 812.5 472.5 M 0.5 482.5 L 812.5 482.5 M 0.5 492.5 L 812.5 492.5 M 0.5 502.5 L 812.5 502.5 M 0.5 522.5 L 812.5 522.5 M 0.5 532.5 L 812.5 532.5 M 0.5 542.5 L 812.5 542.5 M 0.5 552.5 L 812.5 552.5 M 0.5 572.5 L 812.5 572.5 M 0.5 582.5 L 812.5 582.5 M 0.5 592.5 L 812.5 592.5 M 0.5 602.5 L 812.5 602.5 M 0.5 622.5 L 812.5 622.5 M 0.5 632.5 L 812.5 632.5 M 0.5 642.5 L 812.5 642.5 M 0.5 652.5 L 812.5 652.5 M 0.5 672.5 L 812.5 672.5 M 0.5 682.5 L 812.5 682.5 M 0.5 692.5 L 812.5 692.5 M 0.5 702.5 L 812.5 702.5" paint-order="fill stroke markers" /><path fill="none" stroke="rgb(0, 0, 0)" stroke-miterlimit="10" stroke-opacity="1" d="M 215.5 2.5 L 215.5 715.5" paint-order="fill stroke markers" /><path fill="none" stroke="rgb(0, 0, 0)" stroke-miterlimit="10" stroke-opacity="1" d="M 215.5 1.5 L 211.5 5.5" paint-order="fill stroke markers" /><path fill="none" stroke="rgb(0, 0, 0)" stroke-miterlimit="10" stroke-opacity="1" d="M 215.5 1.5 L 219.5 5.5" paint-order="fill stroke markers" /><path fill="none" stroke="rgb(0, 0, 0)" stroke-miterlimit="10" stroke-opacity="1" d="M 0.5 412.5 L 810.5 412.5" paint-order="fill stroke markers" /><path fill="none" stroke="rgb(0, 0, 0)" stroke-miterlimit="10" stroke-opacity="1" d="M 811.5 412.5 L 807.5 408.5" paint-order="fill stroke markers" /><path fill="none" stroke="rgb(0, 0, 0)" stroke-miterlimit="10" stroke-opacity="1" d="M 811.5 412.5 L 807.5 416.5" paint-order="fill stroke markers" /><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="10" y="428">–4</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="none" stroke="rgb(255, 255, 255)" stroke-linejoin="bevel" stroke-miterlimit="10" stroke-opacity="1" stroke-width="3" text-anchor="start" x="10" y="428">–4</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="10" y="428">–4</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="60" y="428">–3</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="none" stroke="rgb(255, 255, 255)" stroke-linejoin="bevel" stroke-miterlimit="10" stroke-opacity="1" stroke-width="3" text-anchor="start" x="60" y="428">–3</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="60" y="428">–3</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="110" y="428">–2</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="none" stroke="rgb(255, 255, 255)" stroke-linejoin="bevel" stroke-miterlimit="10" stroke-opacity="1" stroke-width="3" text-anchor="start" x="110" y="428">–2</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="110" y="428">–2</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="160" y="428">–1</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="none" stroke="rgb(255, 255, 255)" stroke-linejoin="bevel" stroke-miterlimit="10" stroke-opacity="1" stroke-width="3" text-anchor="start" x="160" y="428">–1</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="160" y="428">–1</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="263" y="428">1</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="none" stroke="rgb(255, 255, 255)" stroke-linejoin="bevel" stroke-miterlimit="10" stroke-opacity="1" stroke-width="3" text-anchor="start" x="263" y="428">1</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="263" y="428">1</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="313" y="428">2</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="none" stroke="rgb(255, 255, 255)" stroke-linejoin="bevel" stroke-miterlimit="10" stroke-opacity="1" stroke-width="3" text-anchor="start" x="313" y="428">2</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="313" y="428">2</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="363" y="428">3</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="none" stroke="rgb(255, 255, 255)" stroke-linejoin="bevel" stroke-miterlimit="10" stroke-opacity="1" stroke-width="3" text-anchor="start" x="363" y="428">3</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="363" y="428">3</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="413" y="428">4</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="none" stroke="rgb(255, 255, 255)" stroke-linejoin="bevel" stroke-miterlimit="10" stroke-opacity="1" stroke-width="3" text-anchor="start" x="413" y="428">4</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="413" y="428">4</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="463" y="428">5</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="none" stroke="rgb(255, 255, 255)" stroke-linejoin="bevel" stroke-miterlimit="10" stroke-opacity="1" stroke-width="3" text-anchor="start" x="463" y="428">5</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="463" y="428">5</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="513" y="428">6</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="none" stroke="rgb(255, 255, 255)" stroke-linejoin="bevel" stroke-miterlimit="10" stroke-opacity="1" stroke-width="3" text-anchor="start" x="513" y="428">6</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="513" y="428">6</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="563" y="428">7</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="none" stroke="rgb(255, 255, 255)" stroke-linejoin="bevel" stroke-miterlimit="10" stroke-opacity="1" stroke-width="3" text-anchor="start" x="563" y="428">7</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="563" y="428">7</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="613" y="428">8</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="none" stroke="rgb(255, 255, 255)" stroke-linejoin="bevel" stroke-miterlimit="10" stroke-opacity="1" stroke-width="3" text-anchor="start" x="613" y="428">8</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="613" y="428">8</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="663" y="428">9</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="none" stroke="rgb(255, 255, 255)" stroke-linejoin="bevel" stroke-miterlimit="10" stroke-opacity="1" stroke-width="3" text-anchor="start" x="663" y="428">9</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="663" y="428">9</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="710" y="428">10</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="none" stroke="rgb(255, 255, 255)" stroke-linejoin="bevel" stroke-miterlimit="10" stroke-opacity="1" stroke-width="3" text-anchor="start" x="710" y="428">10</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="710" y="428">10</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="760" y="428">11</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="none" stroke="rgb(255, 255, 255)" stroke-linejoin="bevel" stroke-miterlimit="10" stroke-opacity="1" stroke-width="3" text-anchor="start" x="760" y="428">11</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="760" y="428">11</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="195" y="667">–5</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="none" stroke="rgb(255, 255, 255)" stroke-linejoin="bevel" stroke-miterlimit="10" stroke-opacity="1" stroke-width="3" text-anchor="start" x="195" y="667">–5</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="195" y="667">–5</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="195" y="617">–4</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="none" stroke="rgb(255, 255, 255)" stroke-linejoin="bevel" stroke-miterlimit="10" stroke-opacity="1" stroke-width="3" text-anchor="start" x="195" y="617">–4</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="195" y="617">–4</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="195" y="567">–3</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="none" stroke="rgb(255, 255, 255)" stroke-linejoin="bevel" stroke-miterlimit="10" stroke-opacity="1" stroke-width="3" text-anchor="start" x="195" y="567">–3</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="195" y="567">–3</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="195" y="517">–2</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="none" stroke="rgb(255, 255, 255)" stroke-linejoin="bevel" stroke-miterlimit="10" stroke-opacity="1" stroke-width="3" text-anchor="start" x="195" y="517">–2</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="195" y="517">–2</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="195" y="467">–1</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="none" stroke="rgb(255, 255, 255)" stroke-linejoin="bevel" stroke-miterlimit="10" stroke-opacity="1" stroke-width="3" text-anchor="start" x="195" y="467">–1</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="195" y="467">–1</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="201" y="367">1</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="none" stroke="rgb(255, 255, 255)" stroke-linejoin="bevel" stroke-miterlimit="10" stroke-opacity="1" stroke-width="3" text-anchor="start" x="201" y="367">1</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="201" y="367">1</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="201" y="317">2</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="none" stroke="rgb(255, 255, 255)" stroke-linejoin="bevel" stroke-miterlimit="10" stroke-opacity="1" stroke-width="3" text-anchor="start" x="201" y="317">2</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="201" y="317">2</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="201" y="267">3</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="none" stroke="rgb(255, 255, 255)" stroke-linejoin="bevel" stroke-miterlimit="10" stroke-opacity="1" stroke-width="3" text-anchor="start" x="201" y="267">3</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="201" y="267">3</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="201" y="217">4</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="none" stroke="rgb(255, 255, 255)" stroke-linejoin="bevel" stroke-miterlimit="10" stroke-opacity="1" stroke-width="3" text-anchor="start" x="201" y="217">4</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="201" y="217">4</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="201" y="167">5</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="none" stroke="rgb(255, 255, 255)" stroke-linejoin="bevel" stroke-miterlimit="10" stroke-opacity="1" stroke-width="3" text-anchor="start" x="201" y="167">5</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="201" y="167">5</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="201" y="117">6</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="none" stroke="rgb(255, 255, 255)" stroke-linejoin="bevel" stroke-miterlimit="10" stroke-opacity="1" stroke-width="3" text-anchor="start" x="201" y="117">6</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="201" y="117">6</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="201" y="67">7</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="none" stroke="rgb(255, 255, 255)" stroke-linejoin="bevel" stroke-miterlimit="10" stroke-opacity="1" stroke-width="3" text-anchor="start" x="201" y="67">7</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="201" y="67">7</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="201" y="17">8</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="none" stroke="rgb(255, 255, 255)" stroke-linejoin="bevel" stroke-miterlimit="10" stroke-opacity="1" stroke-width="3" text-anchor="start" x="201" y="17">8</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="201" y="17">8</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="201" y="428">0</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="none" stroke="rgb(255, 255, 255)" stroke-linejoin="bevel" stroke-miterlimit="10" stroke-opacity="1" stroke-width="3" text-anchor="start" x="201" y="428">0</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="201" y="428">0</text><path fill="none" stroke="rgb(0, 0, 0)" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10" stroke-opacity="0.698039" stroke-width="2.5" d="M 215 412 L 269.515 252.091" paint-order="fill stroke markers" /><path fill="rgb(0, 0, 0)" fill-opacity="0.698039" fill-rule="evenodd" stroke="none" d="M 275 236 L 273.537 253.462 L 265.492 250.719 Z" paint-order="stroke fill markers" /><text font-family="geogebra-sans-serif, sans-serif" font-size="16px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="256" y="320">OA</text><text font-family="geogebra-sans-serif, sans-serif" font-size="16px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="none" stroke="rgb(255, 255, 255)" stroke-linejoin="bevel" stroke-miterlimit="10" stroke-opacity="1" stroke-width="3" text-anchor="start" x="256" y="320">OA</text><text font-family="geogebra-sans-serif, sans-serif" font-size="16px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="256" y="320">OA</text><path fill="none" stroke="rgb(0, 0, 0)" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10" stroke-opacity="0.698039" stroke-width="2.5" d="M 215 412 L 449.433 198.448" paint-order="fill stroke markers" /><path fill="rgb(0, 0, 0)" fill-opacity="0.698039" fill-rule="evenodd" stroke="none" d="M 462 187 L 452.295 201.59 L 446.571 195.306 Z" paint-order="stroke fill markers" /><text font-family="geogebra-sans-serif, sans-serif" font-size="16px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="359" y="307">OP</text><text font-family="geogebra-sans-serif, sans-serif" font-size="16px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="none" stroke="rgb(255, 255, 255)" stroke-linejoin="bevel" stroke-miterlimit="10" stroke-opacity="1" stroke-width="3" text-anchor="start" x="359" y="307">OP</text><text font-family="geogebra-sans-serif, sans-serif" font-size="16px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="359" y="307">OP</text><path fill="none" stroke="rgb(0, 0, 0)" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10" stroke-opacity="0.698039" stroke-width="2.5" d="M 462 187 L 291.445 231.691" paint-order="fill stroke markers" /><path fill="rgb(0, 0, 0)" fill-opacity="0.698039" fill-rule="evenodd" stroke="none" d="M 275 236 L 290.368 227.58 L 292.522 235.802 Z" paint-order="stroke fill markers" /><text font-family="geogebra-sans-serif, sans-serif" font-size="16px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="351" y="203">PA</text><text font-family="geogebra-sans-serif, sans-serif" font-size="16px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="none" stroke="rgb(255, 255, 255)" stroke-linejoin="bevel" stroke-miterlimit="10" stroke-opacity="1" stroke-width="3" text-anchor="start" x="351" y="203">PA</text><text font-family="geogebra-sans-serif, sans-serif" font-size="16px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="351" y="203">PA</text><path fill="rgb(77, 77, 255)" fill-opacity="1" stroke="none" d="M 467 187 C 467 189.761 464.761 192 462 192 C 459.239 192 457 189.761 457 187 C 457 184.239 459.239 182 462 182 C 464.761 182 467 184.239 467 187 Z" paint-order="stroke fill markers" /><path fill="none" stroke="rgb(0, 0, 0)" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10" stroke-opacity="1" d="M 467 187 C 467 189.761 464.761 192 462 192 C 459.239 192 457 189.761 457 187 C 457 184.239 459.239 182 462 182 C 464.761 182 467 184.239 467 187 Z" paint-order="fill stroke markers" /><text font-family="geogebra-sans-serif, sans-serif" font-size="16px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(77, 77, 255)" fill-opacity="1" stroke="none" text-anchor="start" x="466" y="177">P</text><text font-family="geogebra-sans-serif, sans-serif" font-size="16px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="none" stroke="rgb(255, 255, 255)" stroke-linejoin="bevel" stroke-miterlimit="10" stroke-opacity="1" stroke-width="3" text-anchor="start" x="466" y="177">P</text><text font-family="geogebra-sans-serif, sans-serif" font-size="16px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(77, 77, 255)" fill-opacity="1" stroke="none" text-anchor="start" x="466" y="177">P</text><path fill="rgb(77, 77, 255)" fill-opacity="1" stroke="none" d="M 280 236 C 280 238.761 277.761 241 275 241 C 272.239 241 270 238.761 270 236 C 270 233.239 272.239 231 275 231 C 277.761 231 280 233.239 280 236 Z" paint-order="stroke fill markers" /><path fill="none" stroke="rgb(0, 0, 0)" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10" stroke-opacity="1" d="M 280 236 C 280 238.761 277.761 241 275 241 C 272.239 241 270 238.761 270 236 C 270 233.239 272.239 231 275 231 C 277.761 231 280 233.239 280 236 Z" paint-order="fill stroke markers" /><text font-family="geogebra-sans-serif, sans-serif" font-size="16px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(77, 77, 255)" fill-opacity="1" stroke="none" text-anchor="start" x="279" y="226">A</text><text font-family="geogebra-sans-serif, sans-serif" font-size="16px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="none" stroke="rgb(255, 255, 255)" stroke-linejoin="bevel" stroke-miterlimit="10" stroke-opacity="1" stroke-width="3" text-anchor="start" x="279" y="226">A</text><text font-family="geogebra-sans-serif, sans-serif" font-size="16px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(77, 77, 255)" fill-opacity="1" stroke="none" text-anchor="start" x="279" y="226">A</text></g></g></svg>
\ No newline at end of file diff --git a/buch/papers/lambertw/packages.tex b/buch/papers/lambertw/packages.tex index 6581a5a..366de78 100644 --- a/buch/papers/lambertw/packages.tex +++ b/buch/papers/lambertw/packages.tex @@ -8,3 +8,5 @@ % following example %\usepackage{packagename} +\usepackage{graphicx} +\usepackage{float}
\ No newline at end of file diff --git a/buch/papers/lambertw/teil0.tex b/buch/papers/lambertw/teil0.tex index 2b83d59..ca172e5 100644 --- a/buch/papers/lambertw/teil0.tex +++ b/buch/papers/lambertw/teil0.tex @@ -3,20 +3,15 @@ % % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % -\section{Teil 0\label{lambertw:section:teil0}} +\section{Was sind Verfolgungskurven? \label{lambertw:section:teil0}} \rhead{Teil 0} -Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam -nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam -erat, sed diam voluptua \cite{lambertw:bibtex}. -At vero eos et accusam et justo duo dolores et ea rebum. -Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum -dolor sit amet. -Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam -nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam -erat, sed diam voluptua. -At vero eos et accusam et justo duo dolores et ea rebum. Stet clita -kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit -amet. + +Verfolgungskurven entstehen immer, dann wenn ein Verfolger sein Ziel verfolgt. +Nämlich ist eine Verfolgungskurve die Kurve, die ein Verfolger abfährt während er sein Ziel verfolgt. + +Zum Beispiel + + diff --git a/buch/papers/lambertw/teil1.tex b/buch/papers/lambertw/teil1.tex index 7b545c3..493ec05 100644 --- a/buch/papers/lambertw/teil1.tex +++ b/buch/papers/lambertw/teil1.tex @@ -3,9 +3,116 @@ % % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % -\section{Teil 1 +\section{Beispiel () \label{lambertw:section:teil1}} \rhead{Problemstellung} + + + +%\begin{figure}[H] +% \centering +% \includegraphics[width=0.5\textwidth]{.\Bilder\something.pdf} +% \label{pursuer:grafik1} +%\end{figure} + + + +Je nach Verfolgungsstrategie die der Verfolger verwendet, entsteht eine andere DGL. +Für dieses konkrete Beispiel wird einfachheitshalber die simpelste Strategie gewählt. +Bei dieser Strategie bewegt sich der Verfolger immer direkt auf sein Ziel hinzu. +Womit der Geschwindigkeitsvektor des Verfolgers zu jeder Zeit direkt auf das Ziel zeigt. + +Um die DGL dieses Problems herzuleiten wird der Sachverhalt in der Grafik \eqref{pursuer:grafik1} aufgezeigt. +Der Punkt $P$ ist der Verfolger und der Punkt $A$ ist sein Ziel. + +Um dies mathematisch beschreiben zu können, wird der Richtungsvektor +\begin{equation} + \frac{A-P}{|A-P|} + = + \frac{\dot{P}}{|\dot{P}|} +\end{equation} +benötigt. Durch die Subtraktion der Ortsvektoren $\overrightarrow{OP}$ und $\overrightarrow{OA}$ entsteht ein Vektor der vom Punkt $P$ auf $A$ zeigt. +Da die Länge dieses Vektors beliebig sein kann, wird durch Division mit dem Betrag, die Länge auf eins festgelegt. +Aus dem Verfolgungsproblem ist auch ersichtlich, dass die Punkte $A$ und $P$ nicht am gleichen Ort starten und so eine Division durch Null ausgeschlossen ist. +Wenn die Punkte $A$ und $P$ trotzdem am gleichen Ort starten, ist die Lösung trivial. + +Nun wird die Gleichung mit deren rechten Seite skalar multipliziert, um das Gleichungssystem von zwei auf eine Gleichung zu reduzieren. +\begin{equation} + \label{pursuer:pursuerDGL} + \frac{A-P}{|A-P|}\cdot \frac{\dot{P}}{|\dot{P}|} + = + 1 +\end{equation} +Diese DGL ist der Kern des Verfolgungsproblems, insofern sich der Verfolger immer direkt auf sein Ziel zubewegt. + + +\subsection{Beispiel} +Das Verfolgungsproblem wird mithilfe eines konkreten Beispiels veranschaulicht. Dafür wird die einfachste Strategie verwendet, bei der sich der Verfolger direkt auf sein Ziel hinzu bewegt. Für dieses Problem wurde bereits die DGL \eqref{pursuer:pursuerDGL} hergeleitet. + +Um dieses Beispiel einfach zu halten, wird für den Verfolger und das Ziel jeweils eine konstante Geschwindigkeit von eins gewählt. Das Ziel wiederum startet im Ursprung und bewegt sich linear auf der positiven Y-Achse. + +\begin{align} + v_P^2 + &= + \dot{P}\cdot\dot{P} + = + 1 + \\[5pt] + v_A + &= + 1 + \\[5pt] + A + &= + \begin{pmatrix} + 0 \\ + v_A\cdot t + \end{pmatrix} + = + \begin{pmatrix} + 0 \\ + t + \end{pmatrix} + \\[5pt] + P + &= + \begin{pmatrix} + x \\ + y + \end{pmatrix} +\end{align} + +Die Anfangsbedingungen dieses Problems sind. + +\begin{align} + y(t)\bigg|_{t=0} + &= + y_0 + \\[5pt] + x(t)\bigg|_{t=0} + &= + x_0 \\[5pt] + \frac{\,dy}{\,dx}(t)\bigg|_{t=0} + &= + \frac{y_A(t) -y_P(t)}{x_A(t)-x_P(t)}\bigg|_{t=0} +\end{align} + +Mit den vorangegangenen Definitionen kann nun die DGL \eqref{pursuer:pursuerDGL} gelöst werden. +Dafür wird als erstes das Skalarprodukt ausgerechnet. + +\begin{equation} + \dfrac{-x\cdot\dot{x}+(t-y)\cdot\dot{y}}{\sqrt{x^2+(t-y)^2}} = 1 +\end{equation} + + + + + + + + + + Sed ut perspiciatis unde omnis iste natus error sit voluptatem accusantium doloremque laudantium, totam rem aperiam, eaque ipsa quae ab illo inventore veritatis et quasi architecto beatae vitae diff --git a/buch/papers/transfer/main.tex b/buch/papers/transfer/main.tex index 2aae635..ed16998 100644 --- a/buch/papers/transfer/main.tex +++ b/buch/papers/transfer/main.tex @@ -3,29 +3,10 @@ % % (c) 2020 Hochschule Rapperswil % -\chapter{Thema\label{chapter:transfer}} +\chapter{Transferfunktionen\label{chapter:transfer}} \lhead{Thema} \begin{refsection} -\chapterauthor{Hans Muster} - -Ein paar Hinweise für die korrekte Formatierung des Textes -\begin{itemize} -\item -Absätze werden gebildet, indem man eine Leerzeile einfügt. -Die Verwendung von \verb+\\+ ist nur in Tabellen und Arrays gestattet. -\item -Die explizite Platzierung von Bildern ist nicht erlaubt, entsprechende -Optionen werden gelöscht. -Verwenden Sie Labels und Verweise, um auf Bilder hinzuweisen. -\item -Beginnen Sie jeden Satz auf einer neuen Zeile. -Damit ermöglichen Sie dem Versionsverwaltungssysteme, Änderungen -in verschiedenen Sätzen von verschiedenen Autoren ohne Konflikt -anzuwenden. -\item -Bilden Sie auch für Formeln kurze Zeilen, einerseits der besseren -Übersicht wegen, aber auch um GIT die Arbeit zu erleichtern. -\end{itemize} +\chapterauthor{Marc Benz} \input{papers/transfer/teil0.tex} \input{papers/transfer/teil1.tex} |