diff options
Diffstat (limited to 'buch/papers')
-rw-r--r-- | buch/papers/sturmliouville/einleitung.tex | 53 |
1 files changed, 24 insertions, 29 deletions
diff --git a/buch/papers/sturmliouville/einleitung.tex b/buch/papers/sturmliouville/einleitung.tex index 78c1800..31256eb 100644 --- a/buch/papers/sturmliouville/einleitung.tex +++ b/buch/papers/sturmliouville/einleitung.tex @@ -6,15 +6,15 @@ \section{Was ist das Sturm-Liouville-Problem\label{sturmliouville:section:teil0}} \rhead{Einleitung} Das Sturm-Liouville-Problem wurde benannt nach dem schweizerisch-französischer Mathematiker und Physiker Jacques Charles Fran\c{c}ois Sturm und dem französischer Mathematiker Joseph Liouville. -Gemeinsam haben sie in der mathematischen Physik die Sturm-Liouville-Theorie entwickelt und gilt für die Lösung von gewohnlichen Differentialgleichungen, jedoch verwendet man die Theorie öfters bei der Lösung von partiellen Differentialgleichungen. -Normalerweise betrachtet man für das Strum-Liouville-Problem eine gewöhnliche Differentialgleichung 2. Ordnung, und wenn es sich um eine partielle Differentialgleichung handelt, kann man sie mit Hilfe einiger Methoden in mehrere gewöhnliche Differentialgleichungen umwandeln, wie z. B. den Separationsansatz, die partielle Differentialgleichung mit mehreren Variablen. +Gemeinsam haben sie in der mathematischen Physik die Sturm-Liouville-Theorie entwickelt, welche für die Lösung von gewohnlichen Differentialgleichungen gilt, jedoch verwendet man die Theorie öfters bei der Lösung von partiellen Differentialgleichungen. +Normalerweise betrachtet man für das Strum-Liouville-Problem eine gewöhnliche Differentialgleichung 2. Ordnung, und wenn es sich um eine partielle Differentialgleichung handelt, kann man sie mit Hilfe einiger Methoden in mehrere gewöhnliche Differentialgleichungen umwandeln, wie zum Beispiel mit dem Separationsansatz. \begin{definition} \index{Sturm-Liouville-Gleichung}% Angenommen man hat die lineare homogene Differentialgleichung -\begin{equation} +\[ \frac{d^2y}{dx^2} + a(x)\frac{dy}{dx} + b(x)y = 0 -\end{equation} +\] und schreibt die Gleichung um in: \begin{equation} \label{eq:sturm-liouville-equation} @@ -23,7 +23,7 @@ und schreibt die Gleichung um in: , diese Gleichung wird dann Sturm-Liouville-Gleichung bezeichnet. \end{definition} -Alle homogene 2.Ordnung lineare gewöhnliche Differentialgleichungen können in die Form der Gleichung \ref{eq:sturm-liouville-equation} umgeformt werden. +Alle homogenen, linearen, gewöhnlichen, Differentialgleichungen 2.Ordnung können in die Form der Gleichung~\eqref{eq:sturm-liouville-equation} gebracht werden. Die Sturm-Liouville-Theorie besagt, dass, wenn man die Sturm-Liouville-Gleichung mit den homogenen Randbedingungen des dritten Typs\footnote{Die Randbedingung des dritten Typs, oder Robin-Randbedingungen (benannt nach dem französischen mathematischen Analytiker und angewandten Mathematiker Victor Gustave Robin), wird genannt, wenn sie einer gewöhnlichen oder partiellen Differentialgleichung auferlegt wird, so sind die Spezifikationen einer Linearkombination der Werte einer Funktion sowie die Werte ihrer Ableitung am Rande des Bereichs} \begin{equation} \begin{aligned} @@ -34,30 +34,30 @@ Die Sturm-Liouville-Theorie besagt, dass, wenn man die Sturm-Liouville-Gleichung \end{equation} kombiniert, wie schon im Kapitel \ref{sub:differentailgleichung} erwähnt, auf dem Intervall (a,b), dann bekommt man das klassische Sturm-Liouville-Problem. Wenn von der Funktion $y(x)$ die Werte $x$ des jeweiligen Randes des Definitionsbereiches anzunehmen sind, also -\begin{equation} +\[ y(a) = y(b) = 0 -\end{equation} +\] , so spricht man von einer Dirichlet-Randbedingung, und von einer Neumann-Randbedingung spricht man, wenn -\begin{equation} +\[ y'(a) = y'(b) = 0 -\end{equation} -ergibt - die Existenz und Eindeutigkeit der Lösung kann mit den zwei Randbedingungen sichergestellt werden. +\] +ist. Die Existenz und Eindeutigkeit der Lösung kann mit den zwei Randbedingungen sichergestellt werden. Lösungen die nicht Null sind, werden nicht betrachtet und diese zwei Gleichungen (\ref{eq:sturm-liouville-equation} und \ref{eq:randbedingungen}) kombiniert, nennt man Eigenfunktionen. Wenn bei der Sturm-Liouville-Gleichung \ref{eq:sturm-liouville-equation} alles konstant bleibt, aber der Wert von $\lambda$ sich ändert, erhält man eine andere Eigenfunktion, weil man eine andere gewöhnliche Differentialgleichung löst; der Parameter $\lambda$ wird als Eigenwert bezeichnet. Es ist genau das gleiche Prinzip wie bei den Matrizen, andere Eigenwerte ergeben andere Eigenvektoren. Es besteht eine Korrespondenz zwischen den Eigenwerten und den Eigenvektoren. Das gleiche gilt auch beim Sturm-Liouville-Problem, und zwar -\begin{equation} - \lambda \overset{Korrespondenz}\leftrightarrow y -\end{equation}. +\[ + \lambda \overset{Korrespondenz}\leftrightarrow y. +\] Die Theorie besagt, wenn $y_m$, $y_n$ Eigenfuktionen des Sturm-Liouville-Problems sind, die verschiedene Eigenwerte $\lambda_m$, $\lambda_n$ ($\lambda_m \neq \lambda_n$) entsprechen, so sind $y_m$, $y_n$ orthogonal zu y - dies gilt für das Intervall (a,b). Somit ergibt die Gleichung -\begin{equation} - \int_{a}^{b} w(x)y_m y_n = 0 -\end{equation}. +\[ + \int_{a}^{b} w(x)y_m y_n = 0. +\] Die Funktionen $p(x)$, $q(x)$ und $w(x)$ werden als Koeffizientenfunktionen mit ihren freien Variablen $x$ bezeichnet. Die Funktion $w(x)$ (manchmal auch $r(x)$ genannt) wird als Gewichtsfunktion oder Dichtefunktion bezeichnet. @@ -90,29 +90,29 @@ Bei einem regulären Sturm-Liouville-Problem geht es darum, ohne genaue Kenntnis \subsection{Das singuläre Sturm-Liouville-Problem\label{sub:singuläre_sturm_liouville_problem}} -Von einem singulären Sturm-Liouville-Problem spricht man, wenn die Bedingungen des regulärem Problem nicht erfüllt sind. +Von einem singulären Sturm-Liouville-Problem spricht man, wenn die Bedingungen des regulären Problems nicht erfüllt sind. \begin{definition} \label{def:singulär_sturm-liouville-problem} \index{singuläres Sturm-Liouville-Problem} -Es handelt sich um ein singuläres Sturm-Liouville-Problem, wenn: +Es handelt sich um ein singuläres Sturm-Liouville-Problem, \begin{itemize} \item wenn sein Definitionsbereich auf dem Intervall $[ \ a,b] \ $ unbeschränkt ist oder \item wenn die Koeffizienten an den Randpunkten Singularitäten haben. \end{itemize} \end{definition} -Allerdings kann nur eine der Bedingungen nicht erfüllt sein, so dass es sich bereits um ein singuläres Sturm-Liouville-Problem handelt. +Allerdings kann auch nur eine der Bedingungen nicht erfüllt sein, so dass es sich bereits um ein singuläres Sturm-Liouville-Problem handelt. \begin{beispiel} Das Randwertproblem - \begin{equation} + \[ \begin{aligned} x^2y'' + xy' + (\lambda^2x^2 - m^2)y &= 0, 0<x<a,\\ y(a) &= 0 \end{aligned} - \end{equation} + \] ist kein reguläres Sturm-Liouville-Problem. - Weil wenn man die Gleichung in die Sturm-Liouville Form umformen, dann ergeben die Koeffizientenfunktionen $p(x) = w(x) = x$ und $q(x) = -m^2/x$. - Schaut man jetzt die Bedingungen im Kapitel \ref{sub:reguläre_sturm_liouville_problem} an und vergleicht diese unseren Koeffizientenfunktionen, so erkennt man einige Probleme: + Weil wenn man die Gleichung in die Sturm-Liouville Form bringt, dann ergeben die Koeffizientenfunktionen $p(x) = w(x) = x$ und $q(x) = -m^2/x$. + Schaut man jetzt die Bedingungen im Kapitel~\ref{sub:reguläre_sturm_liouville_problem} an und vergleicht diese mit unseren Koeffizientenfunktionen, so erkennt man einige Probleme: \begin{itemize} \item $p(x)$ und $w(x)$ sind nicht positiv, wenn $x = 0$ ist. \item $q(x)$ ist nicht kontinuierlich, wenn $x = 0$ ist. @@ -122,10 +122,5 @@ Allerdings kann nur eine der Bedingungen nicht erfüllt sein, so dass es sich be Verwendet man das reguläre Sturm-Liouville-Problem, obwohl eine oder beide Bedingungen nicht erfüllt sind, dann ist es schwierig zu sagen, ob die Lösung fundierte Ergebnisse hat. Es ist schwierig, bestehende Kriterien anzuwenden, da die Formulierungen z.B. in der Lösungsfunktion liegen. -Das Spektrum besteht im singulärem Problem nicht mehr nur aus Eigenwerte, sondern kann auch einen stetigen Anteil enthalten. +Das Spektrum besteht im singulärem Problem nicht mehr nur aus Eigenwerten, sondern kann auch einen stetigen Anteil enthalten. Ähnlich wie bei der Fourier-Reihe gegenüber der Fourier-Transformation gibt es immer noch eine zugehörige Eigenfunktionsentwicklung, und zwar die Integraltransformation sowie gibt es weiterhin eine verallgemeinerte Eigenfunktionen. - - - - - |