aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--buch/papers/lambertw/teil4.tex2
1 files changed, 1 insertions, 1 deletions
diff --git a/buch/papers/lambertw/teil4.tex b/buch/papers/lambertw/teil4.tex
index 2de3663..ba32696 100644
--- a/buch/papers/lambertw/teil4.tex
+++ b/buch/papers/lambertw/teil4.tex
@@ -10,7 +10,7 @@ In diesem Abschnitt wird rechnerisch das Beispiel einer Verfolgungskurve mit der
\subsection{Anfangsbedingungen definieren und einsetzen
\label{lambertw:subsection:Anfangsbedingungen}}
-Das zu verfolgende Ziel \(Z\) bewegt sich entlang der \(y\)-Achse mit konstanter Geschwindigkeit \(|\dot{z}| = 1\), beginnend beim Ursprung des kartesischen Koordinatensystems. Der Verfolger \(V\) startet auf einem beliebigen Punkt im ersten Quadranten und bewegt sich auch mit konstanter Geschwindigkeit \(|\dot{v}| = 1\) in Richtung Ziel. Diese Anfangspunkte oder Anfangsbedingungen können wie folgt formuliert werden:
+Das zu verfolgende Ziel \(Z\) bewegt sich entlang der \(y\)-Achse mit konstanter Geschwindigkeit \(|\dot{z}| = 1\), beginnend beim Ursprung des kartesischen Koordinatensystems. Der Verfolger \(V\) startet auf einem beliebigen Punkt im ersten Quadranten und bewegt sich auch mit konstanter Geschwindigkeit \(|\dot{v}| = 1\) in Richtung Ziel. Aus diesen Bedingungen ergibt sich den ersten Quadranten als Bewegungsraum für \(V\). Diese Anfangspunkte oder Anfangsbedingungen können wie folgt formuliert werden:
\begin{equation}
Z
=